
RTCSA 2019

Mixed-Trust Computing for
Real-Time Systems

Dionisio de Niz*, Bjorn Andersson*, Mark Klein*, John Lehoczky*,
Amit Vasudevan*, Hyoseung Kim†, and Gabriel Moreno*

* Carnegie Mellon University
† University of California, Riverside

RTCSA 2019

“Trust” in Safety-Critical Systems
• Verification via formal methods

– Critical components, OSs, libraries, etc.

• Verified properties can be easily compromised if the verified
components are not protected from unverified ones

2

Verified
components

Protection

Unverified
components

Our notion of “Trust”
• Both verification and protection should be jointly considered

RTCSA 2019

Challenges
• The complexity of today’s OSs making them impractical to verify
• Alternative: minimize the trusted computing base (TCB) by

developing small verified hypervisors (HVs) and microkernels
– e.g., seL4, CertiKOS, and uberXMHF

3

Trusted parts in TCB
• Made small and simple due to

verification difficulties
• Isolated from untrusted parts

Untrusted parts in VM
• Hosted in a virtual machine (VM)
• Implements rich functionalities

on full-scale OSs, e.g., Linux

Disjoint-trust computing: trusted and untrusted parts co-exist but
in a completely isolated and disjoint manner

RTCSA 2019

Limitations of Disjoint-Trust Computing
• Does not allow the use of untrusted components in critical

functionality where safety must be assured through verification
– ∵ The verified components must be isolated from the untrusted ones if

they are to be trusted

• Example: self-driving car
– Prevents untrusted machine learning algorithms to drive a car if such

functionality needs to be verified
• Very difficult or practically impossible to verify the entire software/hardware

stack, e.g., GPUs, drivers, ML libraries, frameworks, etc.
– Instead, a separate trusted component would need to be in charge of the

driving, isolating it from any untrusted component

4

RTCSA 2019

Real-time Mixed-Trust Computing
• Goal: to give the flexibility to use untrusted components even

for critical functionalities

5

Untrusted task LE

TE

Unverified VM

Verified micro-HV

• Output checked by a verified component,
called Logical Enforcer (LE)

• LE is protected by HV (e.g., uberapps*, PAL†)

• Temporal Enforcer (TE): performs a default safety action if the
untrusted task has not produced a correct output by a specified time

Controller
secure memory enclaves

* A. Vasudevan et al. uberspark: Enforcing verifiable object abstractions for automated compositional security analysis of a hypervisor. USENIX Security, 2016.
† J. M. Mccune et al., TrustVisor: Efficient TCB Reduction and Attestation. IEEE S&P, 2010.

RTCSA 2019

Contributions
• Mixed-trust software architecture

– Interplay of two schedulers
1. Preemptive fixed-priority scheduler in the VM
2. Non-preemptive fixed-priority scheduler in the HV

– Mixed-trust task model & analysis

• Design of a mixed-trust coordination protocol
– Preserves timing dependencies between trusted and untrusted parts
– Prevents logical dependencies that can compromise the trusted part

• Implementation in the uberXMHF hypervisor* on Raspberry Pi

6

* A. Vasudevan and S. Chaki. Have your PI and eat it too: Practical security on a low-cost ubiquitous computing platform. IEEE Euro S&P, 2018.

RTCSA 2019

Outline
• Introduction

– Motivation & Limitations
– Overview

• Mixed-trust computing
– Logical model and protection domains
– Mixed-trust task scheduling and analysis
– Fail-safe coordination protocol

• Case study results
• Conclusions

7

RTCSA 2019

Logical Model of Mixed-Trust Computing

• LE-enforced action

• TE-enforced action

8

Untrusted task
LE

TE

VM

HV

Controller

S (states)

Task activation 𝜶𝜶 �𝜶𝜶

�𝜶𝜶

Safe action for state s

Default safe action for any state
if no output generated by
a specific time E

RTCSA 2019

Conditions Required by Logical Model
• To prevent an untrusted component from causing behaviors not

present in the logical model

9

C1. Each task must produce an output every period
C2. There is only one output per period
C3. The output produced by a task in a period is either from LE or TE
C4. An output produced by the task and validated by the LE must be the

product of a computation that executes within a single period
o i.e., sensing, computing, and output should be done within the same period

C5. The TE of a task must execute E time units after the arrival of the job it
guards and finish before the end of the period

RTCSA 2019

Behavior of Periodic Mixed-Trust Task

10

Untrusted code

Logical enforcer

Temporal enforcer

Every period

Formally-verified LE and TE need to be protected against
unintended modifications

RTCSA 2019

Mixed-Trust Protection Domains

1. Untrusted Spatio-Temporal protection Domain (USTD)
– Untrusted task code execution in the VM

2. Trusted Spatial protection Domain (TSD)
– LE execution in secure enclaves (memory protection)

3. Trusted Spatio-Temporal protection Domain (TSTD)
– TE execution in the verified HV (memory and spatial protection)

11

Untrusted task
LE

TE

VM

HV

Controller

S (states)

Task activation 𝜶𝜶 �𝜶𝜶

�𝜶𝜶

1. USTD 2. TSD

3. TSTD

RTCSA 2019

System Modeling
• Mixed-trust task 𝜇𝜇𝑖𝑖 = (𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖 , 𝜏𝜏𝑖𝑖 , 𝜅𝜅𝑖𝑖)

– 𝑇𝑇𝑖𝑖: period, 𝐷𝐷𝑖𝑖: deadline
– Two execution segments: Guest Task 𝜏𝜏𝑖𝑖 and Hyper Task 𝜅𝜅𝑖𝑖
1. Guest Task 𝜏𝜏𝑖𝑖 = (𝑇𝑇𝑖𝑖 ,𝐸𝐸𝑖𝑖 ,𝐶𝐶𝑖𝑖)

• 𝐶𝐶𝑖𝑖: worst-case execution time of 𝜏𝜏𝑖𝑖
• 𝐸𝐸𝑖𝑖: intermediate deadline for 𝜏𝜏𝑖𝑖  set by analysis such that 𝜅𝜅𝑖𝑖 can finish by 𝐷𝐷𝑖𝑖

2. Hyper Task 𝜅𝜅𝑖𝑖 = (𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖 , 𝜅𝜅𝐶𝐶𝑖𝑖)
• 𝜅𝜅𝐶𝐶𝑖𝑖: worst-case execution time of 𝜅𝜅𝑖𝑖

• Uniprocessor system

12

Preemptive scheduler in VM
• Full-scale guest OSs, e.g., Linux

Non-preemptive scheduler in HV
• Simplifies HV logical verification by

removing task interleavings*

If there is no hyper-task part, 𝜅𝜅𝐶𝐶𝑖𝑖 = 0

* A. Vasudevan et al. Design, implementation and verification of an eXtensible and Modular Hypervisor Framework. IEEE S&P, 2013.

RTCSA 2019

Mixed-Trust Task Scheduling

• How to determine 𝐸𝐸𝑖𝑖?
– For hyper tasks to be schedulable,
– This work uses

• Optimal E assignment presented in online appendix

13

𝑬𝑬𝟐𝟐

𝜏𝜏1(𝐿𝐿𝑃𝑃)

𝜏𝜏2(𝐻𝐻𝐻𝐻)

𝑬𝑬𝟏𝟏

𝑫𝑫𝟏𝟏

𝑫𝑫𝟐𝟐

𝜅𝜅1(𝐿𝐿𝑃𝑃)

𝜅𝜅2(𝐻𝐻𝐻𝐻)

VM

HV

Preemptive

Non-preemptive

Hyper task response time

RTCSA 2019

• Based on non-preemptive fixed priority scheduling*

– Maximum duration of a level-i active period

– Latest starting time of 𝜅𝜅𝑖𝑖,𝑞𝑞 in the level-i active period

– Worst-case response time of 𝜅𝜅𝑖𝑖

• The corresponding guest task 𝜏𝜏𝑖𝑖’s deadline

Hyper Task Schedulability

14

* R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller area network (CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 2007.

RTCSA 2019

Guest Task Schedulability
• Level-i busy period (BP) for a guest task 𝜏𝜏𝑖𝑖

– Processor is busy with Hyper tasks (HTs)
Guest tasks (GTs) with higher priority than 𝜏𝜏𝑖𝑖

• Request-bound function

15

BP starts with HT

BP starts with GT

RTCSA 2019

Guest Task Schedulability (cont’d)
• Maximum level-i busy period

• Maximum finishing time of 𝜏𝜏𝑖𝑖,𝑞𝑞 in the level-i busy period

• Worst-case response time of 𝜏𝜏𝑖𝑖:

16

RTCSA 2019

Experiments

• Impact of HTs
– A GT can experience delay from the HTs of other tasks
– A HT can experience delay from the HTs of other tasks

• But HTs are made small for verifiability

17

double-accounting
effect

RTCSA 2019

Fail-safe Coordination Protocols
• To prevent any dependency of trusted code from untrusted code

1. Secure HT Bootstrapping
– Required for Trusted Spatio-Temporal protection Domain (TSTD)
– Ensures that HTs can start and execute periodically even if the VM is

unable to run GTs

2. Fail-Safe HT Triggering
– Prevents a failure in the VM from disabling or corrupting the periodic

arrival of HTs

3. Late-Output Prevention
– Prevents the output of a GT 𝜏𝜏𝑖𝑖 after its deadline 𝐸𝐸𝑖𝑖

18

RTCSA 2019

Case Study: Temporal Failure Scenarios
• Implemented in uberXMHF on Raspberry Pi 3
• Transient Failures

• Permanent Failures

19

GTs enforced
HTs executed

VM kernel panic HTs executed

RTCSA 2019

Case Study: Drone Application
• Mission controller: sends velocity vectors (VV) to Flight controller

– Guest task (VV Gen) generates velocity vectors
– Hyper task (Hyp-Safe) generates the safe drone action

• Tested with hardware-in-the-loop simulation

20

Mission controller Flight controller

RTCSA 2019

Conclusions
• Both protection and verification are required for the safe use of

untrusted components in critical functions
• Real-time mixed-trust computing

– First framework that satisfies these two requirements
1. Using trusted components to monitor and replace unsafe untrusted

component outputs with safe ones
2. Protecting the logical and temporal behavior of trusted components

– Mixed-trust task guest task (untrusted component & logical enforcer)
hyper task (temporal enforcer)

• Prototype implementation in the uberXHMF hypervisor
• Tested with transient and permanent failures

21

RTCSA 2019

Mixed-Trust Computing for
Real-Time Systems

Thank You

* Carnegie Mellon University
† University of California, Riverside

Dionisio de Niz*, Bjorn Andersson*, Mark Klein*, John Lehoczky*,
Amit Vasudevan*, Hyoseung Kim†, and Gabriel Moreno*

	Mixed-Trust Computing for �Real-Time Systems
	“Trust” in Safety-Critical Systems
	Challenges
	Limitations of Disjoint-Trust Computing
	Real-time Mixed-Trust Computing
	Contributions
	Outline
	Logical Model of Mixed-Trust Computing
	Conditions Required by Logical Model
	Behavior of Periodic Mixed-Trust Task
	Mixed-Trust Protection Domains
	System Modeling
	Mixed-Trust Task Scheduling
	Hyper Task Schedulability
	Guest Task Schedulability
	Guest Task Schedulability (cont’d)
	Experiments
	Fail-safe Coordination Protocols
	Case Study: Temporal Failure Scenarios
	Case Study: Drone Application
	Conclusions
	Mixed-Trust Computing for �Real-Time Systems

