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Status Quo
- Heavy computational demand on real-time embedded systems.

- Hard to meet task deadlines
- Usage of GPU can significantly improve the performance 

- Real-time embedded systems usually have one GPU and consider GPU as a single 
indivisible resource.

- Only one task can access GPU at one time
- Underutilization of the GPU
- Hard to schedule all tasks
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Background – GPU Architecture
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Kernel Execution Time
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Prior Work & Motivation

[1] G. Elliott et al. GPUSync: A framework for real-time GPU management (RTSS, 2013)
[2] H. Kim et al. A server-based approach for predictable GPU access control (RTCSA, 2017)
[3] S. Kato et al. RGEM: A responsive GPGPU execution model for runtime engines (RTSS, 2011)
[4] H. Zhou et al. GPES: a preemptive execution system for GPGPU computing (RTAS, 2015)
[5] J. Janz´en et al. Partitioning GPUs for improved scalability (SBAC-PAD, 2016)

- GPUSync1, Server-based GPU Control2, 
- Efforts towards predictable real-time GPU control.
- GPU is modeled as a non-preemptive indivisible resource.

- RGEM3, GPES4

- Allowing GPU preemptions by splitting kernel and data operations into sub-parts.
- But GPU executes only one kernel at a time.

- GPU partitioning for general-purpose systems5

- Enabling the allocation of SMs to tasks to improve overall GPU utilization.
- No systematic support or analysis to derive the worst-case response time and 

schedulability of tasks. (e.g., blocking time due to shared copy engine)
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Contribution
- STGM: Spatio-Temporal GPU Management framework

- Allows multiple tasks to utilize GPU simultaneously in a time-
analyzable manner.

- Efficient allocation algorithm of GPU resources to tasks and tasks to 
CPU cores.

- Provides schedulability analysis that bounds the maximum blocking 
time and worst-case response time of tasks.

- We have implemented STGM on COTS platforms and evaluated its 
performance compared to existing approaches. 

- Experiment results indicate STGM outperforms significantly in 
schedulability compared to other existing approaches.
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STGM – System Model 

General Task Model

GPU Task Model

- Multi-core System (NP CPU Cores)
- Single GPU (NSM SMs)
- Single Copy Engine (CE), serves in FIFO manner.
- Partitioned Fixed-priority Preemptive Scheduling
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STGM – Spatial & Temporal Management

Spatial Management

- Partition a GPU into SMs 
- Allocate SMs to tasks by using resource allocation algorithm.

Temporal Management

- Case 1: a task does not share SMs with other tasks.
- Its kernels start execution immediately after data copy finishes.

- Case 2: a task shares SMs with others. 
- Wait until all previously-launched kernels with shared SMs are finished. (FIFO)
- Priority-boosting is used to minimize interference during GPU segment execution.
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STGM – Schedulability Analysis
When launching kernel, there are two modes of operations on the CPU side: 
self-suspension and busy-waiting. 

Self-suspension: 

Busy-waiting:
Capturing 
preemption from 
higher priority tasks.
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STGM – Schedulability Analysis
Blocking Time Bi The blocking time from GPU data 

copy and miscellaneous operations 
in GPU segments

The blocking time from kernel 
execution

The blocking time from priority 
inversion
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STGM – Resource Allocation
Ø This allocation algorithm allocates SMs to tasks, tasks to CPUs and check the schedulability. 

Ø It is based on an extension of WFD heuristic.
Ø As the number of tasks is limited, the algorithm will converge after allocating the tasks 

to cores if the taskset is not schedulable even after assigning all available SMs. 
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Evaluation – Experiment Setup
- x86 Server

- Quad-core Intel i7 6700 3.4GHz CPU
- NVIDIA GTX 970

- 4GB Memory
- 13 SMs
- 2 CEs

- Ubuntu 16.04
- CUDA 9.0

- Nvidia Xavier
- 8-core ARM CPU
- Integrated Volta GPU

- 16GB unified memory
- 8 SMs
- 1 CE

- Ubuntu 18.04
- CUDA 10.0 14



Evaluation – Schedulability
- 10,000 random tasksets from profile data for each schedulability experiment.

- Taskset generated randomly based on the execution time profile and parameters in 

Table I (see paper).

- We compare the percentage of schedulable tasksets of STGM with MPCP, FMLP+ (sync-

based approach), and server-based approach.

- All these prior works consider GPU as an indivisible device.
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Evaluation – Schedulability
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Conclusion & Future Work
- Conclusion

- We proposed STGM, which allows multiple tasks to utilize GPU simultaneously in a 
time-analyzable manner.

- We designed an efficient allocation algorithm of GPU resources to tasks and tasks 
to CPU cores.

- Schedulability analysis is provided which bounds the maximum blocking time and 
worst-case response time of tasks.

- We have implemented STGM on COTS platforms and evaluated its performance 
compared to prior works.

- Evaluation results indicate significant improvement in schedulability compared to 
other existing approaches.

- Future Work
- Multiple-GPUs
- Shared memory-induced interference (e.g., cache/memory bus) 17
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