
STGM: Spatio-Temporal GPU Management for
Real-Time Tasks

Sujan Kumar Saha1,2, Yecheng Xiang1, and Hyoseung Kim1

1University of California, Riverside
2University of Florida

sujansaha@ufl.edu, yxian013@ucr.edu, hyoseung@ucr.edu

Abstract—Graphics Processing Units (GPUs) have been con-
sidered as a promising technology to address the high computa-
tional demands of real-time data-intensive applications. Today’s
embedded processors already offer on-chip GPUs, the use of
which can greatly help satisfy the timing requirements of real-
time tasks by accelerating their execution. However, existing
GPU management schemes either underutilize the GPU due to
strictly serialized execution or introduce non-deterministic delay
caused by uncontrolled concurrent execution. In this paper, we
present a spatial-temporal GPU management framework that
controls the allocation and sharing of GPU’s internal execution
engines, e.g., streaming multiprocessors in Nvidia architectures,
with analytical bounds. This approach allows multiple GPU-using
tasks to simultaneously execute on the GPU, thereby improving
GPU utilization and reducing the worst-case response time. Also,
it can improve temporal isolation by allocating a portion of
GPU execution engines to tasks for their exclusive use. We
have examined the feasibility of our framework on two Nvidia
GPUs: GTX970 and AGX Xavier. Experimental results with
randomly-generated tasksets indicate that our framework yields
a significant benefit in schedulability compared to the existing
real-time GPU management approaches.

I. INTRODUCTION

Massive data streams generated by recent embedded and
cyber-physical applications pose substantial challenges in sat-
isfying real-time requirements. For example, in self-driving
cars, data streams from tens of sensors, such as cameras and
LIDARs, should be analyzed in a timely manner. Graphics
processing units (GPUs) have been considered as a promising
technology to address the high computational demands of real-
time data streams. Many of today’s embedded processors,
such as Nvidia Xavier and NXP i.MX series, already have
on-chip GPUs, the use of which can greatly help satisfy
the timing challenges of data-intensive tasks by accelerating
their execution. The stringent size, weight, power and cost
constraints of embedded and cyber-physical systems are also
expected to be substantially mitigated by GPUs.

For the safe use of GPUs, much research has been done in
the real-time systems community [10, 11, 12, 14, 15, 16, 22,
25]. Many of these schemes limit a GPU to be accessed by
only one task at a time in order to obtain an analytical bound
on the worst case. However, this approach may underutilize
the GPU and cause unnecessarily long waiting time when
multiple tasks use the GPU. This problem becomes worse in

*The work was mainly done when the first author was at UC Riverside.

G
P

U
 M

em
o

ry

C
o

p
y

En
gi

n
e

Core

L1 Cache

Shared Memory

Register File

Execution Engine (EE)

EE

M
em

o
ry

 C
o

n
tr

o
lle

r

L2 Cache

EE

EE EE

Core Core

Core Core Core

Core Core Core

Fig. 1: Overview of GPU structure

an embedded environment where each machine typically has
only a limited number of GPUs, e.g., one on-chip GPU on
the latest Nvidia AGX Xavier processors. There are recent
studies on exploring the concurrent execution of GPU kernels
for real-time systems [2, 20], but it remains unpredictable how
much temporal interference may happen among the kernels
co-executed on the same GPU execution engine.

In this paper, we present a spatio-temporal GPU manage-
ment framework to address the aforementioned challenges.
The key contribution of this work is in the systematic in-
tegration of real-time task scheduling with the partitioning
and allocation of GPU’s internal execution engines, e.g.,
streaming multiprocessors on Nvidia GPUs and core groups
on ARM Mali GPUs. In our framework, a single GPU is
divided into multiple logical units and a fraction of the GPU
can be exclusively allocated to each (or a group of) real-
time task(s). This approach allows simultaneous execution of
multiple kernels on a single GPU, while minimizing timing
interference among them. As a proof of concept, we have
implemented our framework in a CUDA programming envi-
ronment for two Nvidia GPUs: GeForce GTX970 and AGX
Xavier. Experimental results with randomly-generated tasksets
indicate that our framework yields a significant benefit in
schedulability compared to the existing approach.

II. BACKGROUND AND RELATED WORK

A. GPU Organization and Kernel Execution

Fig. 1 shows the high-level overview of the internal structure
of a GPU. A single GPU consists of multiple Execution
Engines (EEs), which are also referred to as Streaming Mul-
tiprocessors (SMs) in Nvidia architectures. We will use EEs
and SMs interchangeably in the rest of the paper. Each SM has
multiple GPU cores. The memory components of an SM, such
as register file, L1 cache and shared memory, are shared by
all the cores of that SM. Other memory components, such as978-1-7281-3197-9/19/$31.00 ©2019 IEEE

L2 cache, GPU main memory and one or more Copy Engines
(CEs), are shared among all SMs of the GPU. CEs are used to
copy data from CPU memory to GPU memory and vice versa.
There also exist several other components, such as instruction
buffer, warp scheduler, dispatch units, and texture units, but
these are not described in the figure for simplicity.

Nvidia provides CUDA as a GPU programming interface.
The general structure of a CUDA program is as follows: (1)
memory allocation in GPU memory, (2) data copy from CPU
memory to GPU memory, (3) kernel execution on GPU, (4)
copy back the results from GPU to CPU memory and (5)
free the GPU memory [2, 16]. While launching a kernel,
the program provides the thread block and grid dimension
information of the kernel to the GPU. The data stream that
needs to be processed on a GPU is divided into multiple
logical thread blocks. The grid consists of all the thread blocks
of the kernel, and each thread block consists of multiple
threads. In general, each block is processed by a single SM but
one SM can process multiple thread blocks if the maximum
capacity limit of threads of a SM allows.

The GPU device driver schedules thread blocks on SMs.
However, the details of such scheduling for COTS GPUs are
not publicly disclosed by manufacturers. Hence, it is hard to
predict which thread block will be scheduled on which SM.
Despite this difficulty, prior work [2, 9, 21] has experimentally
found the following characteristics. First, depending on the
number of thread blocks and the size of each thread block, all
SMs of a GPU may not be fully utilized. Second, on each SM,
more than one thread block can be processed concurrently if
the total size of the thread blocks is less than or equal to the
capacity of the SM. This has the potential to reduce kernel
execution time, but the exact conditions for such concurrent
execution within an SM are hard to identify.

B. Related Work

There are several research papers on the use of GPUs in
real-time domain. Elliot et al. [10] presented shared resource
and container methods for integrating GPU with CPU schedul-
ing in soft real-time systems. GPUSync [11] is a framework
based on the k-exclusion locking protocol for real-time multi-
GPU systems. The server-based GPU control approach [16]
identifies and addresses the limitations of the locking-based
approaches, such as busy waiting and long priority inversion.
While these approaches focus on predictable GPU control,
they do not allow multiple tasks to use the GPU at the same
time. As a result, the GPU may be underutilized and there
may be a long waiting time for a task to access the GPU.

The work in [3, 14, 25] addresses the non-preemptive
behavior of the GPU by splitting the kernel and data copy
operations into several sub-parts and by allowing preemption
at split points. This approach helps reduce the response time
of a high-priority task. Chen et al. [9] proposed a framework,
called Effisha, to achieve preemptive GPU scheduling without
any hardware modification. Even though the above papers con-
tribute to reduce waiting time and improve responsiveness, no

one considers simultaneous multi-kernel execution on the GPU
to improve utilization while satisfying real-time constraints.

Otterness et al. [20] discussed concurrent multi-kernel exe-
cution on Nvidia TX1 and showed that some benchmarks get
slowdown in execution compared to when they run indepen-
dently. Bo et al. [24] proposed a software technique to run a
GPU-using task on specific SMs. Janzen et al. [13] presented
software-based techniques to partition a GPU among tasks
by allocating an exclusive set of SMs to each task. While
these techniques are useful to improve GPU utilization, there
is no systematic and analytical support to derive the worst-
case response time and schedulability of tasks. Hence, it is
imperative to investigate the predictable use of multi-kernel
execution for real-time systems.

III. SYSTEM MODEL

The system we consider is equipped with a multi-core CPU
and a GPU. The CPU has NP cores, where each core is
identical to each other and runs at a fixed frequency. The GPU
is assumed to follow the architecture described in Sec. II-A.
In that GPU, there are NSM SMs. We assume that the GPU
has one copy engine (CE), which is typical in many of today’s
GPUs, and the CE handles copy requests in a first-come first-
serve basis, following the observations made in [2, 20].

We focus on partitioned fixed-priority preemptive task
scheduling due to its popularity. For the task model, we
consider sporadic tasks with constrained deadlines. Each job
of a task consists of CPU and GPU segments. As their names
imply, CPU segments run entirely on the CPU and GPU
segments include GPU operations, e.g., data copy from/to the
GPU and kernel execution. Once a task launches a GPU kernel,
the task may self-suspend to save CPU cycles. The kernel
execution time depends on the number of SMs assigned to the
task. Specifically, a task τi is characterized as follows:

τi := (Ci, Gi(k), Ti, Di, ηi, θi)

• Ci: The sum of the worst-case execution time (WCET) of
CPU segments of each job of τi

• Gi(k): The sum of the worst-case duration of GPU seg-
ments of each job of τi, when k SMs are assigned to τi and
no other task is using the GPU

• Ti: The minimum inter-arrival time (or period) of τi
• Di: The relative deadline of each job of τi
• θi: The number of CPU segments of each job of τi
• ηi: The number of GPU segments of each job of τi

In our system model, τi,j and τ∗i,j are used to denote the
j-th CPU and GPU segments of τi, respectively. Note that we
do not make any assumption about the sequence of CPU and
GPU segments. Hence, a task may have two consecutive GPU
segments. Gi(k) is assumed to be non-increasing with k, i.e.,
Gi(k) ≥ Gi(k + 1). This assumption can be easily met by
monotonic over-approximations [1, 17]. The number of SMs
assigned to each task is statically determined and does not
change at runtime.

We use Gi,j to denote the worst-case duration of τ∗i,j (the j-
th GPU segment of a task τi). Hence, Gi(k) =

∑ηi
j=1Gi,j(k).

Without loss of generality, each GPU segment is assumed to
have three sub-segments: (i) data copy to the GPU, (ii) kernel
execution, and (iii) data copy back from the GPU. Thus, each
GPU segment uses the CE up to two times. In this model,
more than one consecutive kernels can be represented with
multiple GPU segments. τ∗i,j is characterized as follows:

τ∗i,j := (Gmhd
i,j , Gei,j(k), G

mdh
i,j)

• Gmhd
i,j : The WCET of miscellaneous operations executed

before the GPU kernel in τ∗i,j , e.g., memory copy from the
host to the device

• Gei,j(k): The WCET of the GPU kernel of τ∗i,j on k SMs
• Gmdh

i,j : The WCET of miscellaneous operations executed
after the GPU kernel in τ∗i,j , e.g., memory copy from the
device to the host

For the ease of presentation, we may use Gi,j to refer to
Gi,j(k) when k is not needed for explanation. This rule
also applies to other GPU-segment parameters, e.g., Gei,j ≡
Gei,j(k). We use Gmi,j to represent the sum of Gmhd

i,j and Gmdh
i,j ,

i.e., Gmi,j = Gmhd
i,j +Gmdh

i,j .
The CPU utilization of τi is defined as: Ui = (Ci+Gi)/Ti,

if τi busy-waits on the CPU during GPU kernel execution;
Ui = (Ci + Gmi)/Ti, where Gmi =

∑ηi
j=1G

m
i,j , if τi self-

suspends during kernel execution.

IV. SPATIO-TEMPORAL GPU MANAGEMENT

A. Framework Design

The goals of the STGM framework are to reduce waiting
time for GPU access and to increase GPU utilization, thereby
improving taskset schedulability. To achieve these goals,
STGM has spatial and temporal management components.

Spatial Management. This component partitions a GPU into
SMs and allocates SMs to tasks that require GPU access.
The number of SMs assigned to each task is determined
by the resource allocation algorithm given in Sec. IV-C. A
small code modification is required for each GPU kernel in
order to use the spatial management. The code modification
of our framework is similar to prior spatial multitasking
work [9, 13, 24]. It creates a mapping array to declare the set
of SM IDs assigned to the corresponding task and passes that
array when launching the kernel. When the thread blocks of
the kernel start execution on the GPU, our code modification
checks whether the block should run on the current SM or
not by looking at the mapping. If the current SM is not valid,
i.e., it is not an assigned SM, the block immediately stops
execution. Otherwise, the block continues execution. The grid
dimension of the kernel is also modified to make sure to run
all the blocks on assigned SMs.

Temporal Management. This component controls the tempo-
ral behavior of GPU-using tasks. Two cases can occur when
multiple GPU-using tasks attempt to access the GPU at the
same time with their assigned SMs. First, a task does not have
any SM shared with other tasks. In this case, the kernel of that
task can start execution on its SMs as soon as data copy is
done. Second, a task has at least one SM shared with other

0 3 421 5 6 7 8 9 10 11 12

𝐵𝑖
𝑚 𝐵𝑖

𝑒 𝐵𝑖
𝑙

𝜏𝑘

𝜏𝑙

𝜏𝑖

𝐺𝑘 𝐺𝑖 𝐺𝑙

Core 1

Core 2

GPU

CPU Execution Copy Operation GPU Execution

Fig. 2: Example schedule of GPU using tasks experiencing
three types of blocking time in self-suspending mode

tasks. In order to provide timing predictability, that task needs
to wait until all previously-launched kernels with shared SMs
are finished. This is because multiple kernel execution on the
same SM may introduce unpredictable delay, as discussed in
Sec. II. Here, our framework manages the execution order of
such tasks with shared SMs in a FIFO manner, following the
default behavior of Nvidia GPUs [20]. Hence, if a task has
a shared SM regardless of its priority, it has to wait for the
completion of all tasks in the FIFO queue for GPU access, and
the waiting time is bounded by our analysis given in Sec. IV-B.

To minimize interference during GPU segment execution,
we adopt the priority-boosting mechanism, which is widely
used for real-time synchronization protocols and predictable
shared resource access [7, 16, 18, 23]. Specifically, a task
τi’s priority is increased to the highest-priority level when
τi begins its GPU segment, and it is reverted back to τi’s
original priority when τi finishes that GPU segment. In this
way, no CPU segments of other tasks allocated to the same
CPU core can preempt τi during the interval of τi’s GPU
segment. During kernel execution, GPU-using tasks may either
busy-wait or self-suspend. This is configurable in many GPU
programming environments, such as CUDA and OpenCL.

B. Schedulability Analysis
As our framework supports self-suspension and busy-

waiting modes, we describe the schedulability analyses for
both modes in the following.

1) Self-suspension Mode: If self-suspension is used, the
WCRT of τi is upper-bounded by the following recurrence:

W k+1
i = Ci +Gi +Bi+∑

τh∈P(τi)∧πh>πi

⌈
Wk

i +(Wh−(Ch+G
m
h))

Th

⌉
(Ch +Gmh)

(1)

where Ci is the CPU computation time of τi, Gi is the total
GPU segment time of τi, Bi is the total blocking time caused
by GPU access, P(τi) is the set of tasks running on the same
CPU core as τi, and πi represents the priority of τi. Note that
Eq. (1) is an extension of the response time test for general
self-suspending tasks proposed by Bletsas et al. [4].

In our framework, the blocking time Bi can be decomposed
into three terms: (i) Bmi , the blocking time from GPU data

copy and miscellaneous operations in GPU segments, (ii) Bei ,
the blocking time from kernel execution, and (iii) Bli, the
blocking time from priority inversion. Hence, Bi is:

Bi = Bmi +Bei +Bli (2)

Fig. 2 shows an example scenario of the three blocking times
that a task can have in its total response time. Here, τi and
τl are running on Core 1 with τi having higher priority than
τl. τk is running on Core 2. All tasks are in self-suspension
mode. The CPU to GPU copy operation of τi is delayed by
the copy operation of τk as we assume that there is only a
single CE in the GPU. This delay is denoted by Bmi . Then,
the kernel execution of τi is delayed due the kernel execution
of τk assuming that τi and τk have shared SMs. This delay is
captured by Bei . After the completion of τi’s GPU segment,
τi can have blocking time Bli during CPU segment (before
the start of the last segment in the figure) as τl is running its
copy operation, which may require CPU intervention, with
the highest priority given by the priority boosting of our
framework. This delay is denoted by Bli.

Lemma 1. The blocking time from a sub-segment for data
copy and miscellaneous operations in the j-th GPU segment
of τi is upper-bounded by:

Bmi,j =
∑

τu 6=τi∧ηu>0

max
1≤w≤ηu

Gm∗u,w (3)

where Gm∗u,w = max(Gmhd
u,w , G

mdh
u,w).

Proof. As there is only one CE, Gm∗u,w is taken by the max-
imum between host to device copy time and device to host
copy time. If τu has ω GPU segments, each segment can
access the GPU one at a time. Thus, we can take the maximum
copy operation time of all the segments of τu. Also, the CE
is assumed to handle copy requests in a FIFO manner (see
Sec. III). Therefore, τi has to wait for all the copy operations
in the worst case (the summing term). �

As there are at most two accesses to the CE in one GPU
segment, Bmi is given by:

Bmi =
∑

1≤j≤ηi

2 ·Bmi,j (4)

Lemma 2. The blocking time from any kernel execution in the
j-th GPU segment of a task τi is upper-bounded by:

Bei,j =
∑

τu 6=τi∧S(τu)∩S(τi)6=∅

max
1≤w≤ηu

Geu,w (5)

where S(τi) is the set of SM IDs assigned to τi. If τi does not
share its assigned SMs with any other tasks, then Bei,j = 0.

Proof. GPU kernels are executed in an in-order and non-
preemptive manner. Hence, in the worst case, each of the tasks
using the same SM as τi may have requested its longest kernel
execution earlier than τi. Eq. (5) captures this worst case. �

The total blocking time from kernel execution, Bei , is the
summation of Bi,j for all segments of τi.

Bei =
∑

1≤j≤ηi

Bei,j (6)

Lemma 3. The priority inversion blocking imposed on the
j-th CPU segment of a task τi is bounded by:

Bli,j =
∑

τu∈P(τi)∧πu<πi∧ηu>0

max
1≤w≤ηu

Gm∗u,w (7)

Proof. Before the start of τi’s first CPU segment or whenever
τi suspends for kernel execution, the GPU segment of each
lower-priority task on the same CPU core can have a chance
to block τi due to the priority boosting of our framework. The
amount of blocking from each lower-priority task τu is at most
maxGm∗u,w, because after this time, τu either suspends for its
own kernel execution or recovers its original priority. In the
worst case, all lower-priority tasks can cause this blocking to
the CPU segment of τi, which is captured in the equation. �

The total priority-inversion blocking Bli is given by:

Bli =
∑

1≤j≤θi

Bli,j (8)

Note that θi (the number of CPU segments of τi) is used in the
summing term instead of ηi because this blocking can happen
for CPU segments, rather than GPU segments that execute
with boosted priority [6, 19].

2) Busy-waiting Mode: If tasks are in busy-waiting mode,
a simple variant of the traditional response time test is used
to upper-bound the WCRT of a task τi:

W k+1
i = Ci+Gi+Bi+

∑
τh∈P(τi)∧πh>πi

dW
k
i

Th
e(Ch +Gh +Bi) (9)

where Bi is the blocking time caused by GPU access. The
blocking time Bi is computed as follows:

Bi = Bmi +Bei +Bli (10)

Bmi and Bei are the same as those in the self-suspension mode.
Before the start of τi’s first CPU segment, the GPU access
segments of lower-priority tasks on the same CPU core can
block τi, which is computed by:

Bli,j =
∑

τu∈P(τi)∧πu<τi∧ηu>0

max
1≤w≤ηu

Gu,w (11)

Note that in this equation, Gu,w is used instead of Gm∗u,w
because there is no suspension in GPU segments. The total
priority inversion blocking Bli in busy-waiting mode is:

Bli = Bli,j (12)

This is because once τi starts execution, there is no chance
for lower-priority tasks to block τi in busy-waiting mode.

C. Resource Allocator

The resource allocation algorithm given in Alg. 1 assigns
SMs to each GPU-using task and allocates tasks to CPU cores.
The algorithm is based on the worst-fit decreasing (WFD)
heuristic for task allocation to balance the load across CPU
cores. For SM allocation, the goal of this algorithm is to min-
imize interference potentially caused by shared SMs among
GPU-using tasks, thereby improving taskset schedulability. If
there is any task unschedulable due to long GPU execution
time with less SMs, more SMs are allocated to that task.

Algorithm 1 SM-aware Task Allocation Algorithm
Require: Γ: a taskset, Np: Number of CPU cores, NSM : Total number of

SM in GPU, P : set of CPU cores (i.e., |P | = Np)
Ensure: Ni: Number of SMs for each task τi ∈ Γ, Si: SM indices for each

task τi ∈ Γ, Γp: a taskset allocated to a CPU core p, Up: Utilization of
tasks in Γp if schedulable and ∞ otherwise.

1: for all τi ∈ Γ do
2: if ηi > 0 then /* GPU-using task */
3: Ni ← 1

4: for p← 1 to Np do
5: Up ← 0; Γp ← ∅
6: /* SM Allocation */
7: sm idx← 0
8: for all τi ∈ Γ do
9: if ηi > 0 then /* GPU-using task */

10: Si ← ∅
11: for k ← 1 to Ni do
12: Si ← Si ∪ {sm idx}
13: sm idx← (sm idx+ 1) mod NSM
14: for all τi ∈ Γ in decreasing order of utilization do
15: for p ∈ P in increasing order of utilization do /* WFD */
16: if 1− Up ≥ Ci/Ti and τi satisfies Eq. (1) or (9) then
17: Up ← Up + Ci/Ti
18: Γp ← Γp ∪ τi
19: Mark τi schedulable
20: break
21: if all tasks in Γ schedulable then
22: return {Ni, Si,Γp, Up}
23: else if ∃Ni ≤ Nmax then
24: i← argmax

∀i:τi∈Γ∧ηi>0
(Gi(Ni + 1)−Gi(Ni))/Ti

25: Ni ← Ni + 1
26: Go to line 7
27: else
28: return ∞

Initially, one SM is given to all GPU-using tasks (lines 1
to 3). In lines 4 and 5, the utilization of each core is set to
0 as no task is assigned to the core yet. Then, the SM IDs
are allocated to the GPU-using tasks in lines 8 to 13. Here, if
any task has more than one SM, the consecutive SM IDs are
allocated to that task. Tasks are assigned to cores according to
WFD from lines 14 to 20. If the tasks are schedulable, then the
return values are set in line 22. If not all tasks are schedulable,
the task that will have the highest benefit in GPU utilization
with one extra SM will be assigned one more SM (lines 23
to 24) and the algorithm goes back to the SM allocation
phase (line 26). Thus the iteration continues until all tasks
are schedulable or the number of SMs for all tasks reaches
the maximum number of SMs available in the GPU. As the
number of tasks in a taskset is limited, the algorithm will
converge after allocating the tasks to cores and if the taskset
is not schedulable even after assigning all the available SMs
in the GPU, the algorithm will return infinity which indicates
that the taskset is not schedulable.

V. EVALUATION

A. Implementation

We have implemented a prototype of STGM on two plat-
forms: an x86 machine equipped with a quad-core Intel Core-
i7 6700 CPU running at 3.4 GHz and an Nvidia GTX970 GPU
and an Nvidia AGX Xavier embedded board. GTX970 has 13
SMs and 2 CEs. AGX Xavier has an integrated Volta GPU with
8 SMs and 16 GB unified memory. We used Ubuntu 16.04 and

0

0.2

0.4

0.6

0.8

1

MMUL backprop b+tree hotspot kmeans workzone stereo
disparity

stream
cluster

N
o

rm
. E

xe
cu

ti
o

n
 T

im
e

Number of SMs: 1 2 3 4 5 6 7 8 9 10 11 12 13

(a) GTX970

0

0.2

0.4

0.6

0.8

1

MMUL backprop b+tree hotspot kmeans stereo
disparity

stream
cluster

N
o

rm
. E

xe
cu

ti
o

n
 T

im
e

Number of SMs: 1 2 3 4 5 6 7 8

(b) AGX Xavier

Fig. 3: Kernel execution time w.r.t. the number of SMs

CUDA 9.0 on the x86, and Ubuntu 18.04 and CUDA 10.0 on
the AGX Xavier platform.

We have selected 8 different GPU benchmarks in
the evaluation. backprop, b+tree, hotspot, kmeans
and streamcluster are chosen from the Rodinia
GPU benchmark suite [8]. MMUL which is a GPU-
based computation-intensive matrix multiplication benchmark,
stereodisparity from Nvidia CUDA sample programs
and workzone [16] which is a image processing task for self-
driving cars to detect the work zones are also chosen for better
evaluation. CUDA streams are used to allow asynchronous
copy and concurrent kernel execution.

B. Kernel Execution Time

To understand the impact of the number of SMs on kernel
execution time, we perform an experiment using eight GPU
benchmarks. Fig. 3 shows the normalized GPU execution
time of the benchmarks, with the number of assigned SMs
varying from 1 to 13 on GTX970 and from 1 to 8 on
Xavier. We observe that the execution time does not decrease
exponentially with respect to the increasing number of SMs.
Also, the execution time of some kernels becomes plateau
after a certain number of SMs is assigned. In such cases, there
is no benefit to assign more SMs. Specifically, kmeans and
workzone on GTX970 and kmeans and streamcluster
on AGX Xavier show no significant change in execution
time when more than 4 SMs are assigned. This is because
they have only a small number of thread blocks and a large
number of SMs does not help improve the performance. We
conclude that, when executing multiple kernels, a proper SM
partitioning is the key to improve GPU utilization.

C. Schedulability with Random Tasksets

We have generated 10,000 random tasksets for each schedu-
lability experiment. Each task in a taskset is generated ran-
domly based on the parameters shown in Table I. As GPU
kernel execution time varies with different number of SMs,
we use Fig. 3a as the execution time profile. We compare
the schedulability results of STGM with other approaches.
We consider the self-suspending and busy-waiting mode of

TABLE I: Parameters for taskset generation

Parameters Min Max
Number of CPU cores (Nc) 2 4
Number of tasks 2*Nc 4*Nc

Ratio of GPU-using tasks to CPU-only tasks 0.2 2
Utilization of task 0.05 0.3
Number of GPU segments 1 3
Task Period (Ti = Di) 100ms 500ms
Ratio of CPU segment to GPU segment (Ci/Gi) 0.3 0.7
Ratio of kernel length to GPU segment (Ge

i/Gi) 0.7 0.9

0

20

40

60

80

100

8 10 12 14 16 18

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Number of tasks in a taskset

STGM_busy STGM_suspend MPCP FMLP+ gpu_server

Fig. 4: Schedulability w.r.t the number of tasks in a taskset

our framework (STGM suspend and STGM busy). We com-
pare our results with two synchronization-based approaches,
Multiprocessor Priority Ceiling Protocol (MPCP) [19, 23] and
Flexible Multiprocessor Locking Protocol (FMLP+) [5, 6],
and the server-based GPU control approach (gpu server) [16].
MPCP, FMLP+, and server-based approach allow only a single
GPU kernel execution at a time on the GPU.

Fig. 4 depicts the percentage of schedulable tasksets for
varying number of tasks. The results show that with more tasks
in a taskset, schedulability decreases under all the approaches.
STGM suspend outperforms all other approaches. According
to the results, at most 73% more tasksets are schedulable
under STGM suspend compared to MPCP. Compared to busy-
waiting mode, self-suspending mode gives higher benefit for
both our approach and baseline approach because it yields
more CPU time for task execution.

The off-the-shelf GPUs may have different number of SMs.
While the number of SMs is another important factor to be
considered for schedulability, we evaluate the schedulability
with different number of SMs. Fig. 5 presents the percentage
of schedulable tasksets with the increasing number of SMs,
starting from 1 to 13. When there is only one SM, our
approach underperforms the server-based approach. However,
as the number of SMs increases, the schedulability of our ap-
proach significantly outperforms the others. The schedulability
of the synchronization-based and server-based approaches
remains almost steady.

VI. CONCLUSIONS

The current state of the art GPU management for real-time
systems significantly underutilizes GPU resources due to the
serialization of GPU kernel execution. The waiting time to
access the GPU also is expected to become significant due
to the increasing trend of GPU acceleration. In this paper, we
presented a spatio-temporal GPU management framework that
allows multiple tasks to utilize internal GPU resources simul-
taneously in a time-analyzable manner. The framework finds

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Number of SMs

STGM_busy STGM_suspend MPCP FMLP+ gpu_server

Fig. 5: Schedulability w.r.t the number of SMs

an efficient allocation of GPU resources to tasks and tasks to
CPU cores. The schedulability analysis of our framework is
presented to bound the maximum blocking time and the worst-
case response time of a task. Experimental results indicate that
our work improves the schedulability of tasksets significantly
compared to the other approaches. As future work, we plan
to extend this work to multiple GPUs and further investigate
the source of unpredictability in the multi-kernel execution of
recent GPUs.

REFERENCES
[1] S. Altmeyer, R. Douma, W. Lunniss, and R. I. Davis. Evaluation of cache

partitioning for hard real-time systems. In ECRTS, 2014.
[2] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith. GPU scheduling

on the NVIDIA TX2: Hidden details revealed. In RTSS, 2017.
[3] C. Basaran and K.-D. Kang. Supporting preemptive task executions and memory

copies in GPGPUs. In ECRTS, 2012.
[4] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen. Errata for three

papers (2004-05) on fixed-priority scheduling with self-suspensions. Technical
Report CISTER-TR-150713, CISTER, 2015.

[5] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson. A flexible real-time
locking protocol for multiprocessors. In RTCSA, 2007.

[6] B. Brandenburg. Scheduling and locking in multiprocessor real-time operating
systems. PhD thesis, University of North Carolina, Chapel Hill, 2011.

[7] B. Brandenburg. The FMLP+: An asymptotically optimal real-time locking protocol
for suspension-aware analysis. In ECRTS, 2014.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In IISWC, 2009.

[9] G. Chen, Y. Zhao, X. Shen, and H. Zhou. Effisha: A software framework for
enabling effficient preemptive scheduling of gpu. In PPoPP, 2017.

[10] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems
with GPUs. Real-Time Systems, 48(1):34–74, 2012.

[11] G. Elliott, B. C. Ward, and J. H. Anderson. GPUSync: A framework for real-time
GPU management. In RTSS, 2013.

[12] S. Hosseinimotlagh and H. Kim. Thermal-aware servers for real-time tasks on
multi-core GPU-integrated embedded systems. In RTAS, 2019.

[13] J. Janzén, D. Black-Schaffer, and A. Hugo. Partitioning GPUs for improved
scalability. In SBAC-PAD, 2016.

[14] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and R. Rajkumar.
RGEM: A responsive GPGPU execution model for runtime engines. In RTSS,
2011.

[15] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph: GPU
scheduling for real-time multi-tasking environments. In USENIX ATC, 2011.

[16] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar. A server-based approach for
predictable GPU access control. In RTCSA, 2017.

[17] H. Kim and R. Rajkumar. Real-time cache management for multi-core virtualiza-
tion. In EMSOFT, 2016.

[18] H. Kim, S. Wang, and R. Rajkumar. vMPCP: A synchronization framework for
multi-core virtual machines. In RTSS, 2014.

[19] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling,
allocation and synchronization on multiprocessors. In RTSS, 2009.

[20] N. Otterness et al. An evaluation of the NVIDIA TX1 for supporting real-time
computer-vision workloads. In RTAS, 2017.

[21] J. J. K. Park, Y. Park, and S. Mahlke. Dynamic resource management for efficient
utilization of multitasking GPUs. In ASPLOS, 2017.

[22] P. Patel, I. Baek, H. Kim, and R. R. Rajkumar. Analytical enhancements and
practical insights for MPCP with self-suspensions. In RTAS, 2018.

[23] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for
multiprocessors. In RTSS, 1988.

[24] B. Wu et al. Enabling and exploiting flexible task assignment on GPU through
SM-centric program transformations. In ICS, 2015.

[25] H. Zhou, G. Tong, and C. Liu. GPES: a preemptive execution system for GPGPU
computing. In RTAS, 2015.

