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Benefits of Multi-Core Processors 

• Multi-core CPUs for embedded real-time systems 

 

 
 

 

 

 

 

• Consolidation of real-time applications onto a single 

multi-core CPU 

– Reduces the number of CPUs and wiring harnesses among them 

– Leads to a significant reduction in space and power requirements 

 

• Automotive:  

– Freescale i.MX6 4-core CPU 

– NVIDIA Tegra K1 platform 

 
• Avionics and defense: 

– Rugged Intel i7 single board 

computers 

– Freescale P4080 8-core CPU 
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Virtualization of Real-Time Systems 

• Barrier to consolidation 

– Each app. could have been developed  

independently by different vendors 

• Heterogeneous S/W infrastructure 

• Bare-metal / Proprietary OS 

• Linux / Android 

– Different license issues 

• Consolidation via virtualization 

– Each application can maintain  

its own implementation 

– Minimizes re-certification process 

– IP protection, license segregation 

– Fault isolation 

 

 

Virtualization 

Multi-core CPU 

Real-Time Hypervisor 
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Virtual Machines and Hypervisor 

• Two-level hierarchical scheduling structure 

– Task scheduling and VCPU scheduling 
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Resource Sharing 

• Consolidation inevitably causes the sharing of physical and 

logical resources 

– Sensors 

– Network interfaces 

– I/O devices 

– Shared memory 

• Increase in processor core count 

– More tasks can be consolidated  

– More resource sharing is expected 

 

Requires mutually-exclusive locks  

to avoid race conditions 

We need a synchronization mechanism with bounded blocking times 

for multi-core real-time virtualization 
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 Hierarchical 

scheduling 

HSRP [5] 

SIRAP [6] 

RRP [7] 

• Designed for single-core systems 

• Not extended to multi-core systems 

• No software mechanism for virtualization 

Multi-core 

scheduling 

MPCP [1] 

MSRP [2] 

FMLP [3] 

MSOS [4] 

• Designed for non-hierarchical scheduling 

• Unbounded blocking time in a multi-core 

virtualization environment 

(VCPU preemption / budget depletion) 
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Our Approach 

• vMPCP: a virtualization-aware multiprocessor priority 

ceiling protocol 

– Provides bounded blocking time on accessing shared resources in 

multi-core virtualization  

• Two-level hierarchical priority ceilings 

• Para-virtualization interface 

– VCPU budget replenishment policies 

• Periodic server 

• Deferrable server 

– Optional VCPU budget overrun 

– Implemented on the KVM hypervisor  

of Linux/RK  
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Outline 

• Introduction 
 

• vMPCP Framework 

– System model 

– Penalties from shared resources 

– vMPCP details 

– Analysis 
 

• Evaluation 
 

• Conclusion 
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System Model (1) 

• Partitioned fixed-priority scheduling for both VCPUs and tasks 

• VCPU  𝑣𝑖: (𝐶𝑖
𝑣, 𝑇𝑖

𝑣)   

– 𝐶𝑖
𝑣: Maximum execution budget 

– 𝑇𝑖
𝑣: Budget replenishment period 

• VCPU budget replenishment policy 

– Periodic server 

– Deferrable server 

• Task 𝜏𝑖: 𝐶𝑖,1, 𝐸𝑖,1, 𝐶𝑖,2, 𝐸𝑖,2, … , 𝐸𝑖,𝑆𝑖
, 𝐶𝑖,𝑆𝑖+1 , 𝑇𝑖  

– 𝐶𝑖,𝑗: WCET of j-th normal execution segment 

– 𝐸𝑖,𝑗: WCET of j-th critical section segment 

– 𝑇𝑖: Period 

– 𝑆𝑖: The number of critical section segments 

 

Alternating sequence of  

normal execution and  

critical section segments 
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System Model (2) 

Hypervisor 

Physical Core 1 (PCPU1) 

VCPU Scheduler 

Global resources  
(Hypervisor resources) 
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Task Scheduler 
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τ2 

Local resources 

VCPU2 

Task 
τ3 

Task Scheduler 
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τ4 

Local resources 

Global resources  
(Guest VM resources) 

VM2 
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τ5 

Task Scheduler 
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τ6 

Local resources 

VCPU4 
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τ7 

Task Scheduler 

Task 
τ8 

Local resources 

Global resources  
(Guest VM resources) 

Physical Core 2 (PCPU2) 

VCPU Scheduler 
VCPU1 VCPU3 VCPU2 VCPU4 

Local shared resources  
Resources shared among tasks on 

the same VCPU  Local blocking 

Global shared resources  
Resources shared among tasks on 

other VCPUs that may be located on 

other PCPUs  Remote blocking 
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Penalties from Shared Resources 

• Local blocking 

– Task waiting on the executions of lower-priority tasks on the same VCPU 

• Remote blocking 

– Task waiting on the executions of tasks on other VCPUs  

Goal: minimize and bound the remote blocking time  

in a multi-core virtualization environment 

Additional timing penalties 

caused by remote blocking 

• Back-to-back execution 

• Multiple priority inversions 

 

Remote blocking time in a 

virtualized environment 

• Preemptions by higher-

priority VCPUs 

• VCPU budget depletion 
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vMPCP Overview 

• Local shared resource 

– Follows the uniprocessor PCP 

• Global shared resource 

– Uses hierarchical priority ceilings (Task-level and VCPU-level) 

– Suppresses task-level and VCPU-level preemptions while accessing  

a global resource  Reduces remote blocking time 

– Two-level priority queue for a mutex protecting a global resource 

VCPU 
v8 

VCPU 
v5 

VCPU 
v4 

Task 
τ5 

Task 
τ2 

Task 
τ8 

Task 
τ9 

Task 
τ6 

Task 
τ3 

VCPU 
v1 

Task 
τ7 

Waiting 
list 

Task 
τ1 

...  

(1) Ordered by VCPU priorities 

(2) Ordered by  

     task priorities 

Head 

No need to compare task 

priorities in one VPCU 

with those in other VCPUs 

 Good for different  

     guest OSs 

    (ex, μc/os-ii and Linux) 
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VCPU Budget Overrun 

• vMPCP provides an option for VCPUs to overrun their budgets when 

their tasks are in global critical sections (gcs’s) 

– Allows tasks to complete their gcs’s, even though their VCPU has 

exhausted its budget 

– Pro: reducing remote blocking time 

– Con: more interference to lower-priority VCPUs 

 

 

 

 

 

 

 

Periodic server  

with overrun 

• Obeys the periodic-server’s 

property of having no back-

to-back execution 

 

Deferrable server 

with overrun 

• Can overrun more flexibly 

than a periodic server 

Leads to different remote blocking time in analysis 
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Para-virtualization Interface 

• In current virtualization solutions, the hypervisor is unaware 

of the executions of critical sections within VCPUs 

• Solution: vMPCP para-virtualization interface 

– What is para-virtualization? 

• Small modifications to guest OSs  

or device drivers to achieve high  

performance and efficiency 

– To let the hypervisor know the  

executions of global critical sections  

within VCPUs 

– Two hypercalls 

Hardware 

Guest OS 

 

Hypervisor 

Tasks 

Modification 

Guest OS 

 

Tasks 

Modification 

vmpcp_start_gcs() 

vmpcp_finish_gcs() 
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vMPCP Analysis (1) 

• Scope of our analysis 

– VCPU schedulability 

– Task schedulability 

– Considers four different use cases of vMPCP 

VCPU budget 

replenish policies 
With overrun With no overrun 

Periodic server   

Deferrable server   
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vMPCP Analysis (2) 

• VCPU Schedulability 

– Worst-case response time of VCPU ≤ VCPU period 

 

 

 

 

• Task Schedulability 

– Worst-case response time of task ≤ Task deadline 

 

 

VCPU budget overrun 

Blocking time  

Higher-priority  

VCPUs 

Local and remote  

blocking times 

Higher-priority  

tasks in the  

same VCPU 

VCPU budget and  

budget replenishment period 
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Outline 

• Introduction 
 

• vMPCP Framework 
 

• Evaluation 

– Comparison of different configurations 

– Implementation 

– Case study 
 

• Conclusion 
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Comparison of Different Configurations 

• Purpose: to explore the impact of different uses of vMPCP on task 

schedulability 

 

 

 

 

 

• Experimental setup 

– Used randomly-generated tasksets 

– Metric: the percentage of schedulable tasksets 

– Factors considered 

 

 

 

Number of global critical sections per task 

VCPU period 

Size of a global critical section 

Utilization of tasks within each VCPU 

Number of lockers per mutex 

PSwO Periodic Server with Overrun 

DSwO Deferrable Server with Overrun 

PSnO Periodic Server with no Overrun 

DSnO Deferrable Server with no Overrun 
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Experimental Results (1) 
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In these two cases,     

DSwO outperforms the  

other schemes 

 What about other cases? 
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Experimental Results (2) 
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The schemes with no 

overrun (PSnO and DSnO) 

perform better than the 

schemes with overrun 

Findings: 

(1) There is no single 

scheme that dominates 

the others 

(2) When overrun is used,  

a deferrable server 

outperforms a periodic 

server 
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Implementation 

• KVM Hypervisor + Linux/RK 

– KVM: A full open-source virtualization solution for Linux 

– Linux/RK: Resource kernel implementation based on the Linux kernel 

• vMPCP implementation cost 

– Target system: Intel Core i7-2600 quad-core 3.4 GHz 

 

Cost for vMPCP  

para-virtualization 
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Case Study 

• Purpose: compare vMPCP against a virtualization-unaware protocol (MPCP) 

– Metric: task response time 

• System configuration 

– Hypervisor: Linux/RK + KVM 

– Guest OS: Linux/RK 

– VCPU budget replenish policy: deferrable server 

 

PCPU 1 PCPU 2 PCPU 3  PCPU 4  

VM 1 

VM 2 

VCPU 1 VCPU 3 VCPU 5  VCPU 7  

VCPU 2 VCPU 4 VCPU 6  VCPU 8  

Task 
τ1 

Task 
τ2 

Task 
τ3 

Task 
τ4 

Task 
τ5 

Task 
τ6 

Task 
τ7 

Task 
τ8 

Global  
shared  

resource 
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Case Study Results 

Virtualization-unaware  

synchronization protocol 

(MPCP) 

Virtualization-aware  

synchronization protocol 

(vMPCP w/ overrun) 

τ1 

τ2 

τ3 

τ4 

τ5 

τ6 

τ7 

τ8 (μsec) 

τ1 

τ2 

τ3 

τ4 

τ5 

τ6 

τ7 
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vMPCP yields 29% shorter response time on average 
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Conclusions 

• vMPCP: a synchronization protocol for multi-core VMs 

– Bounded blocking time on accessing local/global shared resources 

• Hierarchical priority ceilings 

• Two-level priority queue for a mutex waiting list 

• Para-virtualization interface 

– Schedulability analysis and experimental results 

• Deferrable server outperforms periodic server when overrun is used 

• The use of overrun does not always yield better schedulability 

– KVM + Linux/RK: https://rtml.ece.cmu.edu/redmine/projects/rk/ 

• In our case study, vMPCP yields 29% shorter task response time 

compared to a virtualization-unaware synchronization protocol 

• Future Work 

– Memory interference, compositional framework 
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