STGM: Spatio-Temporal GPU
Management for Real-Time Tasks

Sujan Kumar Saha **, Yecheng Xiang", Hyoseung Kim”

UF [FLORIDA

Status Quo

- Heavy computational demand on real-time embedded systems.
- Hard to meet task deadlines
- Usage of GPU can significantly improve the performance

- Real-time embedded systems usually have one GPU and consider GPU as a single
indivisible resource.
- Only one task can access GPU at one time
- Underutilization of the GPU
- Hard to schedule all tasks

€A12X

BIONIC

NVIDIA TX1/TX2 NVIDIA Xavier Apple A12X

Background — GPU Architecture

Copy Engine

Main Memory

Memory Controller

1 1
101 -0
HE HE
- o AR | A
OO0 OO
]]
1 1
L2 Cache
1 1
Od-:-O0 OO-;-00
00 .
oiiipg] T T |Oiiio
OO0 O]
1 L]
1 1

Overview of GPU Architecture

EE

Register File
Core] |Core = o = |Corel |Core
@ : : E Core
@ : : : Core
|Core Core| * : - [Core| |Core

L1 Cache
Shared Memory

Kernel Execution Time

o 1
€
—0.8
C
20.6
3
$0.4
*0.2 ' y
£
s 0
= MMUL backprop b+tree hotspot kmeans workzone stereo stream
disparity cluster
NumberofSMs: W1 m2 m3 m4 m5 w6 w7 w89 10 11 12 13
(a) GTX970
g 1
= 0.8
506
3 0.4
[}
3 0.2 |
£ o
[®]
z MMUL backprop b+tree hotspot kmeans stereo stream
disparity cluster

NumberofSMs: ®m1 m2 m3 m4 m5 6 7 8

(b) AGX Xavier

Prior Work & Motivation

- GPUSync?, Server-based GPU Control?,
- Efforts towards predictable real-time GPU control.
- GPU is modeled as a non-preemptive indivisible resource.

- RGEMS3, GPES*
- Allowing GPU preemptions by splitting kernel and data operations into sub-parts.
- But GPU executes only one kernel at a time.

- GPU partitioning for general-purpose systems>
- Enabling the allocation of SMs to tasks to improve overall GPU utilization.
- No systematic support or analysis to derive the worst-case response time and
schedulability of tasks. (e.g., blocking time due to shared copy engine)

[1] G. Elliott et al. GPUSync: A framework for real-time GPU management (RTSS, 2013)

[2] H. Kim et al. A server-based approach for predictable GPU access control (RTCSA, 2017)

[3] S. Kato et al. RGEM: A responsive GPGPU execution model for runtime engines (RTSS, 2011)
[4] H. Zhou et al. GPES: a preemptive execution system for GPGPU computing (RTAS, 2015)

[5]). Janz’en et al. Partitioning GPUs for improved scalability (SBAC-PAD, 2016)

Contribution

- STGM: Spatio-Temporal GPU Management framework
- Allows multiple tasks to utilize GPU simultaneously in a time-
analyzable manner.

- Efficient allocation algorithm of GPU resources to tasks and tasks to
CPU cores.

- Provides schedulability analysis that bounds the maximum blocking
time and worst-case response time of tasks.

- We have implemented STGM on COTS platforms and evaluated its
performance compared to existing approaches.
- Experiment results indicate STGM outperforms significantly in
schedulability compared to other existing approaches.

STGM — System Model

Multi-core System (N, CPU Cores)

Single GPU (N¢,, SMs)

Single Copy Engine (CE), serves in FIFO manner.
Partitioned Fixed-priority Preemptive Scheduling

General Task Model

7 = (Cy, Gi(k), T, Di,n;, 0;)

CPUSeg. GPUSeg. Period Deadline

GPU Task Model

T::J — (GZ;‘}Ld) Gf’] (k)’ GZ’Ljdh)

H2D Kernel
Memcpy Execution

Memcpy

STGM — Spatial & Temporal Management

Spatial Management

- Partition a GPU into SMs
- Allocate SMs to tasks by using resource allocation algorithm.

Temporal Management

- Case 1: a task does not share SMs with other tasks.
- Its kernels start execution immediately after data copy finishes.
- Case 2: a task shares SMs with others.
- Wait until all previously-launched kernels with shared SMs are finished. (FIFO)
- Priority-boosting is used to minimize interference during GPU segment execution.

STGM — Schedulability Analysis

When launching kernel, there are two modes of operations on the CPU side:
self-suspension and busy-waiting.

Self-suspension:
Wt = C; + Gi + Bi+

Z W4+ (WhL—(Cr+G))
Th

l(ch +apmy D

\ Capturing
preemption from

higher priority tasks.

ThG]P(Tq;)/\T('h >T;

Busy-waiting:

Wk
W =Ci+Gi+Bi+ Y [—=1(Ch + Gn + Bi) A9)

Th EP(T;) AR >T5

10

STGM — Schedulability Analysis

. . _ m o
Blocking Time B B; = B" + Bf + Bf; B;" The blocking time from GPU data
copy and miscellaneous operations
|:| CPU Execution Copy Operation DGPU Execution in GPU Segments
B Bf B;
r L 1 : 2 1 —— e
o [] : w | . B The blocking time from kernel
Core 1 : | execution
u I |] \\\\\\\\QI
Core 2 { ,—W | E i E [
Tk | | ! L . —_— .
; @ E i | - B The blocking time from priority
! Gi "G LG, . .
; : L o inversion
GPU | ' | f A

11

STGM — Resource Allocation

» This allocation algorithm allocates SMs to tasks, tasks to CPUs and check the schedulability.
» Itis based on an extension of WFD heuristic.
» As the number of tasks is limited, the algorithm will converge after allocating the tasks
to cores if the taskset is not schedulable even after assigning all available SMs.

Algorithm 1 SM-aware Task Allocation Algorithm

Require: I': a taskset, N,: Number of CPU cores, Ngps: Total number of
SM in GPU, P: set of CPU cores (i.e., |P| = Np)

Ensure: N;: Number of SMs for each task 7; € I', S;: SM indices for each
task 7; € I', I'p: a taskset allocated to a CPU core p, Up: Utilization of

0:
10:
11:
12:
13:

]
2
3
4
5:
6
7
8

tasks in I', if schedulable and oo otherwise.
: for all , € T" do
if n; > 0 then /* GPU-using task */
: for p <1 to Np do
Up«0;Tp « 0
: /* SM Allocation */
: sm_idx < 0
: for all 7; € I" do
if n; > 0 then /* GPU-using task */
for £ < 1 to N; do
S; <+ S; U {sm_idw}
sm_idx < (sm_idx + 1) mod Ngps

14: for all 7; € I' in decreasing order of utilization do
15: for p € P in increasing order of utilization do /* WFD */

16: if 1 —Up, > C;/T; and 7; satisfies Eq. (1) or (9) then
17: Up<—Up—+—C7;/Ti

18: I'p <~ TpUm;

19: Mark 7; schedulable

20: break

21: if all tasks in I schedulable then

22: return {N;,S;,Tp,Up}

23: else if AN; < Ny,q2 then

24: i+ argmax (G;(N; +1) — Gi(N;))/T;
Vi, €T'An; >0

25: N; +— N; +1

26: Go to line 7

27: else

28: return oo

12

Evaluation — Experiment Setup

- X86 Server
Quad-core Intel i7 6700 3.4GHz CPU
NVIDIA GTX 970
- 4GB Memory
- 13 SMs
- 2CEs
Ubuntu 16.04
CUDA 9.0

- Nvidia Xavier

- 8-core ARM CPU

- Integrated Volta GPU
- 16GB unified memory
- 8SMs
- 1CE

- Ubuntu 18.04

- CUDA 10.0

Evaluation — Schedulability

- 10,000 random tasksets from profile data for each schedulability experiment.
- Taskset generated randomly based on the execution time profile and parameters in
Table | (see paper).
-4-STGM_busy STGM suspend —-<MPCP —FMLP+ ——gpu_server
- We compare the percentage of schedulable tasksets of STGM with MPCP, FMLP+ (sync-
based approach), and server-based approach.

- All these prior works consider GPU as an indivisible device.

15

Evaluation — Schedulability

—-4-STGM _busy = STGM suspend —-<MPCP —FMLP+ ——gpu_server

100

80
60
40

20

Schedulable tasksets (%)

8 10 12 14 16 18
Number of tasks in a taskset

16

Conclusion & Future Work

- Conclusion

- We proposed STGM, which allows multiple tasks to utilize GPU simultaneously in a
time-analyzable manner.

- We designed an efficient allocation algorithm of GPU resources to tasks and tasks
to CPU cores.

- Schedulability analysis is provided which bounds the maximum blocking time and
worst-case response time of tasks.

- We have implemented STGM on COTS platforms and evaluated its performance
compared to prior works.

- Evaluation results indicate significant improvement in schedulability compared to
other existing approaches.

- Future Work
- Multiple-GPUs
- Shared memory-induced interference (e.g., cache/memory bus) 17

STGM: Spatio-Temporal GPU
Management for Real-Time Tasks

Sujan Kumar Saha, Yecheng Xiang, Hyoseung Kim

Thank you!

