
STGM: Spatio-Temporal GPU 
Management for Real-Time Tasks

Sujan Kumar Saha †*, Yecheng Xiang*, Hyoseung Kim*

†*

1



Status Quo
- Heavy computational demand on real-time embedded systems.

- Hard to meet task deadlines
- Usage of GPU can significantly improve the performance 

- Real-time embedded systems usually have one GPU and consider GPU as a single 
indivisible resource.

- Only one task can access GPU at one time
- Underutilization of the GPU
- Hard to schedule all tasks

3
NVIDIA TX1/TX2 NVIDIA Xavier Apple A12X



Background – GPU Architecture

L2 Cache

M
ai

n 
M

em
or

y

C
op

y 
E

ng
in

e

M
em

or
y 

C
on

tro
lle

r Core Core Core Core

Core Core Core Core

Core

Core

Core

Core

L1 Cache

Shared Memory

Register File

EE

Overview of GPU Architecture
4



Kernel Execution Time

5



Prior Work & Motivation

[1] G. Elliott et al. GPUSync: A framework for real-time GPU management (RTSS, 2013)
[2] H. Kim et al. A server-based approach for predictable GPU access control (RTCSA, 2017)
[3] S. Kato et al. RGEM: A responsive GPGPU execution model for runtime engines (RTSS, 2011)
[4] H. Zhou et al. GPES: a preemptive execution system for GPGPU computing (RTAS, 2015)
[5] J. Janz´en et al. Partitioning GPUs for improved scalability (SBAC-PAD, 2016)

- GPUSync1, Server-based GPU Control2, 
- Efforts towards predictable real-time GPU control.
- GPU is modeled as a non-preemptive indivisible resource.

- RGEM3, GPES4

- Allowing GPU preemptions by splitting kernel and data operations into sub-parts.
- But GPU executes only one kernel at a time.

- GPU partitioning for general-purpose systems5

- Enabling the allocation of SMs to tasks to improve overall GPU utilization.
- No systematic support or analysis to derive the worst-case response time and 

schedulability of tasks. (e.g., blocking time due to shared copy engine)

6



Contribution
- STGM: Spatio-Temporal GPU Management framework

- Allows multiple tasks to utilize GPU simultaneously in a time-
analyzable manner.

- Efficient allocation algorithm of GPU resources to tasks and tasks to 
CPU cores.

- Provides schedulability analysis that bounds the maximum blocking 
time and worst-case response time of tasks.

- We have implemented STGM on COTS platforms and evaluated its 
performance compared to existing approaches. 

- Experiment results indicate STGM outperforms significantly in 
schedulability compared to other existing approaches.

7



STGM – System Model 

General Task Model

GPU Task Model

- Multi-core System (NP CPU Cores)
- Single GPU (NSM SMs)
- Single Copy Engine (CE), serves in FIFO manner.
- Partitioned Fixed-priority Preemptive Scheduling

8

CPU Seg. GPU Seg. Period Deadline

H2D 
Memcpy

Kernel 
Execution

D2H 
Memcpy



STGM – Spatial & Temporal Management

Spatial Management

- Partition a GPU into SMs 
- Allocate SMs to tasks by using resource allocation algorithm.

Temporal Management

- Case 1: a task does not share SMs with other tasks.
- Its kernels start execution immediately after data copy finishes.

- Case 2: a task shares SMs with others. 
- Wait until all previously-launched kernels with shared SMs are finished. (FIFO)
- Priority-boosting is used to minimize interference during GPU segment execution.

9



STGM – Schedulability Analysis
When launching kernel, there are two modes of operations on the CPU side: 
self-suspension and busy-waiting. 

Self-suspension: 

Busy-waiting:
Capturing 
preemption from 
higher priority tasks.

10



STGM – Schedulability Analysis
Blocking Time Bi The blocking time from GPU data 

copy and miscellaneous operations 
in GPU segments

The blocking time from kernel 
execution

The blocking time from priority 
inversion

11



STGM – Resource Allocation
Ø This allocation algorithm allocates SMs to tasks, tasks to CPUs and check the schedulability. 

Ø It is based on an extension of WFD heuristic.
Ø As the number of tasks is limited, the algorithm will converge after allocating the tasks 

to cores if the taskset is not schedulable even after assigning all available SMs. 

12



Evaluation – Experiment Setup
- x86 Server

- Quad-core Intel i7 6700 3.4GHz CPU
- NVIDIA GTX 970

- 4GB Memory
- 13 SMs
- 2 CEs

- Ubuntu 16.04
- CUDA 9.0

- Nvidia Xavier
- 8-core ARM CPU
- Integrated Volta GPU

- 16GB unified memory
- 8 SMs
- 1 CE

- Ubuntu 18.04
- CUDA 10.0 14



Evaluation – Schedulability
- 10,000 random tasksets from profile data for each schedulability experiment.

- Taskset generated randomly based on the execution time profile and parameters in 

Table I (see paper).

- We compare the percentage of schedulable tasksets of STGM with MPCP, FMLP+ (sync-

based approach), and server-based approach.

- All these prior works consider GPU as an indivisible device.

15



Evaluation – Schedulability

16



Conclusion & Future Work
- Conclusion

- We proposed STGM, which allows multiple tasks to utilize GPU simultaneously in a 
time-analyzable manner.

- We designed an efficient allocation algorithm of GPU resources to tasks and tasks 
to CPU cores.

- Schedulability analysis is provided which bounds the maximum blocking time and 
worst-case response time of tasks.

- We have implemented STGM on COTS platforms and evaluated its performance 
compared to prior works.

- Evaluation results indicate significant improvement in schedulability compared to 
other existing approaches.

- Future Work
- Multiple-GPUs
- Shared memory-induced interference (e.g., cache/memory bus) 17



STGM: Spatio-Temporal GPU 
Management for Real-Time Tasks

Sujan Kumar Saha, Yecheng Xiang, Hyoseung Kim

18


