
RTSS 2014

vMPCP: A Synchronization Framework

for Multi-Core Virtual Machines

Hyoseung Kim* Shige Wang† Raj Rajkumar *

General Motors R&D

*

†

hyoseung@cmu.edu shige.wang@gm.com raj@ece.cmu.edu

RTSS 2014

Benefits of Multi-Core Processors

• Multi-core CPUs for embedded real-time systems

• Consolidation of real-time applications onto a single

multi-core CPU

– Reduces the number of CPUs and wiring harnesses among them

– Leads to a significant reduction in space and power requirements

• Automotive:

– Freescale i.MX6 4-core CPU

– NVIDIA Tegra K1 platform

• Avionics and defense:

– Rugged Intel i7 single board

computers

– Freescale P4080 8-core CPU

2/24

RTSS 2014

Virtualization of Real-Time Systems

• Barrier to consolidation

– Each app. could have been developed

independently by different vendors

• Heterogeneous S/W infrastructure

• Bare-metal / Proprietary OS

• Linux / Android

– Different license issues

• Consolidation via virtualization

– Each application can maintain

its own implementation

– Minimizes re-certification process

– IP protection, license segregation

– Fault isolation

Virtualization

Multi-core CPU

Real-Time Hypervisor

3/24

RTSS 2014

Virtual Machines and Hypervisor

• Two-level hierarchical scheduling structure

– Task scheduling and VCPU scheduling

 VM1

VCPU1

Task
τ1

Task Scheduler

Task
τ2

VCPU2

Task
τ3

Task Scheduler

Task
τ4

Hypervisor

Physical Core 1 (PCPU1)

VCPU Scheduler

VM2

VCPU3

Task
τ5

Task Scheduler

Task
τ6

VCPU4

Task
τ7

Task Scheduler

Task
τ8

Physical Core 2 (PCPU2)

VCPU Scheduler

4/24

RTSS 2014

Resource Sharing

• Consolidation inevitably causes the sharing of physical and

logical resources

– Sensors

– Network interfaces

– I/O devices

– Shared memory

• Increase in processor core count

– More tasks can be consolidated

– More resource sharing is expected

Requires mutually-exclusive locks

to avoid race conditions

We need a synchronization mechanism with bounded blocking times

for multi-core real-time virtualization

5/24

RTSS 2014

Previous Work

[1] R. Rajkumar et al. Real-time synchronization protocols for multiprocessors. In RTSS, 1988

[2] P. Gai et al. A comparison of MPCP and MSRP when sharing resources in the Janus multiple-processor on a chip platform. In RTAS, 2003.

[3] A. Block et al. A flexible real-time locking protocol for multiprocessors. In RTCSA, 2007.

[4] F. Nemati et al. Independently-developed real-time systems on multi-cores with shared resources. In ECRTS, 2011.

[5] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority pre-emptive systems. In RTSS, 2006.

[6] M. Behnam et al. SIRAP: a synchronization protocol for hierarchical resource sharing in real-time open systems. In EMSOFT, 2007.

[7] M. Asberg et al. Resource sharing using the rollback mechanism in hierarchically scheduled real-time open systems. In RTAS, 2013.

Context
Synch.

protocols
Notes

 Hierarchical

scheduling

HSRP [5]

SIRAP [6]

RRP [7]

• Designed for single-core systems

• Not extended to multi-core systems

• No software mechanism for virtualization

Multi-core

scheduling

MPCP [1]

MSRP [2]

FMLP [3]

MSOS [4]

• Designed for non-hierarchical scheduling

• Unbounded blocking time in a multi-core

virtualization environment

(VCPU preemption / budget depletion)

6/24

RTSS 2014

Our Approach

• vMPCP: a virtualization-aware multiprocessor priority

ceiling protocol

– Provides bounded blocking time on accessing shared resources in

multi-core virtualization

• Two-level hierarchical priority ceilings

• Para-virtualization interface

– VCPU budget replenishment policies

• Periodic server

• Deferrable server

– Optional VCPU budget overrun

– Implemented on the KVM hypervisor

of Linux/RK

7/24

RTSS 2014

Outline

• Introduction

• vMPCP Framework

– System model

– Penalties from shared resources

– vMPCP details

– Analysis

• Evaluation

• Conclusion

8/24

RTSS 2014

System Model (1)

• Partitioned fixed-priority scheduling for both VCPUs and tasks

• VCPU 𝑣𝑖: (𝐶𝑖
𝑣, 𝑇𝑖

𝑣)

– 𝐶𝑖
𝑣: Maximum execution budget

– 𝑇𝑖
𝑣: Budget replenishment period

• VCPU budget replenishment policy

– Periodic server

– Deferrable server

• Task 𝜏𝑖: 𝐶𝑖,1, 𝐸𝑖,1, 𝐶𝑖,2, 𝐸𝑖,2, … , 𝐸𝑖,𝑆𝑖
, 𝐶𝑖,𝑆𝑖+1 , 𝑇𝑖

– 𝐶𝑖,𝑗: WCET of j-th normal execution segment

– 𝐸𝑖,𝑗: WCET of j-th critical section segment

– 𝑇𝑖: Period

– 𝑆𝑖: The number of critical section segments

Alternating sequence of

normal execution and

critical section segments

9/24

RTSS 2014

System Model (2)

Hypervisor

Physical Core 1 (PCPU1)

VCPU Scheduler

Global resources
(Hypervisor resources)

VM1

VCPU1

Task
τ1

Task Scheduler

Task
τ2

Local resources

VCPU2

Task
τ3

Task Scheduler

Task
τ4

Local resources

Global resources
(Guest VM resources)

VM2

VCPU3

Task
τ5

Task Scheduler

Task
τ6

Local resources

VCPU4

Task
τ7

Task Scheduler

Task
τ8

Local resources

Global resources
(Guest VM resources)

Physical Core 2 (PCPU2)

VCPU Scheduler
VCPU1 VCPU3 VCPU2 VCPU4

Local shared resources
Resources shared among tasks on

the same VCPU Local blocking

Global shared resources
Resources shared among tasks on

other VCPUs that may be located on

other PCPUs Remote blocking

10/24

RTSS 2014

Penalties from Shared Resources

• Local blocking

– Task waiting on the executions of lower-priority tasks on the same VCPU

• Remote blocking

– Task waiting on the executions of tasks on other VCPUs

Goal: minimize and bound the remote blocking time

in a multi-core virtualization environment

Additional timing penalties

caused by remote blocking

• Back-to-back execution

• Multiple priority inversions

Remote blocking time in a

virtualized environment

• Preemptions by higher-

priority VCPUs

• VCPU budget depletion

11/24

RTSS 2014

vMPCP Overview

• Local shared resource

– Follows the uniprocessor PCP

• Global shared resource

– Uses hierarchical priority ceilings (Task-level and VCPU-level)

– Suppresses task-level and VCPU-level preemptions while accessing

a global resource Reduces remote blocking time

– Two-level priority queue for a mutex protecting a global resource

VCPU
v8

VCPU
v5

VCPU
v4

Task
τ5

Task
τ2

Task
τ8

Task
τ9

Task
τ6

Task
τ3

VCPU
v1

Task
τ7

Waiting
list

Task
τ1

...

(1) Ordered by VCPU priorities

(2) Ordered by

 task priorities

Head

No need to compare task

priorities in one VPCU

with those in other VCPUs

 Good for different

 guest OSs

 (ex, μc/os-ii and Linux)

12/24

RTSS 2014

VCPU Budget Overrun

• vMPCP provides an option for VCPUs to overrun their budgets when

their tasks are in global critical sections (gcs’s)

– Allows tasks to complete their gcs’s, even though their VCPU has

exhausted its budget

– Pro: reducing remote blocking time

– Con: more interference to lower-priority VCPUs

Periodic server

with overrun

• Obeys the periodic-server’s

property of having no back-

to-back execution

Deferrable server

with overrun

• Can overrun more flexibly

than a periodic server

Leads to different remote blocking time in analysis

13/24

RTSS 2014

Para-virtualization Interface

• In current virtualization solutions, the hypervisor is unaware

of the executions of critical sections within VCPUs

• Solution: vMPCP para-virtualization interface

– What is para-virtualization?

• Small modifications to guest OSs

or device drivers to achieve high

performance and efficiency

– To let the hypervisor know the

executions of global critical sections

within VCPUs

– Two hypercalls

Hardware

Guest OS

Hypervisor

Tasks

Modification

Guest OS

Tasks

Modification

vmpcp_start_gcs()

vmpcp_finish_gcs()

14/24

RTSS 2014

vMPCP Analysis (1)

• Scope of our analysis

– VCPU schedulability

– Task schedulability

– Considers four different use cases of vMPCP

VCPU budget

replenish policies
With overrun With no overrun

Periodic server

Deferrable server

15/24

RTSS 2014

vMPCP Analysis (2)

• VCPU Schedulability

– Worst-case response time of VCPU ≤ VCPU period

• Task Schedulability

– Worst-case response time of task ≤ Task deadline

VCPU budget overrun

Blocking time

Higher-priority

VCPUs

Local and remote

blocking times

Higher-priority

tasks in the

same VCPU

VCPU budget and

budget replenishment period

16/24

RTSS 2014

Outline

• Introduction

• vMPCP Framework

• Evaluation

– Comparison of different configurations

– Implementation

– Case study

• Conclusion

17/24

RTSS 2014

Comparison of Different Configurations

• Purpose: to explore the impact of different uses of vMPCP on task

schedulability

• Experimental setup

– Used randomly-generated tasksets

– Metric: the percentage of schedulable tasksets

– Factors considered

Number of global critical sections per task

VCPU period

Size of a global critical section

Utilization of tasks within each VCPU

Number of lockers per mutex

PSwO Periodic Server with Overrun

DSwO Deferrable Server with Overrun

PSnO Periodic Server with no Overrun

DSnO Deferrable Server with no Overrun

18/24

RTSS 2014

Experimental Results (1)

0

20

40

60

80

100

1 2 4 8 16 32 64

Sc
h

e
d

u
la

b
le

 t
as

ks
et

s
(%

)

Number of global critical sections per task

PSwO
DSwO
PSnO
DSnO

0

20

40

60

80

100

10 20 30 40 50 60 70 80

Sc
h

e
d

u
la

b
le

 t
as

ks
et

s
(%

)

VCPU period (msec)

PSwO
DSwO
PSnO
DSnO

In these two cases,

DSwO outperforms the

other schemes

 What about other cases?

19/24

RTSS 2014

Experimental Results (2)

0

20

40

60

80

100

10 25 50 75 100 125 150 175 200 225 250 275 300

Sc
h

e
d

u
la

b
le

 t
as

ks
et

s
(%

)

Size of a gcs (μsec)

PSwO
DSwO
PSnO
DSnO

0

20

40

60

80

100

15.0 17.5 20.0 22.5 25.0 27.5 30.0

Sc
h

e
d

u
la

b
le

 t
as

ks
et

s
(%

)

Task utililization per VCPU (%)

PSwO
DSwO
PSnO
DSnO

The schemes with no

overrun (PSnO and DSnO)

perform better than the

schemes with overrun

Findings:

(1) There is no single

scheme that dominates

the others

(2) When overrun is used,

a deferrable server

outperforms a periodic

server

20/24

RTSS 2014

Implementation

• KVM Hypervisor + Linux/RK

– KVM: A full open-source virtualization solution for Linux

– Linux/RK: Resource kernel implementation based on the Linux kernel

• vMPCP implementation cost

– Target system: Intel Core i7-2600 quad-core 3.4 GHz

Cost for vMPCP

para-virtualization

21/24

RTSS 2014

Case Study

• Purpose: compare vMPCP against a virtualization-unaware protocol (MPCP)

– Metric: task response time

• System configuration

– Hypervisor: Linux/RK + KVM

– Guest OS: Linux/RK

– VCPU budget replenish policy: deferrable server

PCPU 1 PCPU 2 PCPU 3 PCPU 4

VM 1

VM 2

VCPU 1 VCPU 3 VCPU 5 VCPU 7

VCPU 2 VCPU 4 VCPU 6 VCPU 8

Task
τ1

Task
τ2

Task
τ3

Task
τ4

Task
τ5

Task
τ6

Task
τ7

Task
τ8

Global
shared

resource

22/24

RTSS 2014

Case Study Results

Virtualization-unaware

synchronization protocol

(MPCP)

Virtualization-aware

synchronization protocol

(vMPCP w/ overrun)

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8 (μsec)

τ1

τ2

τ3

τ4

τ5

τ6

τ7

τ8 (μsec)

vMPCP yields 29% shorter response time on average

23/24

RTSS 2014

Conclusions

• vMPCP: a synchronization protocol for multi-core VMs

– Bounded blocking time on accessing local/global shared resources

• Hierarchical priority ceilings

• Two-level priority queue for a mutex waiting list

• Para-virtualization interface

– Schedulability analysis and experimental results

• Deferrable server outperforms periodic server when overrun is used

• The use of overrun does not always yield better schedulability

– KVM + Linux/RK: https://rtml.ece.cmu.edu/redmine/projects/rk/

• In our case study, vMPCP yields 29% shorter task response time

compared to a virtualization-unaware synchronization protocol

• Future Work

– Memory interference, compositional framework

24/24

https://rtml.ece.cmu.edu/redmine/projects/rk/
https://rtml.ece.cmu.edu/redmine/projects/rk/

