
RTCSA 2015

Responsive and Enforced Interrupt Handling

for Real-Time System Virtualization

Hyoseung Kim* Shige Wang† Raj Rajkumar *

General Motors R&D

*

†

RTCSA 2015

Workload Consolidation

• Multi-core CPUs for embedded real-time systems

• Consolidation of real-time applications onto a single

hardware platform

– Reduces the number of CPUs and wiring harness among them

– Leads to a significant reduction in cost and space requirements

• Automotive:

– Freescale i.MX6 4-core CPU

– NVIDIA Tegra K1 platform

• Avionics and defense:

– Rugged Intel i7 single board

computers

– Freescale P4080 8-core CPU

2/26

RTCSA 2015

Benefits of Real-Time Virtualization

• Barrier to consolidation

– Each app. could have been developed

independently by different vendors

• Heterogeneous S/W infrastructure

• Bare-metal / Proprietary OS

• Linux / Android

– Different license issues

• Consolidation via virtualization

– Each application can maintain

its own implementation

– Minimizes re-certification process

– IP protection, license segregation

– Fault isolation

Virtualization

Multi-core CPU

Real-Time Hypervisor

3/26

RTCSA 2015

Scheduling in Virtualization

• Two-level hierarchical scheduling structure

– Task scheduling and VCPU scheduling

 VM 1

VCPU

Task

Task Scheduler

Task

VCPU

Task Task

PCPU

VCPU Scheduler

PCPU

VM 2

VCPU

Task

Task Scheduler

Task

VCPU

Task Task

Real-time hierarchical scheduling

• Budget and replenishment period

for each VCPU

• Various budget replenishment policies

(e.g., deferrable server)

Hypervisor

4/26

RTCSA 2015

Interrupt Handling in Virtualization

VCPU Scheduler

VM 1

Task

Task Scheduler

Task Task Task

Interrupt Service Routine

VCPU VCPU

Guest OS

PCPU

VM 2

Task

Task Scheduler

Task Task Task

Interrupt Service Routine

VCPU

Guest OS

Hypervisor

I/O device

(e.g., sensor)

Physical interrupt

Virtual interrupt

VCPU

Interrupt-triggered task

Interrupt Service Routine

PCPU

5/26

RTCSA 2015

Requirements for Interrupt Handling

• R1: Responsive and bounded interrupt handling time

– Timing penalties to interrupt handling in virtualization

• R2: Protect real-time tasks from interrupt storms

– Task schedulability should be guaranteed

• R3: Support unmodified guest OSs

– Many commercial RTOSs are closed-source

6/26

RTCSA 2015

Previous Work

[1] M. Beckert et al. Sufficient temporal independence and improved interrupt latencies in a real-time hypervisor. In DAC, 2014.

[2] J. Kiszka. Towards Linux as a real-time hypervisor. In RTLWS, 2009.

[3] A. Lackorzy ński, A. Warg, M. Volp, and H. H ärtig. Flattening hierarchical scheduling. In EMSOFT, 2012.

[4] R. Ma et al. Performance tuning towards a KVM-based embedded real-time virtualization system. J. Inf. Sci. Eng., 29(5):1021–1035, 2013.

Priority

based

sched.

VCPU

temporal

isolation

Bounded

Interrupt

handling

Interrupt

storm

protection

Task

sched.

guarantee

Unmodified

guest

OSs

[1]

[2]

[3]

[4]

Ours

R1 R2 R3

7/26

RTCSA 2015

Our Approach

• vINT: an analyzable interrupt handling framework for

 real-time system virtualization

– Provides responsive, bounded, and enforced interrupt handling

– Does not require any change to the guest OS code

• Easily applicable to virtualizing proprietary, closed-source RTOSs

• Contributions

– vINT framework design

– Analysis on interrupt handling time

and VCPU/task schedulability

– Implementation and case study

on the KVM hypervisor of Linux/RK

8/26

RTCSA 2015

Outline

• Introduction

• vINT Framework

– System model

– Problems with interrupt handling

– vINT details

– Analysis

• Evaluation

• Conclusion

9/26

RTCSA 2015

System Model (1)

• Partitioned fixed-priority scheduling for both VCPUs and tasks

– Widely supported in many real-time OSs and hypervisors

– e.g., OKL4, PikeOS, …

• VCPU 𝑣𝑖: (𝐶𝑖
𝑣, 𝑇𝑖

𝑣)

– 𝐶𝑖
𝑣: Maximum execution budget

– 𝑇𝑖
𝑣: Budget replenishment period

• VCPU budget replenishment policies

– Deferrable server & sporadic server

• Task 𝜏𝑖: 𝐶𝑖 , 𝑇𝑖

– 𝐶𝑖: Worst-case execution time (WCET)

– 𝑇𝑖: Minimum inter-arrival time

Any task or OS code can execute

only if the corresponding VCPU

has a non-zero remaining budget

10/26

RTCSA 2015

System Model (2)

• Physical interrupt 𝐼𝑖
𝑝𝑖

: (𝐶𝑖
𝑝𝑖

, 𝑇𝑖
𝑝𝑖

)

– A signal issued from a hardware device to a PCPU

– Handled by the corresponding ISR of the hypervisor

• Virtual interrupt 𝐼𝑗
𝑣𝑖: (𝐶𝑖

𝑣𝑖 , 𝑇𝑖
𝑣𝑖)

– A software signal from the hypervisor to a VCPU

– Handled by the ISR of the guest OS while consuming the VCPU budget

Min. inter-arrival time expected at design time

 Interrupt storms may happen at runtime

Task 𝜏1

ISR

Physical Intr.

VM
Exit

①

Hypervisor

VCPU 𝑣1

VM
Enter

Virtual Intr.

ISR

EOI
VM

 Exit

Task 𝜏2

VM
Enter

Trap ③

④
PCPU 1

②

Interrupt-triggered execution flow

Interrupt-triggered task

11/26

RTCSA 2015

Task 𝜏1

ISR

Physical Intr.

VM
Exit

①

Hypervisor

VCPU 𝑣1

VM
Enter

Virtual Intr.

ISR

EOI
VM

 Exit

Task 𝜏2

VM
Enter

Trap ③

④
PCPU 1

② Interrupt-triggered task

Problems with Virtual Interrupts (1)

• Virtual interrupt

– Main difference between interrupt handling in virtualized and non-

virtualized environments

• Problem 1: Timing penalties to virtual interrupt handling

– VCPU budget depletion and VCPU preemption

budget depleted Next replenishment

Task 𝜏1

ISR

Physical Intr.

VM
Exit

①

Hypervisor

VCPU 𝑣1

VM
Enter

Virtual Intr.
PCPU 1

②

ISR ISR

Interrupt handling delay

12/26

RTCSA 2015

Problems with Virtual Interrupts (2)

• Problem 2: Virtual interrupt storms

– VCPU typically has a fraction of physical CPU time as its budget

– Negative impact of virtual interrupt storm can be much significant than

physical interrupt storms

• Prior work developed for non-virtualized systems

– Cannot address virtual interrupt storms due to the unawareness of the

passage of physical time within a VM

13/26

RTCSA 2015

vINT Overview

• Conceptually splits virtual interrupt handling from the VCPU of regular

tasks in an analyzable way

– Used pseudo-VCPU abstraction

– Prioritizes virtual interrupt handling

– Does not require any guest OS modification

VM1

VCPU

Task

Task Scheduler

Task Task

ISR

Task

Interrupt-triggered

VM1

VCPU

Task

Task Scheduler

Task Task

ISR

Task

Pseudo-VCPU

Time-triggered Interrupt-triggered Time-triggered

vINT

14/26

RTCSA 2015

Pseudo-VCPU Parameters

• Same types of parameters as a regular VCPU: (𝐶𝑝
𝑣 , 𝑇𝑝

𝑣)

• Budget replenishment period 𝑇𝑝
𝑣

– Equal to or greater than the minimum inter-arrival time of the

associated interrupt

• Execution budget 𝐶𝑝
𝑣

Sum of execution times of

ISR and interrupt-triggered task

Extra budget to reduce

blocking time on interrupt handling

15/26

RTCSA 2015

Pseudo-VCPU Realization

• Pseudo-VCPU does not have an execution context

– vINT handles a virtual interrupt as if it was handled in its pseudo-VCPU

Task 𝜏1

ISR

Physical Intr.

VM
Exit

①

Hypervisor

VCPU 𝑣1

VM
Enter

Virtual Intr.

ISR

EOI
VM

 Exit

Task 𝜏2

VM
Enter

Trap ③

④
PCPU 1

② Interrupt-triggered task

vINT checks the remaining budget

of the corresponding pseudo-VCPU

vINT let VCPU 𝑣1 override the budget

and priority of the pseudo-VCPU

vINT supports nested

interrupt handling by

using an EOI signal

16/26

RTCSA 2015

Analysis

• Scope of our analysis

– Interrupt handling time

– VCPU schedulability

– Task schedulability

• Considers four different use cases

VCPU budget

replenish policies
With vINT Without vINT

Deferrable server YES YES

Sporadic server YES YES

17/26

RTCSA 2015

Interrupt Handling Time Analysis

• Interrupt handling time

– Sum of physical and virtual interrupt response times

• Physical interrupt response time

• Virtual interrupt response time

Similar to interrupt handling time

in a non-virtualized environment

[without vINT] [vINT]

Delay from

VCPU budget depletion

Delay from

time-triggered tasks

Delay from higher-priority

interrupt handling

18/26

RTCSA 2015

Outline

• Introduction

• vINT Framework

• Evaluation

– Performance characteristics of vINT

– Implementation

– Case study

• Conclusion

19/26

RTCSA 2015

Performance Characteristics of vINT

• Purpose: Empirically investigate the performance characteristics

 and benefits of vINT

• Experimental setup

– Used randomly-generated task sets and interrupt sets

– Metrics

Percentage of schedulable task sets

Percentage of serviceable interrupt sets

DSbase Deferrable Server without vINT (baseline)

SSbase Sporadic Server without vINT (baseline)

DSvINT Deferrable Server with vINT

SSvINT Sporadic Server with vINT

20/26

RTCSA 2015

• Interrupts with short inter-arrival times

– Task schedulability

– Interrupt service rate

Experimental Results (1)

vINT has benefits in both

task scheduling and

interrupt handling

21/26

RTCSA 2015

• WCET of interrupt handlers

– Task schedulability

– Interrupt service rate

Experimental Results (2)

vINT shows slightly lower

task schedulability

But vINT provides

significantly higher

interrupt service rates

22/26

RTCSA 2015

Case Study

• System configuration

– Hypervisor: KVM of Linux/RK

• Chosen for convenience

• vINT applied to a Gigabit PCI NIC

– Guest VM

• OS: Unmodified Linux kernel 3.10

• Tasks: Netperf (network benchmark tool), Mplayer (movie player),

 Busyloop (background task)

1Gbps Ethernet

Netperf receiver, Mplayer and

Busyloop running in a VM

Remote machine

(Netperf sender)

23/26

RTCSA 2015

Netperf Round-Trip Latency

• Highly affected by system’s interrupt handling time

 [Idle] [Mplayer + Busyloop]

24/26

• Netperf with vINT: handles 95% of round-trips in 200 𝜇𝑠𝑒𝑐

• Netperf without vINT: only 50% during that time

RTCSA 2015

Mplayer QoS under Interrupt Storms

• Measured fps(frames-per-second) of video playback

– MPEG2 video stream recorded in 29.97 fps

– X-axis: total VCPU budget assigned

• Mplayer with vINT: nearly unaffected

• Mplayer without vINT: dropped from 29.97 fps to 6 fps

25/26

RTCSA 2015

Conclusions

• vINT: an interrupt handling framework for RT virtualization

– Provides responsive and bounded interrupt handling time

– Protects real-time tasks from interrupt storms

– Supports unmodified guest OSs

• Analysis and Experimental Results

– Timely interrupt handling and good task schedulability in most cases

– A system designer can choose a trade off between task

schedulability and interrupt handling time for each interrupt

• Implementation and Case study

– KVM + Linux/RK: https://rtml.ece.cmu.edu/redmine/projects/rk/

• Future Work

– Memory interference, efficient VCPU resource allocation

26/26

https://rtml.ece.cmu.edu/redmine/projects/rk/
https://rtml.ece.cmu.edu/redmine/projects/rk/

