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Abstract—In ROS (Robot Operating System), most applica-
tions in time- and safety-critical domain are constructed in the
form of callback chains with data dependencies. Due to the
shortcomings in its real-time support, ROS does not provide
a strong timing guarantee and may lead to disastrous results.
Although ROS2 claims to enhance the real-time capability,
ensuring predictable end-to-end chain latency still remains a
challenging problem. In this paper, we propose a new priority-
driven chain-aware scheduler for the ROS2 framework and present
end-to-end latency analysis for the proposed scheduler. With our
scheduler, callbacks are prioritized based on the given timing
requirements of the corresponding chains so that the end-to-end
latency of critical chains can be improved with a predictable
bound. The proposed scheduling design includes priority assign-
ment and resource allocation considering all ROS2 scheduling-
related abstractions, e.g., callbacks, nodes, and executors. To the
best of our knowledge, this is the first work to address the
inherent limitations of ROS2 in end-to-end latency by proposing
a new scheduler design. We have implemented our scheduler in
ROS2 running on NVIDIA Xavier NX. We have conducted case
studies and schedulability experiments. The results show that the
proposed scheduler yields a substantial improvement in end-to-
end latency over the default ROS2 scheduler and the latest work
in real-world scenarios.

I. INTRODUCTION

ROS (Robot Operating System) [4] is one of the most
popular open-source middleware frameworks for robotic ap-
plications. The advent of ROS has revolutionized the devel-
opers community both in industry and academia, providing a
tremendous number of tools, robot systems, and best-practices
to build new applications [3]. Behind such an achievement
of productive robotic software developments during a short
period of time, the software modularity and composability
have played a major role. However, over the decades, ROS
has revealed shortcomings in real-time support for timing-
and safety-critical applications. This had motivated the de-
velopment of the second generation of ROS, ROS2, in the
community.

ROS2 [6] has been developed since 2017, with major
considerations on improving real-time capabilities. Although
most concepts are inherited from the original ROS framework,
ROS2 employs unique features including inter-node commu-
nication through Data Distribution Service (DDS), which is
the industry standard for real-time data distribution [2]. The
new architecture of ROS2 aims to better support real-time
robotic software. However, it still does not guarantee stringent
timing constraints and system designers need to empirically
tune timing-related parameters.

Guaranteeing the timing constraints of safety-critical ap-
plications in ROS2 is a crucial functionality since violating
those constraints may cause catastrophic consequences, e.g.,
a late response from the ROS navigation package for a path
following control of a self-driving vehicle may cause a rear-
end accident. Also, providing such timing guarantees is chal-
lenging due to the following reasons. First, such applications
generally form a chain which is composed of a set of callbacks
with data dependencies. Therefore, the system designer is
required to know a safe upper bound on the end-to-end latency
of a chain. Second, although many prior studies have proposed
analysis techniques for end-to-end chain latency [7, 9, 12, 21],
they cannot be directly applied to the ROS2 framework due to
its unique scheduling behavior caused by various abstractions
including executors and nodes (detailed in Sec. III-B).

To the best of our knowledge, the only recent work on
formally analyzing the ROS2 scheduling architecture for real-
time guarantees is the study done by Casini et al. [11].
They particularly focused on analyzing the chains of callbacks
within an executor, which is one of the core scheduling entities
of ROS2. It is pioneering real-time work for ROS2 and it
provides an analytical foundation to the research community.
However, there are many unresolved issues, e.g., it only
focuses on the scheduling behavior within an executor and
does not consider the allocation of scheduling entities to
executors and CPU cores in a multi-core system. Furthermore,
the end-to-end latency analysis suffers from the limitations of
the ROS2 scheduling architecture, motivating the development
of a new scheduler design.

In this paper, we propose PiCAS, a priority-driven chain-
aware scheduler for ROS2 in a multi-core environment. The
goal of our work is to minimize end-to-end chain latency
by prioritizing the execution of callbacks of chains based on
their criticality and timing requirements. We have implemented
PiCAS in the ROS2 “Eloquent Elusor” version and evaluated
its performance on a real embedded platform. The main
contributions of this paper are shown as follows:
• We present the design of PiCAS that includes the priority

assignment of callbacks and the allocation of nodes to
executors and executors to CPU cores in a multi-core plat-
form. PiCAS makes callbacks and executors execute while
respecting the end-to-end timing requirement of chains.

• We develop analysis to upper-bound the end-to-end latency
of chains under the proposed PiCAS framework. The anal-
ysis provides safe bounds of end-to-end latency of chains.



• We have conducted case studies using practical scenarios
on an embedded platform and schedulability experiments
using random workloads. Experimental results indicate our
proposed scheduler yields a significant improvement in end-
to-end latency over the default ROS2 scheduler and the
latest analytical work.
The rest of the paper is organized as follows. Sec. II reviews

prior work. Sec. III gives the background on ROS2 and our
system model used in this paper. Sec. IV describes specific
challenges, and Sec. V presents our proposed chain-aware
scheduling scheme. The analysis of the end-to-end latency is
presented in Sec. VI. In Sec. VII, evaluation results are shown.
Finally, Sec. VIII concludes the paper with future work.

II. RELATED WORK

Most work on ROS has focused on improving real-time
capabilities [26, 27, 29]. In [26], Saito et al. proposed a
priority-based message transmission mechanism by allowing
publishers to send data based on their priorities. Wei et al. [29]
proposed a hybrid OS platform which executes a real-time
ROS node (on Nuttx) and a non-real-time ROS node (on
Linux) separately by running two operating systems. In [27],
ROSCH-G, a loadable kernel framework, is proposed as a
real-time extension to ROS with a CPU/GPU coordination
mechanism. However, these studies do not provide analytical
methods to guarantee real-time timing constraints or are only
applied to the first generation of ROS.

For ROS2, Maruyama et al. [23] conducted an empirical
evaluation with various QoS configurations under different
vendor-specific DDS implementations. In [16], the worst-case
latency between two nodes is measured and the deadline miss
behavior is observed in a PREEMPT-RT patched Linux kernel
system. Both studies evaluated the performance of ROS2 using
measurement-based approaches, but did not provide formal
modeling or analysis.

Many studies have been conducted on analyzing end-to-end
chain latency in a publisher-subscriber model or with read-
execute-write semantics. Palencia et al. proposed approaches
to analyze tasks with precedence constraints in multi-core
systems [24, 25]. In [15, 28], methods to capture an upper
bound on the end-to-end latency of tasks are presented based
on the worst-case response time. Kloda et al. [21], Abdullah
et al. [7], and Becker et al. [9] presented analytical methods to
bound the end-to-end latency of a chain under fixed-priority
scheduling. The most recent work by Choi et al. [12] proposed
chain-based fixed-priority scheduling to improve the end-to-
end latency of chains. However, none of these analytical
approaches cannot be directly applicable to ROS2 due to
differences in the scheduling model.

The literature on the latency of ROS2 processing chains
is quite limited. To the best of our knowledge, [11] is the
only work on modeling the ROS2 scheduler and providing a
response-time analysis of chains. The authors of that paper
investigated callback scheduling behavior within an executor
and used resource reservation to model the resource availabil-
ity of a given executor. The end-to-end latency of a chain is
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Fig. 1: ROS2 architecture and the scope of our work

analyzed by first computing response time of each sub-chain
that consists of callbacks within an executor, and then adding
the response times of sub-chains spanning across executors
based on the compositional performance analysis (CPA) [18].
Their approach lays the groundwork to analyze the default
ROS2 scheduler. However, it remains unanswered how to
allocate resources and further improve the end-to-end latency
of critical chains.

III. BACKGROUND AND SYSTEM MODEL

A. ROS2 architecture

ROS2 is a unified implementation of multiple layers of
abstraction as illustrated in Fig 1. Applications are supported
by language-specific client libraries such as C++ and Python
officially and many other programming languages from the
ROS community. The ROS client library (rcl) provides APIs
to ensure consistent behavior between programs written in
different languages. The ROS middleware library (rmw) is a
communication interface between rcl and the Data Distribution
Service (DDS) and is implemented DDS vendor-specific. DDS
is an industry standard real-time communication system and
is newly added to ROS2 to exchange messages between the
publishers and the subscribers of nodes.

B. Scheduling-related abstractions

The fundamental scheduling-related abstractions of ROS2
include callbacks, nodes, and executors.
• Callback is the minimal schedulable entity in ROS2. There

are 5 types of callbacks in ROS2 [11]: timer, subscription,
service, client, and waitable callbacks. The timer callback
periodically arrives at its own rate, i.e., time-triggered. The
others are triggered by external events, i.e., event-triggered.
Basically, the transport of messages between publishers
and subscribers can be achieved by implementing callback
functions in ROS2.

• Node is a collection of callback functions, organized by
application programmers for modularity and logical parti-
tioning of features. Each node also serves as the minimum
allocation unit to executors; hence, all callbacks within
the same node are executed by the same executor and
they cannot be allocated to two or more executors. In
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general, each application is composed of multiple nodes
with multiple callbacks per node.

• Executor is the OS-level schedulable entity running on CPU
cores, i.e., a thread, and executes the callbacks assigned
to it. The allocation of callbacks to executors is done
through the node abstraction. Once nodes are allocated to
an executor, all the callbacks of those nodes are handled
by the executor, regardless of the origin of the callbacks.
Callback scheduling within an executor is quite different
from conventional priority-based real-time task scheduling,
as reported in [11]. An executor features two unique behav-
iors in callback scheduling. First, the priority of callbacks is
determined by their types. Timer callbacks always have the
highest priority and the others get the next highest priorities
in the order presented before. All callbacks are executed
non-preemptively. Second, an executor updates the ready
status of non-timer callbacks in their respective queues by
interacting with the communication middleware layer (rmw)
shown in Fig. 1. This update occurs when all queues are
empty (called a polling point), and such a delayed update
of callback readiness makes the priority assignment of non-
timer callbacks ineffective [11] and lets chains run in a
round-robin-like manner.

Chain. On top of the scheduling-related abstractions of ROS2,
chains can be constructed by application developers. A chain is
a semantic abstraction defined by message exchanges between
callbacks of one or more nodes. ROS2 does not define any
property on a chain and the executor does not take into account
the timing and resource requirements of a chain in callback
scheduling. However, since the end-to-end latency of a chain
has a major impact on the performance of a safety-critical real-
time system, we focus on the scheduling, resource allocation,
and analysis of chains in this paper.

Overload handling. ROS2 features an overload handling
mechanism in case a timer callback has missed one or more
of its periods. The overload handling mechanism occurs
at the beginning of timer callback execution (by running
rcl_timer_call function in the rcl layer). First, the
next_call_time variable is updated by adding the period
of the timer callback to its current value so that the new value
indicates the time to trigger the next timer callback. Then, if
next_call_time is behind the current time, the first step
is repeated so that it points to the earliest future time. Hence,
missed timer jobs due to overload are skipped naturally and
the timer callback can execute in the next future period. In
the occurrence of overload, the maximum delay imposed on
the end-to-end latency of a time-triggered chain is at most one
period of the timer callback, regardless of the number of timer
jobs skipped in the past. This is because the release time of a
chain instance is effectively determined by the start time of the
period where the timer callback job is executed and starts that
chain instance. We will make use of this behavior to capture
the maximum blocking delay from a prior chain instance in
Lemma 4 of Sec. VI. Note that this mechanism is similar to
the job-skipping approaches for deadline missed jobs in the

literature [13, 14, 17, 22].

C. System model

This paper considers multi-core system where all CPU cores
run at the same fixed clock frequency. Below we introduce our
model for callbacks, nodes, and executors.

1) Callback model: The system has M real-time callbacks,
each is either a timer callback, which is triggered by a periodic
timer, or a regular callback, which is triggered by an event
from another callback (e.g., the completion of its prior callback
in a chain). Each callback has one chain associated with it. A
callback τi is characterized as follows:

τi := (Ci, Di, Ti, πi)

• Ci: The worst-case execution time of a job of τi.
• Di: The relative deadline of a callback τi, which is equal

to the deadline of its associated chain.
• Ti: The period of a callback τi, which is equal to the period

of its associated chain (Di ≤ Ti).
• πi: The priority of a callback τi within its executor

2) Node model: We use N to denote a set of nodes as
follow:

N =: {n1, ..., nj , ..., nN}
and the utilization of each node nj is given by:

U(nj) =
∑

∀ti:τi∈nj

Ci
Ti

It is worth noting that nodes do not have priorities since they
are not schedulable entities. They only impose restrictions
on callback-to-executor allocation, e.g., callbacks in the same
node cannot be separately allocated to two or more executors.

3) Executor model: We denote a set of executors as below:

E =: {e1, ..., ej , ..., eE}
The priority of j-th executor is denoted by πej and E is sorted
in descending order of priority, i.e., πej > πej+1

. From a real-
time perspective, the scheduling of executors by an OS has a
large impact on the timing behavior of callbacks. In this work,
we allocate each executor to one CPU core, and schedule the
executors of each core with SCHED_FIFO, which is the fixed-
priority preemptive real-time scheduling policy in Linux with a
priority range from 1 to 99. Therefore, the maximum number
of executors with unique priority, E, is limited to 99.

4) Chain model: Each chain consists of one or more
callbacks. A chain Γc is denoted as below:

Γc := [τs, τm1, τm2, ..., τe]

• τs: The start callback a chain Γc.
• τm∗: The intermediate callbacks of a chain Γc.
• τe: The end callback of a chain Γc.
The priority of a chain Γc is denoted by πΓc and the superscript
c is the identifier of the chain Γc. This model has been widely
used in prior work to analyze the end-to-end latency of a
chain with inter-dependency among tasks. Following the time-
triggered ROS2 chain model used in [11], the start callback
of a chain is assumed to be a timer callback and the others
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TABLE I: Chain set
Chains

Chain 1 Γ1 =: [τ1, τ2, τ3]

Chain 2 Γ2 =: [τ4, τ5, τ6, τ7, τ8, τ9, τ10]

Specifications [sec]
Timer callback (τ1 and τ4) Ci = 0.109, Ti = 1

Regular callbacks Ci = 0.131

TABLE II: End-to-end latency results [sec]
Single executor Mean Max Min STD

Chain 1 36.865 72.752 0.505 21.223

Chain 2 36.730 73.149 0.773 21.154

Executor per chain Mean Max Min STD
Chain 1 0.370 0.392 0.366 0.004

Chain 2 48.795 97.783 0.772 28.304

be regular callbacks. In case of event-triggered chains, as
discussed in [11], one can model the first regular callback
of a chain (triggered by an external event) as a timer callback
with the event’s arrival period. Note that a periodic real-time
task in conventional task models can be represented as a single
timer callback chain in our model.

We use CΓc to denote the total WCET (worst-case execution
time) of a chain Γc:

CΓc =
∑

∀i:τi∈Γc

Ci

Implications of chain priority. We assume that the priority
of a chain, πΓc , is given by the system designer based on its
criticality or importance in the system. We call it semantic
priority since it is not part of the original ROS2 framework
but should govern the priority assignment of callbacks and
executors in order to satisfy application-level requirements.

IV. CHALLENGES

In this section, we elaborate on the challenges of the
current ROS2 framework based on the scheduling behavior we
have observed from experiments using an embedded platform.
The experiments were conducted using the ROS2 “Eloquent
Elusor” version running on NVIDIA Xavier NX. Two safety-
critical chains consisting of 10 callbacks are used as described
in Table I. We assume that chain 1 is more critical than chain
2, i.e., πΓ1 > πΓ2 . τ1 and τ4 are timer callbacks with a period
of 1 sec and all other callbacks are regular callbacks. With the
assumption of a uniprocessor system, the following two cases
are performed: (1) all callbacks are in a single executor, and
(2) callbacks of each chain are allocated to a separate executor,
i.e., one executor per chain.

Now, we discuss the following two major challenges ob-
served from our experiments.
Challenge 1. Fairness-based scheduling within executors.
The unique scheduling behavior of an executor discussed in
Sec. III-B is that it schedules timer callbacks always first and
makes the priority assignment of other regular callbacks inef-
fective. Besides, since the ROS2 scheduler do not distinguish
callbacks by their chains, all callbacks are scheduled without
the notion of chain-level timing requirements in mind. Fig. 2a

shows the scheduling timeline of callbacks within a single
executor when two chains are run together. As we can observe,
ROS2 gives fair progress of both chains over time, and such
fairness-based scheduling may jeopardize the timeliness of
safety-critical chains, resulting in extremely high latency as
depicted in Table II.
Challenge 2. Priority assignment for executors. By default,
executors are scheduled by the Completely Fair Scheduler
(CFS) [30] of the Linux kernel. Under this scheduler, it is hard
to predictably prioritize the executors that are running call-
backs from critical chains. Fortunately, the system developers
can manually assign OS-level priority to executors although
ROS2 does not provide an official interface to configure it.
However, there exist no general guideline on the priority
assignment of ROS2 executors. The most intuitive way is to
assign the highest priority to an executor running the most
critical chain, as we have done in Fig. 2b. Here, the executor
containing all callbacks of chain 1 has the real-time priority
of 99 with the SCHED_FIFO policy and the other executor
of chain 2 has 98. However, this method does not resolve the
problem of undesirably high latency for chain 2, shown in
Table II, which happens due to self-interference between the
instances of chain 2 itself.

Note that the priority assignment for executors becomes
more challenging if callbacks from chains with different
criticalities are mixed in a single node because such callbacks
cannot be separately allocated to different executors.

V. PRIORITY-DRIVEN CHAIN-AWARE SCHEDULING

This section presents our priority-driven chain-aware
scheduling framework for ROS2, called PiCAS. To improve
the end-to-end latency of a chain, the current ROS2 scheduling
architecture could be re-designed with the following con-
siderations: (1) higher-priority chains should execute earlier
than lower-priority chains (Fig 2a), and (2) for each chain,
a prior instance of the chain should complete its execution
before the newly released instance starts execution if they
are scheduled on the same CPU (Fig 2b). The latter is to
reduce self-interference between instances of the same chain,
thereby preventing undesirable latency increases. Based on the
above considerations, we state the desired properties for our
scheduler in the following lemma.

Lemma 1. For the chain Γc := [τ1, ...τi, ..., τj , ..., τN ] whose
callbacks are on the same CPU, a prior chain instance is
guaranteed to complete its execution before a new instance
starts execution if the following conditions are met: (1) τj has
a higher callback priority than τi (j > i), and (2) τj runs on
an executor with the same or higher priority than τi’s executor.

Proof: The proof can be done by contradiction. Suppose
that a new chain instance starts execution before its prior
instance completes, i.e., τ1 executes before the completion of
τj (1 < j ≤ N ) on the same CPU. Such behavior occurs in
the following cases: (1) τ1 has a higher priority than τj when
they are on the same executor, (2) τ1 has a lower priority than
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(a) Scheduling with a single executor

(b) Scheduling with two executors (one executor per chain)

Fig. 2: ROS2 scheduling example in a uniprocessor environment

τj but is assigned to a higher-priority executor than τj’s, and
(3) τ1 has a higher priority than τj and belongs to a higher-
priority executor than τj’s. These contradict at least one of the
conditions. Hence, the proof is done.

Note that, if the callbacks of a given chain Γc are distributed
across multiple CPU cores, a new instance of that chain may
have a chance to start earlier than the completion of its prior
instance. However, Lemma 1 still applies to the consecutive
subset of Γc assigned to one CPU core. The conditions of the
lemma ensure that the corresponding subset of instances are
executed in their arrival order, and thus, any instance of Γc

does not get interference from its future instances.
Based on Lemma 1, the rest of this section first outlines our

scheduling strategies considering two aspects: chains running
within an executor (Sec. V-A) and across executors (Sec. V-B).
It then presents the proposed callback priority assignment
(Sec. V-C) and chain-aware node allocation (Sec. V-D) al-
gorithms that substantialize these strategies.

Regular callbacks 
from the same chain

Timer- and regular callbacks 
from the same chain

Regular callbacks from 
multiple chains

Timer- and regular callbacks 
from multiple chains

Regular callbacks only Timer and Regular callbacks 

Single
Chain

Multiple
Chains

Fig. 3: Chain/callback classification for scheduling purposes

A. Strategies for chains running within an executor
We first describe our strategies for chains running within

an executor. These strategies affect how the callbacks of such

chains are scheduled in an executor, and they are derived from
our classification of chains and callbacks shown in Fig. 3,
with each strategy mapped to one of the categories. It is
worth noting that callback scheduling is orthogonal to node
configurations (given by program code) and node-to-executor
allocations (determined by our algorithm in Sec. V-D). This is
because, once the callbacks of nodes are assigned to executors,
each executor handles assigned callbacks regardless of their
origin nodes.

Strategy I. Regular callbacks from a single chain. If
an executor has only regular callbacks from a single chain
Γc =: [τ1, ..., τi, ..., τj , ..., τN ], the priorities of those callbacks
should be assigned in the reverse order of their sequence in
the chain, i.e., τj (j > i) gets a higher priority than τi, in
order to satisfy the first condition of Lemma 1.

Strategy II. Timer and regular callbacks from a single
chain. If an executor contains both timer and regular callbacks
of a single chain Γc, the regular callbacks should be given
higher priorities than the timer callback to satisfy the first
condition of Lemma 1 (because the timer is placed before all
other regular callbacks in the chain). The scheduling of the
regular callbacks should follow Strategy I.

Strategy III. Regular callbacks from multiple chains.
Consider two chains, Γc and Γc

′
, where πΓc < πΓc′ (i.e.,

Γc
′

has a higher semantic priority than Γc). If an executor
contains regular callbacks from both Γc and Γc

′
, all callbacks

of Γc
′

should be assigned higher priorities than those of Γc. In
addition, the priority assignment of callbacks for each chain
should follow Strategy I individually.

Strategy IV. Timer and regular callbacks from multiple
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(a) Scheduling with a single executor

(b) Scheduling with two executors (one executor per chain)

Fig. 4: Execution timeline with the proposed scheduling framework

chains. If an executor contains both timer and regular call-
backs from multiple chains (e.g., Γc and Γc

′
where πΓc <

πΓc′ ), the timer callback from a higher semantic priority chain
(Γc

′
) should have a higher priority than that from a lower

semantic priority chain (Γc). Since the timer callback is the
starting point of each chain instance, such a prioritization
ensures more critical chain instances to precede the less critical
ones. Then, each chain should follow Strategy II individually
to conform to Lemma 1.

B. Strategies for chains running across executors

Next we discuss scheduling strategies for chains running
across multiple executors. Since each executor is allocated to
one CPU core and scheduled by the OS’s preemptive fixed-
priority scheduler, we need to consider chain scheduling on
each CPU that may have multiple executors assigned to it.
The following two strategies will serve as the basis for our
allocation algorithm in Sec. V-D. Note that executors here are
assumed to follow Strategies I to IV given in Sec V-A.
Strategy V. A single chain on one CPU. Suppose a CPU
has callbacks from only a single chain Γc. In this case, the
executor containing the lower-index callbacks τi of Γc should
have the same or lower priority than the other executors on the
same CPU that execute the higher-index callbacks τj (j > i)
of Γc. This is to satisfy the second condition of Lemma 1.
Strategy VI. Multiple chains on one CPU. Suppose a CPU
has callbacks from multiple chains (e.g., Γc and Γc

′
on the

same CPU where πΓc < πΓc′ ). In this case, the executor that
contains the callbacks of Γc

′
should have at least the same

or higher priority than those including the callbacks of Γc, in
order to respect the semantic priority of chains.

C. Priority assignment of callbacks

To realize the aforementioned scheduling strategies, we first
propose a callback priority assignment algorithm in this sub-
section. Our algorithm enables callbacks within each executor
to implement Strategies I to IV and is given in Alg. 1.

Algorithm 1 Callback priority assignment

Input: Γ: chains
1: Γ← sort in ascending order of semantic priority πΓ

2: p← 1 . Initialize current priority
3: for all Γc ∈ Γ do
4: for all τi ∈ Γc do
5: τi ← p
6: p← p+ 1
7: end for
8: end for

The proposed algorithm takes a hierarchical approach to
assign priorities to callbacks, considering first the semantic
priorities of their origin chains and then the relative priority
ordering within each chain. In Alg. 1, chains are sorted in
ascending order of their semantic priorities (line 1) and the
outer loop iterates starting from the lowest semantic priority
chain (line 3). According to our chain model in Sec. III-C,
the callbacks of each chain are already arranged from the
start (low index) callback to the end (high index) callback.
Hence, the inner loop assigns a lower priority to a callback
with a lower index for each chain Γc (line 4 to line 7), i.e.,
the timer callback gets the lowest priority in the chain and the
end callback gets the highest priority.
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Fig. 5: Diagram of the proposed node allocation scheme

D. Chain-aware node allocation scheme

This subsection presents our chain-aware node allocation
scheme for ROS2. The proposed scheme allocates given nodes
to executors, and then maps these executors to available CPU
cores while following the scheduling strategies mentioned be-
fore. This scheme also tries to minimize interference between
chains by allocating all nodes associated with one chain to
the same CPU core whenever possible. The allocation scheme
is done offline and does not introduce runtime overhead. It
is worth noting that nodes cannot be split arbitrarily by a
resource-allocation algorithm because nodes are composed
by programmers for modularity and logical partitioning of
features in ROS2.1 In addition, data-dependency relationship
between nodes is unaffected by the node allocation since
communication between nodes is done explicitly by messages
and does not change regardless of which executor they use.

Fig. 5 illustrates the flow diagram of the proposed node
allocation scheme. The scheme takes as input the maximum
number of executors to use (M), the number of available CPU
cores (P), and the set of nodes to be allocated (N ). It first sorts
nodes inN in descending order of the highest-priority callback
that each node includes. This means that nodes associated
with a higher semantic priority chain are allocated first by the

1To split a single node and allocate it to two or more CPUs, the node’s
software code needs to be rewritten, which is beyond the scope of this work.

scheme. Let us use Γc to denote the highest semantic priority
chain that has not been allocated yet (so its associated nodes
are inN ). The scheme selects a subset of nodes, N, by fetching
nodes from N one at a time until all the nodes associated with
Γc are fetched or the utilization of N exceeds 1. Then the
scheme checks if there is an empty executor ee and moves on
to the actual allocation phase consisting of three parts. Part A
allocates N to ee and ee to a feasible CPU core. Part B is the
case where ee does not exist; it finds a non-empty executor
em that is feasible for N. Part C handles all leftover nodes that
were not allocated to executors by the first two parts. Details
on each part are given below.
Part A. This part of the scheme begins when there is an empty
executor ee. It assigns N to ee, and finds all feasible CPU
cores Pk whose utilization including ee does not exceed 1, i.e.,
Uee +UPk

≤ 1. If such a CPU core is not found, the scheme
removes a node n that contains the lowest-priority callback
from N, sends n back toN (so that it can be reconsidered), and
finds feasible CPUs for N again until there remains one node
in N. If N has only one node and no feasible CPU is found, it
is sent to Part C. Otherwise, among all feasible CPUs found,
N is assigned to the one that has the lowest utilization and
satisfies Strategies V and VI. If none satisfies those strategies,
N will be handled Part C. Note that each executor has a unique
OS-level real-time priority in the range from 1 to 99 under the
SCHED_FIFO policy, and we use the highest-priority empty
executor first.
Part B. In this part, N is allocated to a non-empty executor em
that has been already assigned to a CPU core Pk, i.e., ee ∈ Pk.
Similar to Part A, the scheme finds all feasible non-empty
executors em where UN + UPk

≤ 1. If no feasible executor
exists, the scheme extracts a node n from N and search for
available executors iteratively until only one node remains
in N. If N has only one node and cannot find any feasible
executor, this node will be handled by Part C. N is assigned
to the executor that has the lowest utilization and satisfies
Strategies I to VI. When no executor meets the strategies, N
will be handled by Part C.
Part C. This part handles N that could not be allocated to
executors or CPUs by Parts A and B. There are two reasons
why N could not be allocated. First, a feasible CPU core
Pk was found but Strategies V and VI were not satisfied.
In this case, the scheme merges all executors on Pk into a
single executor so that the two strategies are trivially satisfied.
Secondly, all CPU cores have a utilization higher than 1. Since
ROS2 can handle overloaded cases based on the mechanism
described in Sec. III-B, we do allocate N to the CPU core
whose utilization is the lowest. We will assess the scheduling
performance of PiCAS and the default ROS2 scheduler for
overloaded cases in Sec. VII.

E. Example of priority-driven chain-aware scheduling
Recall the chain set in Table I which results in high end-to-

end latency under ROS2’s default scheduling, as discussed in
Sec III. Now, we re-run the chain set under the proposed Pi-
CAS framework. As illustrated in Fig 4, our scheduler executes
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TABLE III: End-to-end latency results with PiCAS [sec]

Single executor Mean Max Min STD
Chain 1 0.436 0.506 0.368 0.038

Chain 2 1.196 1.738 0.741 0.348

Executor per chain Mean Max Min STD
Chain 1 0.369 0.394 0.366 0.004

Chain 2 1.255 1.731 0.737 0.352

callbacks of a higher semantic priority chain first. Besides, in
accordance with Lemma 1, the prior chain instance of each
chain completes execution before starting the execution of its
new chain instance in a uniprocessor environment. Table III
depicts the end-to-end latency for the following two cases: (1)
all callbacks are in a single executor, and (2) callbacks of each
chain are allocated to a separate executor. For both cases, we
have observed that PiCAS significantly improves the latency
of both chains.

VI. ANALYSIS OF END-TO-END LATENCY

This section presents the end-to-end latency analysis of a
chain under the proposed chain-aware scheduling for ROS2.
For the analysis purpose, a consecutive subset of a chain Γc

on one CPU core (called a segment Φi) can be considered
as a single artificial callback. This is because, once the timer
callback of Γc arrives based on its period, the rest callbacks
are triggered directly by the completion of their prior callbacks
and there is no self-induced delay between them. If a chain
executes over multiple CPU cores, it can be decomposed into
multiple segments. Therefore, the end-to-end analysis of a
chain can be done by two steps: (i) computing the worst-case
response time (WCRT) of each segments of a chain, and (ii)
adding up the WCRTs of all segments of the given chain. Fig. 6
illustrates an example of a chain with three segments. We will
present each step and explain how the analysis is done.

CPU 1

CPU 2

CPU 3

Triggered regular callback 
Triggered timer callback 
Interfered by other callbacks

Latency of = WCRT + 

WCRT WCRT

Fig. 6: Latency analysis of a chain in a multi-core system

A. Worst-case response time of a segment Φi

At first, we compute the WCRT of each segment of a chain.
A segment Φi is considered as a single artificial callback
whose priority is inherited from the lowest-priority callback
of Φi, and its WCET is the sum of all callbacks’ WCET in
that segment.
Interference from higher semantic priority chains. In order
to analyze the WCRT of a target segment Φi, we need to upper
bound the maximum interference imposed by other callbacks.
In our framework, such callbacks run in higher-priority execu-
tors than Φi’s executor on the same CPU, or are higher-priority

callbacks in the same executor as Φi. Considering these, the
following lemma captures the maximum number of arrivals of
an interfering callback τk for an arbitrary time interval t.

Lemma 2. The maximum number of arrivals of a callback
τk ∈ Γc

′
that causes interference to a target segment Φi ⊂ Γc

during an arbitrary time window t is bounded by:

ηi(t, τk) =


⌈

t

TΓc′

⌉
, if πΓc′>πΓc∧P (Φi)=P (τk)

0 , otherwise
(1)

where TΓc′ = max(TΓc′ ,
∑
τj∈Γc′ Cj), if all callbacks of Γc

′

are on the same CPU, and TΓc′ = TΓc′ , otherwise; TΓc′ is the
period of Γc

′
; and P (τk) is τk’s CPU core.

Proof: The proof can be done by considering the follow-
ing two cases. The first case is that the chain of τk has a higher
semantic priority than the chain of Φi (πΓc′ > πΓc ) and the
interfering task τk is on the same CPU as Φi (P (Φ) = P (τk)).
In this case, τk can interfere with Φi whenever it arrives. If
the system is not overloaded, τk can arrive every TΓc′ . On the
other hand, if the system is overloaded and all callbacks of
Γc

′
are on the same CPU, the arrival interval of τk cannot be

shorter than the sum of the execution times of all callbacks in
Γc

′
because its prior chain instance always completes before a

new instance starts, as proved in Lemma 1. Note that the two
conditions of this lemma are satisfied by our callback priority
assignment and node allocation schemes. Therefore, TΓc′ takes
the maximum of these two to bound τk’s arrival period.

The second case includes all the other conditions that are
not considered by the first case. (i) If πΓc′ > πΓc but τk is on
a different core, τk obviously does not cause any interference
to Φi. (ii) If πΓc′ = πΓc , it means τk and Φi are from the same
chain and they do not interfere with each other by Lemma 1.
(iii) If πΓc′ < πΓc , one thing we need to consider is whether
τk can be in a higher-priority executor than Φi’s executor.
However, by Strategy VI, τk is allocated to the same or lower
priority executor than Φi. If τk is in a lower-priority executor,
obviously no interference occurs. If τk is in the same executor,
it gets lower priority than Φi by Alg. 1 and cannot cause
interference delay to Φi; τk can cause blocking delay in this
case, which is captured separately using a different term.

Blocking time from lower priority callback. Due to the
non-preemptive scheduling nature within an executor, a lower-
priority callback can cause blocking delay at most once to the
target segment Φi. The maximum blocking time Bi for Φi is
therefore bounded by the longest execution time of a lower-
priority callback τj in the same executor and is given by:

Bi = max
∀j:τj∈e(Φi)∧τj /∈Γc

∧πj<πi

{Cj} (2)

where e(Φi) is the executor of Φi.
Based on Lemma 1 and Eq. 2, the worst-case response time

of a segment Φi can be calculated as follow:

Lemma 3. The worst-case response time of a segment Φi ⊂
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Γc, denoted by Rnc,i, is bounded by the following recurrence:

Rn+1
c,i ← Bi +

∑
∀j:τj∈Φi

Cj +
∑

∀k:τk∈e(Φi)∨
τk∈eHP

ηi(R
n
c,i, τk)× Ck

(3)
where eHP is a set of executors with higher priority than
the executor of Φi. The recurrence starts with R0

c,i = Bi +∑
∀j:τj∈Φi

Cj .

Proof: It is obvious from Lemma 1 and Equation 2.
Note that Lemma 3 captures the WCRT of a segment Φi

that is a subset of the chain Γc. Hence, it can also be used
to compute the WCRT of just a single callback τj , by setting
Φi = {τj}. In this case, the computed WCRT of τj represents
the time from when τj is triggered to when it completes its
execution.

B. End-to-end latency of a chain Γc

Finally, we analyze the end-to-end latency of a given chain
in the proposed chain-aware scheduling framework.
Delay from prior chain instance. Recall the scheduling
behavior of chain instances when the conditions of Lemma 1
are satisfied. Since the next released chain instance can start its
execution only after the completion of its prior chain instance,
the next instance may experience an additional blocking delay
from the prior chain instance.

Lemma 4. The maximum blocking delay caused by a prior
instance of the chain Γc, denoted by S(Γc), is given by:

S(Γc) =

0 , if
∑

Φi⊂Γc

Rnc,i ≤ TΓc

Tτs , otherwise
(4)

where TΓc is the period of Γc.

Proof: If the cumulative WCRT of Φi ⊂ Γc is less than
or equal to the period of the chain, no blocking delay occurs
for the next chain instance since the previous instance finishes
before the next one is released. Otherwise, the next instance
can be delayed at most one cycle of the chain’s period by
the overload handling mechanism of ROS2 as explained in
Sec III-B. Thus, the proof is done.

Theorem 1. The end-to-end latency of a chain Γc is computed
by:

LΓc ←
∑

Φi⊂Γc

Rnc,i + S(Γc) (5)

where Φi is a segment of the chain Γc.

Proof: The proof is straightforward. Since a chain is
composed of callbacks that are triggered by the completion
of their prior callbacks, the end-to-end latency of the chain is
obtained by summing up the WCRT of all segments of the
chain. Besides, we consider the blocking delay S(Γc) that can
be caused by a prior chain instance.

VII. EVALUATION

This section evaluates our proposed PiCAS framework by
comparing it with the default ROS2 scheduler and the state-of-

the-art analysis work. We first conduct case studies on a real
platform running self-driving software to identify the practical
effectiveness of PiCAS. We then perform schedulability ex-
periments using randomly-generated workloads to explore the
performance characteristics of PiCAS and the default ROS2
scheduler.

A. Implementation

We have implemented the proposed scheduler in the Elo-
quent Elusor version of ROS2 running on Ubuntu 18.04 in
an NVIDIA Xavier NX platform which is equipped with
a six-core ARM®v8.2 1.4GHz processor. Since the ROS2
scheduler features a unique callback scheduling policy dis-
cussed in Sec. III-B, our implementation mainly modifies
the callback scheduling policy: (i) the condition for updating
ready callbacks in the executor’s queues, and (ii) the priority
assignment for individual callbacks. In ROS2, an executor
(rclcpp in Fig. 1) interacts with the communication layer
(rmw in Fig. 1) to fetch ready callbacks onto its queues. Our
scheduler implementation updates those queues whenever a
callback completes. If one or more callbacks are ready in the
queues, our scheduler choose to execute the one with the high-
est priority determined by the proposed priority assignment
(Alg. 1), instead of following ROS2’s default assignment.

Note that the above modifications can be made without
a large software endeavor so that the ROS developer and
research communities can access and evaluate it easily.

B. Case study

The case study is organized into three parts. The first
part focuses on a simple uniprocessor system for comparative
evaluation with the state-of-the-art analysis work. The second
and third parts evaluate more practical and complex multi-core
systems, considering non-overload and overloaded situations.

Comparison of approaches. We compare our work with
two other existing approaches. The first one is the ROS2
default scheduler, which runs executors with the Linux’s
default scheduling policy. This is a baseline but is not directly
analyzable. The second one is the state-of-the-art analysis
work [11], which also uses the ROS2 default scheduler but
assumes that each executor has a resource reservation. In
summary, the following three methods are compared:
• ROS2: ROS2 default scheduler with no analysis.
• ROS2-SD: ROS2 default scheduler with resource reserva-

tion and the worst-case response time analysis [11].
• ROS2-PiCAS: Our Priority-driven Chain-Aware Scheduler

with the proposed end-to-end analysis.
Resource reservation for ROS2-SD can be implemented using
the SCHED_DEADLINE policy in the Linux system. We also
used the source code provided in [5] by the authors of [11]
for the analysis of ROS2-SD. Since the analysis of ROS2-
SD in [5] does not support testing an overloaded system, we
only apply the ROS2-SD analysis to non-overloaded setups.
For analysis purposes, we measured the execution time of
each callback in isolation from 5,000 runs on our embedded
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platform and chose the maximum observed one as the WCET
of that callback.

local_planlocal_costmapposeLIDAR

Global_planner

Local_planner

Timer callback(T:period, C:execution time)

Regular callback Data dependency

T=80msec
C=2.3msec

C=2.2msec C=18.4msec C=9.1msec

Chains

global_costmap
C=16.1msec

𝜏5

Γ1 =: 𝜏1, 𝜏2
Γ2 =: 𝜏1, 𝜏3, 𝜏4, 𝜏5

Fig. 7: Case study I (uniprocessor system)

Case study I (uniprocessor system). We first evaluate chain
latency for a given available budget, which is motivated by
the case study used in [11]. Fig 7 illustrates this case study
that consists of two chains in a uniprocessor environment. In
accordance with the case study in [11], callbacks are allocated
to the same reservation with a given budget amount and
the priorities of callbacks are given in descending order of
callback’s index for ROS2-SD, i.e., a lower-index callback has
a higher priority. In that sense, we consider that chain 1 (Γ1)
has a higher semantic priority than chain 2 (Γ2), and use this
information in ROS2-PiCAS for callback priority assignment
and node allocation. To evaluate the effect of budget in ROS2-
PiCAS, we created a periodic thread that runs with the same
period (i.e., 80 ms) as the two chains (Γ1 and Γ2), but has
the highest real-time priority in the system. Using this thread,
we were able to limit the available budget for ROS2-PiCAS
by adjusting the execution time of that thread, e.g., 20 ms of
thread execution time per 80 ms leaves 75% of budget for
ROS2-PiCAS.

40 50 60 70 80 90 100
Budget of reservation (percent)

0

20

40

60

80

100

En
d-

to
-e

nd
 la

te
nc

y 
(m

se
c) ROS2-SD

ROS2-PiCAS(low priority)
ROS2-PiCAS(high priority)

(a) Latency of chain 1 (Γ1) for case study I
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(b) Latency of chain 2 (Γ2) for case study I

Fig. 8: Effect of available budget on end-to-end chain latency

Fig. 8 shows the end-to-end latency of chains under the
two approaches. As expected, we can observe that the latency
of both approaches reduces as the available budget increases.
For ROS2-SD, the latency of chain 1 and chain 2 are the same
because the built-in ROS2 scheduling policy makes the priority
assignment ineffective for upper-bounding the response time
of callbacks, as explained in [11]. However, chain 1 under

ROS2-PiCAS has lower latency than ROS2-SD because our
work prioritizes chains based on their semantic priority. We
also carried out another experiment by increasing the executor
priority of the two chains of ROS2-PiCAS higher than the
periodic thread. As shown with yellow lines in Fig. 8, we
observe that the latency is consistent regardless of the available
budget because the chains are not interfered by the periodic
thread in this case.

Case study II (multi-core system). To evaluate the effective-
ness of chain-aware scheduling in practical scenarios, we add
more complex chains inspired by the indoor self-driving stack
of the F1/10 vehicle platform [1]. This case study consists
of 6 real-time chains that we are interested in and 6 other
best-efforts chains in a 4-core system. Fig. 10 shows the chain
configuration in this case study. We assume that a lower-index
chain has a higher semantic priority. With given priorities
of chains, ROS2-PiCAS is used for node allocation. It first
allocates chain 1 to chain 4 each to a different CPU core,
and then distributes the others in a load-balancing manner.
The utilization of each CPU core after allocation is 0.97 on
average. Since no allocation scheme is provided by the default
ROS2 scheduler as well as the prior work [11], we used the
same node-to-core assignment and one executor per core for
ROS2 and ROS2-SD. For ROS2-SD, we also set the resource
reservation budget to 100% on each core.

Fig. 9a illustrates the observed end-to-end latency of chains
under the three approaches. Fig. 9b shows the maximum
observed latency from our measurements and compares it with
the analyzed latency. We clarify that the observed latency in
our experiments was obtained by recording the starting time
of timer callback execution, not the release time, which was
inevitable due to the lack of ROS2’s support for setting the
initial release offset. However, it is worth noting that the
starting time of chain 1 to chain 4 are exactly the same
as their release time under ROS2-PiCAS because they are
each allocated to the highest priority executor on a different
CPU core. Even if chain 5 and chain 6 are allocated to the
same CPU cores as chain 1 (CPU 1) and chain 4 (CPU 4),
respectively, we can easily estimate their release-time-based
latency by considering their executors’ priority (i.e., the second
highest priority executor on each CPU core) and periods (i.e,
harmonic with other chains) under ROS2-PiCAS. However,
we cannot intuitively estimate the release-time-based latency
under ROS2 and ROS2-SD.

As expected, ROS2-PiCAS outperforms the others on most
real-time chains, e.g., chain 1 to chain 5. Besides, our latency
analysis provides tighter upper-bounds for those real-time
chains. However, we can see that the observed and analyzed
latency of chain 6 under ROS2-PiCAS are worse than the
others. We discuss this phenomenon for the following two
reasons. First, under ROS2-PiCAS, a higher-priority chain
4 (T=100 ms and C=45.1 ms) can interfere with chain 6
(T=1000 ms and C=197.6 ms) multiple times, while under
ROS2 and ROS2-SD, chain 4 and chain 6 can block only
once each other due to the non-preemptive callback execution
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Fig. 9: Case study II results for non-overload scenario
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Fig. 10: Case study II & III (multi-core system)

and fairness-based scheduling of the default ROS2 scheduler.
Secondly, the observed latency of chain 6 under ROS2 and
ROS2-SD does not include the blocking time from chain 4
because the observed latency is obtained using the starting
time of a timer callback, as explained above. For the latter
reason, more clear evidence can be seen in chain 4. Due to
the non-preemptiveness, we expect that the latency of chain
4 under ROS2 and ROS2-SD should be at least larger than
the execution time of chain 6. However, the observed latency
does not include the execution time of chain 6. The large
difference between the observed and analyzed latency of chain
4 under ROS2-SD (265.5 ms vs. 1804 ms shown in Fig. 9b)
strengthens this argument. In conclusion, we found that PiCAS
yields a substantial benefit in end-to-end chain latency and can
schedule chains while respecting their semantic priority.
Case study III (overloaded scenario). We now use more best-
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Fig. 11: Case study III results for overloaded scenario

efforts chains to evaluate latency behaviors in an overloaded
system setup. By adding 4 more best-effort chains to the
above multi-core system, we made each CPU core’s utilization
1.25 on average. As can be seen in Fig. 11, ROS2-PiCAS
significantly outperforms the other approaches for real-time
chains. In particular, ROS2-PiCAS achieves up to 85% and
90% reduction in the average end-to-end latency for the
most critical chains, i.e., chain 1 and chain 2, respectively.
Moreover, while the analysis for ROS2-PiCAS gives a tight
upper-bound on real-time chains, the analysis of ROS2-SD
failed to test this overloaded system.

Note that we did not observe any appreciable delay from
inter-core timing interference in our experimental setup. How-
ever, shared memory resources such as caches, memory buses,
and DRAM banks are critical sources that cause timing
unpredictability in multi-core platforms [8, 19, 20]. We leave
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addressing this issue as part of our future work.

C. Schedulability experiments

In this subsection, we evaluate the schedulability of chains
under ROS2-SD and ROS2-PiCAS. We also assess the anal-
ysis running time of these approaches. All experiments are
conducted on a machine equipped with dual AMD EPYC 7452
2.35GHz processors.

Workload generation. For each system utilization, We use
1, 000 randomly-generated workload sets of callbacks. The
utilization of a workload set is selected from {2.5, 3.0, 3.5}
for a 4-core environment. For each workload set, we use
45 callbacks that forms 9 chains, i.e., each chain consists
of 5 callbacks. Each callback’s utilization is obtained by the
UUniFast algorithm [10]. Chain period is chosen randomly in
the range of [50, 1000] ms and the deadline is set equal to the
period. The utilization of each chain does not exceed 1.0. After
the generation of each workload set, chains are reordered such
that lower-index chains have shorter period, and lower-index
chains are assigned higher semantic priority.
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Fig. 12: Schedulability under ROS2-SD and ROS2-PiCAS

Comparison of schedulability tests. The results of schedula-
bility ratio at each utilization are shown in Fig. 12. The schedu-
lability ratio decreases as the utilization increases for both
approaches. ROS2-PiCAS significantly outperforms ROS2-SD
for all utilization setups. Under ROS2-PiCAS, the first four
chains, i.e., chain 1 to chain 4, are always schedulable because
they are each allocated to the highest priority executor on a
different CPU core. Moreover, since ROS2-PiCAS prioritizes
chains based on their semantic priority, the schedulability
ratio decreases as the chain priority decreases (higher chain
index). On the other hand, for ROS2-SD, we observe that the

ratio decreases as the chain deadline gets shorter (lower chain
index). This is mainly due to that ROS2-SD is agnostic to
chain priority, as discussed with our case study I (Sec. VII-B).
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Fig. 13: Comparison of analysis running time

Comparison of analysis running time. In this experiment, we
compare the analysis running time, which is the time to com-
pute the end-to-end latency of each workload set, for ROS2-SD
and ROS2-PiCAS. Each analysis tool is single-threaded. The
analysis running time is obviously affected by the utilization
of the workload set. We thus use the same workload sets as
before, where the utilization per workload set is 2.5, 3.0, and
3.5. Fig. 13 shows the results of the average analysis time.
The analysis time rises as the utilization increases under both
approaches, but ROS2-SD is much slower than ROS2-PiCAS.
This is because, unlike ROS2-PiCAS, the search space of the
ROS2-SD analysis is for the longest possible busy interval
(which tends to increase with the utilization) and the analysis
iteratively searches for a global fixed point where all response
times converge [11]. Therefore, we conclude that the proposed
analysis for chain-aware scheduler is much faster than the
existing approach, thereby applicable to complex systems and
runtime admission control.

VIII. CONCLUSION

In this paper, we propose a priority-driven chain-aware
scheduling and its end-to-end latency analysis framework for
ROS2. To reduce the end-to-end latency based on the chains’
criticality, we propose scheduling strategies for callbacks
within and across executors. We then present callback priority
assignment and chain-aware node allocation algorithms that
substantialize those strategies. We implemented our chain-
aware scheduler in the Eloquent Elusor version of ROS2
running on the NVIDIA Xavier NX platform. The results
of the case study demonstrate that our proposed scheduler
outperforms the existing ROS2 scheduling with respect to the
end-to-end latency under practical scenarios. It has also been
shown that our analysis technique upper-bounds the latency
tightly and results in a better schedulability ratio compared to
the start-of-the-art. As a next step, we will deploy our work to
more complex and practical scenarios such as an autonomous
driving software that is built on ROS2, e.g., autoware.auto.
We also plan to extend our work for diverse ROS2 settings
including the configuration of QoS for DDS communication.
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