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Status Quo

- Heavy computational demand on real-time embedded systems.
- Hard to meet task deadlines
- Usage of GPU can significantly improve the performance

- Real-time embedded systems usually have one GPU and consider GPU as a single
indivisible resource.
- Only one task can access GPU at one time
- Underutilization of the GPU
- Hard to schedule all tasks
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Background — GPU Architecture
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Overview of GPU Architecture
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Kernel Execution Time
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Prior Work & Motivation

- GPUSync?, Server-based GPU Control?,
- Efforts towards predictable real-time GPU control.
- GPU is modeled as a non-preemptive indivisible resource.

- RGEMS3, GPES*
- Allowing GPU preemptions by splitting kernel and data operations into sub-parts.
- But GPU executes only one kernel at a time.

- GPU partitioning for general-purpose systems>
- Enabling the allocation of SMs to tasks to improve overall GPU utilization.
- No systematic support or analysis to derive the worst-case response time and
schedulability of tasks. (e.g., blocking time due to shared copy engine)

[1] G. Elliott et al. GPUSync: A framework for real-time GPU management (RTSS, 2013)

[2] H. Kim et al. A server-based approach for predictable GPU access control (RTCSA, 2017)

[3] S. Kato et al. RGEM: A responsive GPGPU execution model for runtime engines (RTSS, 2011)
[4] H. Zhou et al. GPES: a preemptive execution system for GPGPU computing (RTAS, 2015)

[5] ). Janz’en et al. Partitioning GPUs for improved scalability (SBAC-PAD, 2016)



Contribution

- STGM: Spatio-Temporal GPU Management framework
- Allows multiple tasks to utilize GPU simultaneously in a time-
analyzable manner.

- Efficient allocation algorithm of GPU resources to tasks and tasks to
CPU cores.

- Provides schedulability analysis that bounds the maximum blocking
time and worst-case response time of tasks.

- We have implemented STGM on COTS platforms and evaluated its
performance compared to existing approaches.
- Experiment results indicate STGM outperforms significantly in
schedulability compared to other existing approaches.



STGM — System Model

Multi-core System (N, CPU Cores)

Single GPU (N¢,, SMs)

Single Copy Engine (CE), serves in FIFO manner.
Partitioned Fixed-priority Preemptive Scheduling

General Task Model
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STGM — Spatial & Temporal Management

Spatial Management

- Partition a GPU into SMs
- Allocate SMs to tasks by using resource allocation algorithm.

Temporal Management

- Case 1: a task does not share SMs with other tasks.
- Its kernels start execution immediately after data copy finishes.
- Case 2: a task shares SMs with others.
- Wait until all previously-launched kernels with shared SMs are finished. (FIFO)
- Priority-boosting is used to minimize interference during GPU segment execution.



STGM — Schedulability Analysis

When launching kernel, there are two modes of operations on the CPU side:
self-suspension and busy-waiting.

Self-suspension:
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STGM — Schedulability Analysis
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STGM — Resource Allocation

» This allocation algorithm allocates SMs to tasks, tasks to CPUs and check the schedulability.
» Itis based on an extension of WFD heuristic.
» As the number of tasks is limited, the algorithm will converge after allocating the tasks
to cores if the taskset is not schedulable even after assigning all available SMs.

Algorithm 1 SM-aware Task Allocation Algorithm

Require: I': a taskset, N,: Number of CPU cores, Ngps: Total number of
SM in GPU, P: set of CPU cores (i.e., |P| = Np)

Ensure: N;: Number of SMs for each task 7; € I', S;: SM indices for each
task 7; € I', I'p: a taskset allocated to a CPU core p, Up: Utilization of
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tasks in I', if schedulable and oo otherwise.
: for all , € T" do
if n; > 0 then /* GPU-using task */
: for p <1 to Np do
Up«0;Tp « 0
: /* SM Allocation */
: sm_idx < 0
: for all 7; € I" do
if n; > 0 then /* GPU-using task */
for £ < 1 to N; do
S; <+ S; U {sm_idw}
sm_idx < (sm_idx + 1) mod Ngps

14: for all 7; € I' in decreasing order of utilization do
15:  for p € P in increasing order of utilization do /* WFD */

16: if 1 —Up, > C;/T; and 7; satisfies Eq. (1) or (9) then
17: Up<—Up—+—C7;/Ti

18: I'p <~ TpUm;

19: Mark 7; schedulable

20: break

21: if all tasks in I schedulable then

22:  return {N;,S;,Tp,Up}

23: else if AN; < Ny,q2 then

24: i+ argmax (G;(N; +1) — Gi(N;))/T;
Vi, €T'An; >0

25: N; +— N; +1

26:  Go to line 7

27: else

28:  return oo
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Evaluation — Experiment Setup

- X86 Server
Quad-core Intel i7 6700 3.4GHz CPU
NVIDIA GTX 970
- 4GB Memory
- 13 SMs
- 2CEs
Ubuntu 16.04
CUDA 9.0

- Nvidia Xavier

- 8-core ARM CPU

- Integrated Volta GPU
- 16GB unified memory
- 8SMs
- 1CE

- Ubuntu 18.04

- CUDA 10.0




Evaluation — Schedulability

- 10,000 random tasksets from profile data for each schedulability experiment.
- Taskset generated randomly based on the execution time profile and parameters in
Table | (see paper).
-4-STGM_busy STGM suspend —-<MPCP —FMLP+ ——gpu_server
- We compare the percentage of schedulable tasksets of STGM with MPCP, FMLP+ (sync-
based approach), and server-based approach.

- All these prior works consider GPU as an indivisible device.
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Evaluation — Schedulability

—-4-STGM _busy = STGM suspend —-<MPCP —FMLP+ ——gpu_server
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Conclusion & Future Work

- Conclusion

- We proposed STGM, which allows multiple tasks to utilize GPU simultaneously in a
time-analyzable manner.

- We designed an efficient allocation algorithm of GPU resources to tasks and tasks
to CPU cores.

- Schedulability analysis is provided which bounds the maximum blocking time and
worst-case response time of tasks.

- We have implemented STGM on COTS platforms and evaluated its performance
compared to prior works.

- Evaluation results indicate significant improvement in schedulability compared to
other existing approaches.

- Future Work
- Multiple-GPUs
- Shared memory-induced interference (e.g., cache/memory bus) 17
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