
On Dynamic Thermal Conditions in
Mixed-Criticality Systems

Seyedmehdi Hosseinimotlagh, Ali Ghahremannezhad, and Hyoseung Kim
University of California, Riverside

{shoss007, aghah001, hyoseung}@ucr.edu

Abstract—The rising demand for powerful embedded systems
to support modern complex real-time applications signifies the
on-chip temperature challenges. Heat conduction between CPU
cores interferes in the execution time of tasks running on
other cores. The violation of thermal constraints causes timing
unpredictability to real-time tasks due to transient performance
degradation or permanent system failure. Moreover, dynamic
ambient temperature affects the operating temperature on multi-
core systems significantly.

In this paper, we propose a thermal-aware server framework
to safely upper-bound the maximum operating temperature of
multi-core mixed-criticality systems. With the proposed analysis
on the impact of ambient temperature, our framework manages
mixed-criticality tasks to satisfy both thermal and timing require-
ments. We present techniques to find the maximum ambient
temperature for each criticality level to guarantee the safe
operating temperature bound. We also analyze the minimum time
required for a criticality mode change from one level to another.
The thermal properties of our framework have been evaluated on
a commercial embedded platform. A case study with real-world
mixed-critical applications demonstrates the effectiveness of our
framework in bounding operating temperature under dynamic
ambient temperature changes.

I. INTRODUCTION

Ensuring continuous operation with high assurance in
the physical environment remains a significant challenge to
cyber-physical systems (CPS). This is particularly important
for safety-critical applications with real-time mixed-criticality
components, e.g., automotive, aerospace, manufacturing, and
defense systems, where even occasional timing failures of
high-criticality components can lead to catastrophic conse-
quences. Various types of unexpected changes in the physical
environment may affect the system behavior and contribute to
the difficulty of this problem.

Ambient temperature is one of the key factors that affect
many mixed-criticality CPS applications. For instance, in
automobiles, a report from the National Renewable Energy
Laboratory of the US Department of Energy [14] indicates
that cabin air temperature can reach up to and 82◦C in
Phoenix, Arizona. The heat generated by the engine worsens
the ambient temperature level of nearby electronic control
units [35]. Another example is a fire-containment drone [44].
Even with a heat protection shield, the drone’s computing
system starts warning when the ambient temperature reaches
35◦C and becomes nonoperational at 40◦C. This also limits
the minimum distance from the drone to a fire hazard.

While dynamic ambient temperature is an important prob-
lem, most thermal management schemes for real-time embed-

ded systems [1, 2, 11, 22, 27, 28] assume fixed, room-level am-
bient temperature and focus only on the temperature increase
caused by the computing system itself. CPS are expected to
run in various physical environments; hence, the assumption
of room temperature made by prior work limits their practical
applicability. There is recent work [50] considering dynamic
ambient temperature but it assumes a uni-processor single-
criticality system.

Under harsh ambient temperature, a system may not be
able to utilize 100% of CPU time even if the CPU runs at
the minimum possible frequency with active/passive cooling
packages. The operating temperature of the CPU may still
reach the maximum thermal constraint, resulting in temporary
system shutdown or permanent hardware damage. In such a
condition, the only option left to ensure timing and thermal
guarantees of more critical tasks is to secure cooling time
by suspending less critical tasks. In other words, although
DVFS [16, 32, 36, 39, 51] and cooling packages [8, 12, 18, 19]
can help tolerate high ambient temperature, it is inevitable to
consider only partial operations of the system.

In this work, we aim to design a system that offers different
levels of assurance against ambient temperature changes. This
is different from the well-known Vestal model [45], which fo-
cuses on varying assurance of execution time, but it shares the
spirit of addressing uncertainties in real-time system design.
To avoid confusion, we clarify our mixed-criticality model as
follows:

Definition 1. Thermally mixed-criticality systems are the
systems that assure ambient temperature changes and heat dis-
sipation from lower-criticality task execution do not adversely
affect the real-time schedulability of higher-criticality tasks.

In the thermally mixed-criticality model, ambient temper-
ature plays a key role in determining the maximum amount
of workload that can be executed on the CPU. The following
questions still remain unanswered by the state-of-the-art:
• Up to what ambient temperature is the system fully or

partially operational? Specifically, for a given criticality level
of a mixed-criticality system, can we find the corresponding
critical ambient temperature, under which real-time tasks
with that or higher criticality are guaranteed to meet their
deadline at the expense of lower-criticality tasks?
• Can we take into account the effect of dynamic ambient

temperature along with heat conduction on a modern multi-
core processor?

• If the system moves from a hot to a cold region, how long
will it take for the system to cool down and safely resume
the operation of low-criticality tasks, without violating the
processor thermal constraint?
This paper presents a multi-core mixed-criticality schedul-

ing framework with ambient temperature awareness. In our
proposed framework, thermal-aware servers are used to bound
heat generation at each criticality level and the criticality mode
change is triggered by ambient temperature changes. This
is the first work to address the aforementioned limitations
and provides analytical guarantees on the timely execution of
critical components in dynamic thermal conditions.

Contributions. The contributions of this paper are as follows:
• We show that the problem of thermal-aware real-time

scheduling can be decomposed into thermal schedulability
(how much CPU budget is usable under thermal constraints)
and timing schedulability (if tasks are schedulable using
given budget). Our thermal schedulability achieves the sim-
plicity in timing analysis by ensuring that the budget is
guaranteed to be made available for any execution patterns
without violating thermal constraints.
• We extensively analyze the thermal safety of a multi-core

system and bound the maximum operating temperature that
the system can reach. At a specific ambient temperature level,
we characterize the worst-case thermal behavior of a system
and also determine the minimum time for the system to
transition from one criticality level to a lower level.
• We introduce the notion of idle thermal servers that allow

bounding the maximum operating temperature caused by
multiple preemptive active servers scheduled dynamically on
a multi-core processor for a given mixed-criticality taskset.
• We perform a case study on mixed-criticality applications

running on an ODROID-XU4 embedded platform, and eval-
uate our framework and analysis in different ambient tem-
perature levels.

II. RELATED WORK

There exist extensive studies on bounding the maximum
operating temperature in non-real-time multi-core systems
[16, 17, 32, 36, 39, 51], most of which propose adjusting
CPU clock speed. The authors of [16, 17] proposed a feed-
back loop that dynamically controls processor temperature
by either adapting CPU utilization or scaling frequency to
satisfy thermal constraints in varying ambient temperature
environment. In [36] and [39], the authors proposed proactive
frequency scheduling to improve overall system performance
under different ambient temperatures. Although average-case
performance degradation has been discussed in these papers,
they cannot be directly applied to our problem.

The notion of hot and cold tasks has been introduced [8, 22,
24, 28, 50, 51] in both real-time and non-real-time systems.
They propose scheduling algorithms to interleave hot and cold
tasks, adjust the CPU frequency, and force idling time for the
CPU to cool down after running hot tasks. In most of them,
the scheduling problem is either to find task execution order or

to reduce the size of lengthy hot tasks [22] in a fixed schedule.
However, DVFS may cause a considerable reduction in system
reliability over time [23, 30, 48] and may be unsupported in
some embedded devices.

There exists extensive research on real-time uni-processor
systems with stringent thermal constraints [1, 3, 4, 9, 10, 22,
24, 27, 46, 50]. In uni-processor systems, thermal dependency
between workloads is only temporal. However, in multi-core
systems, because of heat dissipation between cores, there also
exists spatial thermal dependency between the execution of
workload on one core and those on other cores. Due to this
reason, the work on uni-processor systems cannot be used
safely in multi-core real-time systems.

The notion of thermal servers (either by injecting of
idle tasks or using thermal-aware servers explicitly) have
been proposed in the literature of real-time systems for uni-
processors [1, 22, 27, 28] and multi-core platforms [2, 11]. In
particular, the authors of [11] introduced a novel technique
for periodic tasks executing on multi-core platforms. This
technique introduces an Energy Saving (ES) task that runs
with the highest priority and captures the sleeping time of
CPU cores. The technique can be seen as an alternative to a
thermal-aware server because the ES task effectively models
the budget-depleted duration of a thermal server. The authors
of [2] proposed thermal-isolation servers that avoid the thermal
interference among tasks in temporal and spatial domains
with thermal composability. Despite their achievements in
isolating the thermal-aware design from real-time schedu-
lability analysis, these techniques assume a fixed schedule
for idle task or periodic servers, and are inapplicable to
dynamically-scheduled (e.g., priority-based) servers in multi-
core platforms. Since priority-based preemptive servers are
widely used in many real-time systems, such as real-time
virtualization [25, 47], the restriction imposed by these prior
thermal servers is a significant limiting factor.

Matrix exponential is a well-known approach to solve
the first-order linear system of differential equation. In [34],
the authors proposed a technique based on the numerical
Newton–Raphson method to solve the thermal equations in
the steady state for each power change. Based on this, the
work in [7, 29, 37, 49] finds the worst-case peak temperature
by exhaustively searching all possible patterns. Unlike prior
work, the unique contribution of our work is that we solve the
temperature equation for oscillating power signals analytically,
by representing them as continuous functions, and analyze the
worst-case peak temperature directly for multi-core platforms.
It is worth noting that our work not only proves the worst
case for peak temperature but also reduces computational
complexity considerably.

There exists some research focusing on varying ambient
temperature in real-time systems [22, 46, 50]. However, there
is no discussion in these studies about mixed-criticality sys-
tems and the effect of harsh ambient temperature change on
the schedulability of critical tasks.

To the best of our knowledge, there is no prior work on
multi-core mixed-criticality systems with the consideration of

the effect of ambient temperature change.

III. SYSTEM MODEL

A. Power Model

The total power consumption of CMOS circuits is modeled
as the summation of dynamic and static powers [6], i.e.,
P (t) = PS(t) + PD(t). Static power PS depends on the semi-
conductor technology and the operating temperature caused
by current leakage. Hence, it can be modeled as: PS(t) =
k1θ(t)+k2, where k1 and k2 are technology-dependent system
constants, and θ(t) is the operating temperature [31]. Dynamic
power PD(t) is the amount of power consumption due to
the processor operating frequency f , modeled as PD = k0f

s,
where s and k0 are system constants that depend on the
semiconductor technology.

B. Thermal-aware Mixed-criticality Servers

We consider multiple preemptive thermal-aware servers for
each CPU core. Each server is statically associated with one
core and does not migrate to another core at run-time. A
server vi is modeled as vi = (Ci, Ti, Li), where Ci is the
maximum execution budget of the server vi, Ti is its budget
replenishment period, and Li is its criticality level. Servers are
ordered in an increasing order of priorities, i.e. i < j implies
that a server vi has lower priority than a vj . At the criticality
level of l, only the servers with criticality level higher than or
equal to l (i.e., Li ≥ l) are eligible to execute.

For budget replenishment policies, we consider polling [40],
deferrable [42], and sporadic servers [41]. Let Ji denote the
task release jitter relative to the server release. The value of
Ji is Ti under the polling server policy and Ti−Ci under the
deferrable and sporadic server policies [5].

C. Task Model

This work considers sporadic tasks with implicit deadlines
under partitioned fixed-priority preemptive scheduling, which
is widely used in many practical systems. Each task τi is
statically allocated to one thermal server (thus to the corre-
sponding CPU core of that server) with a unique priority.
In each server, tasks are labeled in an increasing order of
priority, i.e., i < j implies τi has lower priority than τj .
There also exist non-real-time tasks running with the lowest
priority level in the server and they execute only if there is no
real-time task ready to execute and the server has remaining
budget. A task τi is modeled as τi = (Ei, Di) where Ei is the
worst-case execution time (WCET) of task τi, Di denotes the
minimum inter-arrival time of τi which is implicit deadline
of τi. It is worth mentioning that the simplicity in timing
schedulability achieved by our work enables easy adoption of
more complex task models. For instance, the analysis for tasks
with critical sections under hierarchical scheduling [21, 26]
is directly applicable to our work since we ensure periodic
resource budget.

D. Criticality Model

In this work, there exists a set of m criticality levels
L = {l1, l2, . . . , lm}. At criticality mode l, only the servers
(and tasks within these servers) with criticality level higher
than or equal to l are eligible to execute. Thus, for each
criticality level l, there exists a subset of servers V l ⊆ V
and a subset of taskset Γl ⊆ Γ that execute.

Definition 2. Critical ambient temperature of a criticality
level l is the maximum ambient temperature that the system
can execute eligible servers v ∈ V l without violating the
system’s maximum temperature constraint.

Details on how criticality mode changes is given in Sec. IV.

IV. FRAMEWORK DESIGN

This section presents the overall design-time and run-
time aspects of our framework and how the criticality mode
changes. With our framework, all tasks in a system run within
thermal-aware servers. A criticality mode change is triggered
by ambient temperature, which can be obtained from an off-
chip temperature sensor. If the criticality mode changes from a
lower criticality level to a higher one, i.e., the critical ambient
temperature has been reached, the framework terminates the
lower-criticality servers and their tasks immediately. This
design guarantees that the lower-criticality tasks have no effect
on the thermal and timing schedulability of tasks running in
servers with higher criticality levels. The timing schedulability
of tasks refers to the ability to complete their execution by the
deadline. Thermal schedulability is defined as follows.

Definition 3. Thermal schedulability is to guarantee that
under any task execution patterns, the CPU does not exceed
the maximum temperature constraint.

When the ambient temperature changes from a higher
criticality level to a lower one, lower-criticality servers and
their tasks do not resume immediately. The reasoning is
that it takes time for the CPU to cool down to reach the
safe temperature level that the increase in workload (due
to resuming the lower-criticality tasks) will not lead to a
temperature violation. Therefore, in the transition to a lower
criticality level, only higher-criticality servers (and also their
tasks) still run, and after reaching the safe temperature, then
lower-criticality servers (and their tasks) resume. Let shifting
time denote this delay. We will later determine this delay as a
function of physical characteristics and system settings.

The state diagram of criticality mode changes is illustrated
in Fig. 1. The criticality mode of the system is determined
by the associated servers of the current state (e.g., V l for
level l), and the change of the state is triggered by the
monitored ambient temperature. If the ambient temperature
goes higher than the critical ambient temperature of the highest
criticality mode lm, the system will shutdown. An increase in
the ambient temperature leads the system state to transition to
a higher criticality mode immediately. However, a transition
to a lower criticality mode involves a shifting state. Let Si
denote the shifting state from one criticality mode li+1 to its

Running servers

V
i

State

Condition C(Mx,My) = θamb> θMx & θamb≤ θMy

V 1
M1

V 2
M2 ...

V m
Mm

V 2
S1

Initial

C(M1,M2)

C(M0,M1)
tm = 0

C(M0,M1)
tm++ <tmS1

C(M0,M1)

C(M0,M1)

C(M1,M2)

C(..,Mm)

C(M0,M1)
tm=tmS1

C(M1,M2)

C(M1,Mm)

C(...,Mm)

C(M1,M2)

C(...,Mm)

Figure 1: Criticality mode change diagram

immediate lower mode li, and Mi represents the state of the
criticality mode li. After staying in Si for tmSi time units
and the ambient temperature is still under the safe level, the
system state will change to Mi.

In summary, the design-time analysis and the run-time
support of our framework are as follows:
Design-time:
1) Check the timing schedulability of tasks for each criticality.
2) Find the parameters of thermal-aware servers that ensure

thermal schedulability for each criticality.
3) Compute the corresponding critical ambient temperature

for each criticality.
4) Compute the shifting time from each criticality level to its

immediate lower one.
Run-time:
1) Monitor ambient temperature.
2) If ambient temperature exceeds the critical ambient temper-

ature of the current criticality level li, a) switch to a higher
criticality li+1, and b) terminate servers with criticality less
than li+1 immediately.

3) If ambient temperature decreases below the critical ambient
temperature of one lower criticality level li−1, a) switch to
the lower criticality li−1, b) wait for shifting time, and c)
resume servers with criticality li−1.

V. THERMAL ANALYSIS

In this section, we first develop a generalized thermal
model to represent the CPU temperature as a function of a
generic input power signal. We show the relation of workload
and ambient temperature level under the maximum thermal
constraint in a steady state. The shifting time to a lower-
criticality level will be discussed. Finally, we prove the worst-
case scenario of task arrivals in invariant ambient temperature
at a specific criticality level in multi-core platforms.

A. General thermal model for periodic power signal
The thermal behavior of the CPU is modeled when a generic

periodic power signal generates heat dissipation, which results
in temperature oscillations. The temperature function of the
CPU is analytically extracted based on the ambient tempera-
ture, workload, physical and geometrical properties, and the
thermal resistances between the CPU and surroundings.

A generic power signal is a periodic step function:

P (t) =

{
PS Sleeping time

PS + PD O.W.

Fig. 2 illustrates this power signal function where twk and
tslp denote the execution time and the sleeping time of a
periodic workload, u is the CPU utilization (i.e., u = twk

T),
and φ is the release offset.

θ

t

θ01

θ02

θ'2

θ2

θ'1

θ1

(Δθ1)out-of-phase

(Δθ1)in-phase

(Δθ2)out-of-phase

(Δθ2)in-phase

θ

t

θ01

θ02

θ'2

θ2

θ'1

θ1

(Δθ1)out-of-phase

(Δθ1)in-phase

(Δθ2)out-of-phase

(Δθ2)in-phase

t0 t t0 t

(a) (b)

P

t

PS(t)

PS(t)+PD(t)

uT+ϕ T+ϕ

twk tslpϕ

Figure 2: A generic periodic power signal.

In order to derive a continuous temperature function, here
we represent the periodic step function of the power signal as
the following Fourier series:

P (t) = PS + PDu+ PO (1)
where

PO =

∞∑
k=1

2PD sin (ukπ)

kπ
cos

(
2kπ

T

(
t− uT

2
− φ

))
Note that using this continuous representation of the power

signal is advantageous in deriving a straightforward formula
for a temperature equation, compared to iteratively applying
the recursion relation with new initial conditions at every
period. First, we define θ(t) = ΘCPU (t)−Θamb(t) as the
temperature difference of the CPU core and the ambient.
Then, the rate of temperature change can be captured by the
following differential equation [2, 11]:

dθ(t)

dt
= Aθ(t) +BP (t) (2)

where A and B are scalar values determined based on the
system inner thermal resistance and capacitance. Substituting
P (t) from Eq. 1, we solve Eq. 2 for the CPU temperature.
Assuming the temperature difference at the initial time t0 is
θ0, the temperature of the CPU can be written as:

θ(t) = θ0e
A(t−t0) − B

A
(PS + PDu)

(
1− eA(t−t0)

)
+

B
(
S(A,PD, u, T, φ, t)− S(A,PD, u, T, φ, t0)eA(t−t0)

) (3)

where S is a function defined as:

S(β, P, u, T, φ, t) = −
∞∑
k=1

2PT sin (ukπ)

kπ (T 2β2 + 4k2π2)
×(

−Tβ cos

(
2kπ

T
(t− ψ)

)
+ 2nπ sin

(
2kπ

T
(t− ψ)

))
with ψ = uT

2 + φ.
The parameters A and B in Eq. 3 are the system character-

istics which depend on the thermal resistances, heat capacity,
CPU mass, and thermal convection of the ambient. It is worth
mentioning that the thermal response of a system with constant
power dissipation can be derived as a special case of Eq. 3 by
considering u = 1:

θ(t) = θ0e
A(t−t0) − B

A
(PS + PD)

(
1− eA(t−t0)

)
(4)

If t0 = 0, the well-known expression for the constant power
dissipation case can be obtained from Eq. 4:

θ(t) = α+ (θ0 − α) eβt (5)
where β = A, and α = −BA (PS + PD).

For any u, the thermal response of the system with a
constant power signal reaches the steady state. From Eq. 4:

θs(t) = α = −B
A

(PS + PD) . (6)

For the case where the CPU utilization is not 100%,
the temperature still oscillates in the steady state, but the
oscillation stays within a certain range given by the minimum
and the maximum steady-state temperatures (θL and θM). We
can derive the steady state thermal response from Eq. 3:

θs(t) = −B
A

(PS + PDu) +BS(A,PD, u, T, φ, t) (7)

where S(A,PD, u, T, φ, t) represents the oscillation. Based on
this general expressions, we will give details on the thermal
behavior of multiple CPU cores under transient and steady
conditions in Sec. V-B.

1) Workload, ambient, and maximum temperature relations:
In the steady state condition, the relation between workload,
ambient temperature Θamb, and the maximum operating tem-
perature ΘM can be determined based on the model developed
above. The temperature difference θM can be written as:

θM = ΘM −Θamb = −B
A

(
PS + PD

1− eAuT

1− eAT

)
(8)

Therefore, if ΘM is used as a thermal constraint, the
maximum ambient temperature for a given utilization u is
expressed as follows:

Θamb = ΘM +
B

A

(
PS + PD

1− eAuT

1− eAT

)
(9)

Also, another useful expression can be derived for the work-
load based on the constraint maximum temperature, ambient
temperature, and the power signal:

u = 1
AT ln

(
1 + A

B
ΘM−Θamb+(B/A)PS

PD

(
1− eAT

))
(10)

2) Time shifting and transient analysis: We derive average
steady-state temperature by removing the oscillations from the
above equations. This is especially useful for transient phase
analysis. From Eq. 3, the following can be derived:

θave(t) = θ0e
A(t−t0) − B

A
(PS + PDu)

(
1− eA(t−t0)

)
−BS(A,PD, u, T, φ, t0)eA(t−t0)

(11)

θave(t) can be approximated by taking the first few terms of
the series for S(A,PD, u, T, φ, t0). It can be seen from Eq. 11
that the plateau of θave in the steady state is −BA (PS + PDu).

Based on the expression of the θave(t), shifting time can be
calculated which is defined as the time it takes for the system
to reach a new steady-state condition when system parameters
are changed. We calculate the shifting time that the CPUs
take to reach to 99% of the new steady-state condition from
an initial temperature difference of θ0. Assuming that Sk is
the value of S(t0) taking the first k terms, we have:

tshift =
1

A
ln

(∣∣∣∣∣ 0.01BA (PS + PDu)

θ0 + B
A (PS + PDu) +BSk

∣∣∣∣∣
)

(12)

Fig. 3 illustrates temperature profile θ(t), oscillating steady
state temperature θs(t), and average temperature θave(t).

θM

θL

tshift

-B(PS+PDu)/A

twk

tslp

θ(t)

θave(t)

θs(t)

Temperature

time

Figure 3: Current, steady state, and average temperature profiles.

B. General thermal model for multi-core platforms

Similar to the single-core case, a general thermal model can
be developed for a multi-core platform with a periodic input
power signal. In this subsection, we represent the power signal
as a continuous function and show its benefit in simplifying
the final solution. For a multi-core platform with n cores, we
can have n eigenvalues that define the thermal response of
the system. Therefore, we use matrix notations to solve the
differential equations. After performing a thermal analysis, the
rate of CPUs’ temperature change can be denoted as:

dθ(t)

dt
= Aθ(t) + BP(t) (13)

where A, an n×n matrix, and B, a diagonal n×n matrix, are
determined by the inner thermal resistance and capacitance of
the system. θ is an n×1 matrix of the CPU cores’ temperature
difference, and P(t) is the n× 1 matrix of CPU cores’ power
signal functions. If θ0 is the initial temperature difference
matrix at t0, the solution of Eq. 13 can be written as:

θ(t) = e(t−t0)Aθ0 +

∫ t

t0

e(t−s)ABP(s)ds (14)

The first part is the homogeneous solution which is the thermal
response due to the initial temperature difference from the
ambient. The second part is the non-homogeneous solution
caused by the input power signal. The temperature rise due to
a power signal is independent of the initial condition. e(t−t0)A

is the matrix exponential of A. For a platform with n CPU
cores, we denote the eigenvalues as β1, β2, ..., and βn with
β1 ≥ β2 ≥ ... ≥ βn. To solve Eq. 14, we first show that the
solution of power signals can be obtained as the sum of the
solutions of each signal.

Theorem 1. (Superposition) Thermal response due to any
combinations of power signals is equivalent to the sum of
thermal responses caused by each of those power signals.

Proof. Assume that θ1 and θ2 are the thermal responses
caused by executions P1(t) and P2(t). Also, θ3 is the thermal
response caused by P3(t) = P1(t) + P2(t). From Eq. 13:
dθ1(t)

dt
= Aθ1(t)+BP1(t), and

dθ2(t)

dt
= Aθ2(t)+BP2(t).

By adding these two differential equations, we have:
d

dt
(θ1(t) + θ2(t)) = A (θ1(t) + θ2(t)) +B (P1(t) + P2(t))

This is equivalent to the differential equation of θ3:
dθ3(t)

dt
= Aθ3(t) + BP3(t) = Aθ3(t) + B (P1(t) + P2(t))

Therefore, θ3(t) = θ1(t) + θ2(t). �

Let V denote an n× n matrix of eigenvectors of A where
column i is the ith eigenvector. Also, D is a diagonal n × n
matrix in which the diagonal entries are the eigenvalues of A.
The solutions of the non-homogeneous part in Eq. 14 can be
written as:∫ t

t0

e(t−s)ABP(s)ds =

∫ t

t0

e(t−s)AB (P∞ + Po(s)) ds

=

∫ t

t0

e(t−s)ABP∞ds+

∫ t

t0

e(t−s)ABPo(s)ds

(15)

where P∞ and Po(s) are the constant and oscillating part of
the power signal matrix, respectively.

P∞ = [Pj
∞]n×1 = [PSj + PDj

uj]n×1

Po = [Poj] =

[∞∑
k=1

2PDj

kπ
sin (ujkπ) cos

(
2kπ

Tj
(s− ψj)

)]
n×1

with ψj =
ujTj

2 + φj . Since P∞ is constant,∫ t

t0

e(t−s)ABP∞ds = −A−1
(
I− e(t−t0)A

)
BP∞ (16)

For the second integral we have:∫ t

t0

e(t−s)ABPo(s)ds = VetD
∫ t

t0

e−sDV−1BPo(s)ds

= VetD.

[
n∑
i=1

∫ t

t0

e−βjsV −1
ji BiiPoi(s)

]
n×1

(17)

Similar to the single core case, we can use S in Eq. 3 but
in a matrix form. We define the matrix S as:

S(t) = [Sij(t)]n×n =
[
S(βi, PDj , uj , Tj , φj , t)

]
n×n

We have
∫
e−βjsPoi(s)ds = e−βjsSji(s). Therefore:[

n∑
i=1

∫ t

t0

e−βjsV −1
ji BiiPoi(s)ds

]
n×1

=

[
n∑
i=1

e−βjtV −1
ji BiiSji(t)− e

−βjt0V −1
ji BiiSji(t0)

]
n×1

To write this in a matrix notation, we define B′ = diag(B)
an n×1 matrix containing the diagonal entries of B such that
B′j = Bjj . Then,[

n∑
i=1

e−βjtV −1
ji BiiSji(t)− e

−βjt0V −1
ji BiiSji(t0)

]
n×1

= e−tD
(
V−1 ◦ S(t)

)
B′ − e−t0D

(
V−1 ◦ S(t0)

)
B′

where V−1 ◦ S(t) is the Hadamard product of matrices V−1

and S(t), which is a matrix of the same dimension of n× n
where each element ij is the product of counterpart elements
ij of V−1 and S(t):

(
V−1 ◦ S(t)

)
ij

= V −1
ij Sij(t). Substitut-

ing this in Eq. 17 gives:

VetD.

[
n∑
i=1

∫ t

t0

e−βjsV −1
ji BiiPoi(s)

]
n×1

= V
(
V−1 ◦ S(t)− e(t−t0)D

(
V−1 ◦ S(t0)

))
B′

(18)

Substituting Eq. 16 and Eq. 18 in Eq. 15 results in a general
solution for the thermal response of a n-core CPU platform

with distinct input power signals to each core:

θ(t) =e(t−t0)Aθ0 −A−1
(
I− e(t−t0)A

)
BP∞+

V
(
V−1 ◦ S(t)− e(t−t0)D

(
V−1 ◦ S(t0)

))
B′

(19)

This expression of θ(t), which contains simple matrix
operations, can be easily used to compute the general solution
for the transient temperature profile of multi-core CPUs.

C. Worst-case execution scenarios

It is important to know the workload execution patterns
which cause the peak heat dissipation. In this section, based
on the model developed in the previous sections, we explore
and discuss the worst-case scenarios for workload execution.

1) Consecutive workload execution: First, we prove that
the time to reach the maximum temperature is minimized
if all workloads execute consecutively. Suppose that for any
arbitrary execution of workloads in a period of T , the CPU
executes some workload for t1, sleeps for t2, and then wakes
up and executes for t3 time units, and these working-sleeping
switches occur n times. For the CPU idling time, Eq. 5 changes
to θ(t) = θ0 e

βt if the static power is ignored (i.e., α = 0).
Hence, the temperature change during a period is:

θt0 = θL

θt1 = α+ (θt0 − α) ∗ eβt1

θt2 = θt1 ∗ eβt2
...

θtn = θtn−1 ∗ eβtn

where
∑
ti = T for all n > 1 and ti > 0.

In the steady state, the temperature of the beginning and the
end of each period is equal. Therefore, considering θtn = θL,

θL = α
eβ(t1+t2+···+tn−1+tn) − eβ(t2+···+tn−1+tn) + · · · − eβtn

eβT − 1
where twk =

∑
i=1, i=i+2 ti is the execution time and

tslp =
∑
i=2, i=i+2 ti is the idle time, respectively. We prove

that the amount of total execution time is minimized when
there is only one execution time chunk. In other words,
the worst-case thermal scenario happens when all workloads
execute consecutively.

For clarification, suppose the following two scenarios for a
given period under the maximum temperature constraint:
• All workloads execute consecutively to reach the maximum

temperature for twk time units; then, the CPU sleeps until
the beginning of the next period for tslp time units (Fig. 4a).
• A portion of workloads executes for t1 time units, then the

CPU sleeps for t2 time units, and the rest of the workloads
run until the CPU reaches the maximum temperature at t1 +
t2 +t3; afterwards the CPU sleeps for t4 time units (Fig. 4b).
The following shows that the budget of a thermal server

should be bounded based on the first scenario.

Theorem 2. The amount of waking time to reach the maxi-
mum temperature constraint is minimized when all workloads
execute consecutively.

wkt slptL


L


M


(a)
1t 3t2t 4t'L



M


'L


(b)
Figure 4: Temperature change in one period when the CPU operates
a) for twk time units b) for t1 and t3 time units.

Proof. We are interested to prove that tw ≤ t1 + t3. To prove
the statement, we find the relation of the minimum steady
state temperature in each scenario, individually. To calculate
the budget for the first scenario, we first calculate the minimum
steady-state temperature which is

θL =
eβ tslp

(
α− α eβ twk

)
1− eβ twk eβ tslp

.

Accordingly, the maximum temperature in the steady state is

θM = α−eβ twk

(
α+

eβ tslp
(
α− α eβ twk

)
eβ twk eβ tslp − 1

)
= α

eβ twk − 1

eβ T − 1
.

For the second scenario, the maximum temperature is
reached after t1 + t2 + t3 time units. Therefore,

θM = α
eβ(t1+t2+t3) − eβ(t2+t3) + eβ(t3) − 1

eβT − 1
It is worth noting that although the minimum steady-state

temperature can be different (θL vs. θL′), in both scenarios
the given maximum temperature is the same. Hence,

θM = α
eβ twk − 1

eβ T − 1
= α

eβ(t1+t2+t3) − eβ(t2+t3) + eβ(t3) − 1

eβT − 1
.

Therefore, we have eβ twk = eβ(t1+t2+t3)− eβ(t2+t3) + eβ(t3).
Now we want to prove that for any value of t1, t2 and t3,
t1 + t3 ≥ tw.
Contradiction: Suppose the hypothesis is not correct. Hence,
t1 + t3 < tw −→ β (t1 + t3) > β tw −→ eβ (t1+t3) ≥ eβ twk

eβ (t1+t3) ≥ eβ twk = eβ(t1+t2+t3) − eβ(t2+t3) + eβ(t3) ⇐⇒
eβ t1 ≥ eβ(t1+t2)−eβ(t2)+1⇐⇒ eβ t1−1 ≥ eβ(t1+t2)−eβ(t2)

⇐⇒ eβ t1 − 1 ≥ eβ(t2)(eβ(t1) − 1)⇐⇒ eβ(t2) ≥ 1

since β < 0 and t2 > 0. �

Corollary 2.1. The maximum temperature reduces when the
period and waking time are halved, since it is the special
condition where t1 = t3 and t2 = t4.

Server budget calculation under polling server budget
replenishment policy. Now we calculate the “maximum”
budget that a server can have while limiting the operating
temperature not to exceed the given thermal constraint in a
single-core platform. The worst case for the polling server
happens when it exhausts all of its replenishment budget at the
beginning of its period and then it sleeps until the beginning
of the next replenishment period. For a server period T ,

T = twk + tslp. (20)
In the steady state of the system, we are interested in

bounding the server’s maximum temperature. According to

Eq. 5, α+ (θL−α)eβtwk ≤ θM . By calculating the minimum
temperature at the end of the period and substituting it in this
formula, the maximum budget for a period T is given by:

twk <=
1

β
ln
θM (eβT − 1) + α

α
. (21)

D. Thermal back-to-back execution

Suppose that the CPU workload runs at the end of a period
and the workload of the next period execute at the beginning
of the period. It causes burst heat generation by back-to-back
execution, which can potentially lead to thermal violation. It
is noteworthy that this case has been shown in Corollary 2.1.
The worst-case occurrence is when this phenomenon happens
repetitively in the steady state.

Server budget calculation under deferrable server budget
replenishment policy. Hereby, the maximum replenishment
budget for the deferrable server is determined considering
this phenomenon. One can model it as a periodic workload
with doubled waking (2twk) and sleeping (2tslp) times, and
determine the maximum waking time.

Theorem 3. The maximum waking time in thermal back-to-
back execution is twk = 1

2β ln θM (e2βT−1)+α
α .

Proof. Considering the period of workload as twice of the
previous example, we have 2twk + 2tslp = 2T. The max-
imum temperature is reached after 2twk time units. So,
θM = α + (θL − α)e2β twk . Similarly to Eq. 21, we have
twk = 1

2β ln θM−α
θL−α . Since the minimum temperature in the

steady state is reached after 2tslp, θMe2β tslp = θL which
leads to tslp = 1

2β ln θL
θM

. Hence,

tslp + twk = T =⇒ 1

2β
ln
θM − α
θL − α

+
1

2β
ln
θL
θM

= T.

Therefore, the minimum temperature in the steady state is
θL = αθMe2β T

θM (e2β T−1)+α
. By substituting the value of θL in twk,

the maximum waking time for the period T is obtained.
�

Corollary 3.1. The maximum achievable utilization of a server
under the maximum temperature constraint θM is θM

α .

Proof. Since the maximum utilization is obtained when the
period converges to 0, the maximum utilization is

lim
T→0

u = lim
T→0

1
2β θM2βe2βT

θM (e2βT − 1) + α
=
θM
α
.

The same approach applies to the polling servers. �

Unlike the claim in [37, 49] which states that the worst-
case peak temperature occurs when the system warms up by
applying a periodic pattern to be in steady state following by a
burst workload, we will show that by employing thermal-aware
servers for mixed-criticality tasks, this will never happen.

Theorem 4. The maximum temperature of a CPU for any
workload execution pattern in the “steady-state” condition is
less than the periodic back-to-back execution pattern.

=

Figure 5: Workload execution pattern in the steady state.

Proof. To prove that, we follow up on the two scenarios
illustrated in Fig. 5. Without loss of generality, it is assumed
that the system has been already warmed up. The green line in
Fig. 5 shows that back-to-back execution pattern continues in
the steady-state phase. The orange line depicts the worst-case
burst workload that can be executed (according to the Theo-
rem 2 where all of the replenished budget is exhausted at the
beginning of the period). Let θ1 and θ2 represent the maximum
temperature of burst execution and normal back-to-back ex-
ecution, respectively. Hence, θ1 = α+ θM eT β − α eβ tw and
θ2 = α+ θM e2T β − α e2 β tw . Let ∆θ denote the temperature
difference of these scenarios. Therefore,

∆θ = θ2 − θ1 = θM e2T β − θM eT β + α eβ tw − α e2 β tw .

By considering u = θM
α and substituting the maximum waking

time determined from Theorem 3, we show that ∆θ > 0 which
means
ue2 β T − e2 β 1

2β ln
θM (e2βT−1)+α

α + e β
1
2β ln

θM (e2βT−1)+α

α − ueβ T > 0.

For any value of u ∈ [0, 1], since (u − 1)(1 + eβ T)2 < 0,
then we have u+ ue2 β T + 2eβ T < 1 + 2ueβ T + e2 β T . By
multiplying u in the inequality, we have
u2 + 1− 2u+ u2e2 β T − 2(u− 1)ueβ T < ue2 β T − u+ 1

which leads to u− 1− ueβ T > −(θMe2 β T−θM+α
α)

1
2 . There-

fore, ue2 β T − θMe2 β T−θM+α
α + (θMe2 β T−θM+α

α)
1
2 − ueβ T > 0. �

E. Peak temperature analysis on multi-core platforms
Now, we extend our analysis to multi-core platforms where

each CPU core consists only of one thermal-aware server. We
will show that the minimum replenishment budget of polling
servers on multi-core CPU happens when all of them exhaust
their budget completely at the same time. Afterwards, the
maximum available server budget will be determined.

Theorem 5. The minimum value of waking time for a maxi-
mum temperature constraint is when the server on each core
exhausts all its budget at once, simultaneously.

Proof. Assume we have a dual-core CPU with the same
physical characteristics and surrounding conditions. Both cores
have the same periodic step power signal but with a phase
difference of φ. For simplicity we assume PS is zero and
P = PD. The input power of the first core P1(t) starts at
t = t0 while the input power of the second core P2(t) starts
with a phase change at t = t0 + φ. We consider two cases:
for case I, the phase change is zero (φ = 0), and for case
II it is positive (φ > 0). The schematic of power signal for
the two cases is depicted in Fig.6. The temperature profiles of
in-phase and out-of-phase cases are compared in Fig.7.

Lemma. In a multi-core system, if the power signal of
each core varies with time in the way described above, the

P

uT+ϕ T+ϕϕ

Case I: in-phase

P

uT T

P

uT T

Core 1

Core 2

P

uT T

Core 1

Core 2

0

0 0

0

(a) (b)
Case II: out-of-phase

Figure 6: Power signal of the cores for (a) case I: in-phase, and (b)
case II: out-of-phase.

P

uT+ϕ T+ϕϕ

Case I: in-phase

P

uT T

P

uT T

Core 1

Core 2

P

uT T

Core 1

Core 2

0

0 0

0

(a) (b)
Case II: out-of-phase

θM θ'M

t'w t's

tw

ts

θave

θ'L
θL

θave

θ'L
θL

t'w t's

tw

ts

θM θ'M
(a) (b)

Figure 7: Temperature profiles of in-phase and out-of-phase cases
for a (a) two-core and (b) three-core system. (Blue lines represent
the temperature of the cores in in-phase and other colors represent
temperature of the cores in out-of-phase states.)

maximum change rate magnitude of temperature is when the
powers are in-phase (φ = 0).

For a dual-core CPU. According to the developed model,
temperatures of the two cores between t0 and t when the power
P1 and P2 are constant are as follows:

θ =
1

2
eβ1(t−t0)

[
θ01 + θ02

θ01 + θ02

]
+

1

2
eβ2(t−t0)

[
θ01 − θ02

θ02 − θ01

]
+

B1

2β1

(
eβ1(t−t0) − 1

)[P1 + P2

P1 + P2

]
+

B1

2β2

(
eβ2(t−t0) − 1

)[
P1 − P2

P2 − P1

]
θ

t

θ01

θ02

θ'2

θ2

θ'1

θ1

(Δθ1)out-of-phase

(Δθ1)in-phase

(Δθ2)out-of-phase

(Δθ2)in-phase

θ

t

θ01

θ02

θ'2

θ2

θ'1

θ1

(Δθ1)out-of-phase

(Δθ1)in-phase

(Δθ2)out-of-phase

(Δθ2)in-phase

t0 t t0 t

(a) (b)

Figure 8: Comparison of temperature (a) increase and (b) decrease
between in-phase and out-of-phase cases.

Assume that core 1 and 2 start from initial temperatures of
θ01 and θ02 at time t0 and get to the final temperatures of θ1

and θ2 at time t as shown in Fig.8 . We want to show that
|∆θin−phase| > |∆θout−of−phase| for any time slot between
t0 and t where the power remains constant. We calculate the
derivative of temperature for the two cases. When there is a
power for the in-phase case (P 6= 0), the temperate change rate
is positive. For in-phase case P1 +P2 = 2P and P1−P2 = 0.
For the out-of-phase case, P1 + P2 = P and P1 − P2 = −P
because P1 = 0 and P2 = P or vice versa. We have: (I
represents in-phase and II represents out-of-phase)(

dθ

dt

)
I

−
(
dθ

dt

)
II

=
B1P

2

[
eβ1(t−t0) + eβ2(t−t0)

eβ1(t−t0) − eβ2(t−t0)

]

Since β1 > β2 for both cores and B1 and P are positive,
then

(
dθ
dt

)
I
≥
(
dθ
dt

)
II

. Same conclusion can be drawn if
P1 = P and P2 = 0. We can conclude that ∆θin−phase ≥
∆θout−of−phase based on the fact that if f ≥ g in [a, b], and f

and g are integrable in [a, b], then
b

∫
a
fdx ≥

b

∫
a
gdx. If the power

in the in-phase case is zero (P1 + P2 = 0 and P1 − P2 = 0),
the temperature change rate is negative, and for P1 = 0 and
P2 = P we have:(

dθ

dt

)
I

−
(
dθ

dt

)
II

=
B1P

2

[
−eβ1(t−t0) + eβ2(t−t0)

−eβ1(t−t0) − eβ2(t−t0)

]
Since β1 > β2 for both cores

(
dθ
dt

)
I
≤
(
dθ
dt

)
II

. Same
conclusion can be drawn if P1 = P and P2 = 0. Therefore,
in case of an increase in temperature, the in-phase state has
the highest temperature change rate, and in case of a decrease
in temperature, the in-phase state has the lowest temperature
change rate. In conclusion, |∆θin−phase| ≥ |∆θout−of−phase|.

For a multi-core CPU. For a multi-core system when tem-
perature is increasing, the difference between the temperature
derivatives of the in-phase (I) and out-of-phase (II) cases
between t0 and t when the power signal does not change is
as follows:

(
dθ

dt

)
I

−
(
dθ

dt

)
II

=
B1

n
eβ1(t−t0) (n− k1)P


1
1
...
1


n×1

−B1

k2
eβ2(t−t0)


m21P
m22P

...
m2nP


n×1

− . . .− B1

kn
eβn(t−t0)


mn1P
mn2P

...
mnnP


n×1

ki, i = 2, .., n are integers which satisfy 1 ≤ ki ≤ n, i =
2, .., n. For k1 we have 1 ≤ k1 < n since there is at least
one core which is idle when powers are in out-of-phase. mij

can change based on how many cores are active and we have
mij < ki. Since n > ki, the first term is positive, and since
β1 � β2, ..., βn and all βs are negative, the other terms
decrease exponentially to zero and can be neglected compared
to the first term. Therefore,

(
dθ
dt

)
I
≥
(
dθ
dt

)
II

. It can be shown
in the same way that when there is no power in the in-phase
case, the temperature is decreasing and

(
dθ
dt

)
I
≤
(
dθ
dt

)
II

.
Lemma. For the described power signals, the maximum

temperature for in-phase case is larger than that of the either
core for the out-of-phase case (θM ≥ θ

′

M).
First, let’s point out that θave = −A−1BP∞ is the same for
both cases in the steady state. Therefore, θM +θL = θ

′

M +θ
′

L.
Assume that θM < θ

′

M , then θL > θ
′

L. Assume that the time it
takes for the in-phase case temperature to get from θL to θM
is tw and the time it takes to get from θM to θL is ts. Assume
these times for the out-of-phase case is t′w to get from θ′L to
θ′M and t′s to get from θ′M to θ′L. If θM < θ

′

M , and θL > θ
′

L,
then tw would be smaller than t′w because the temperature
increase rate is largest for the in-phase case. At the same time,
ts < t

′

s since temperature decrease rate is largest for the in-
phase case. Therefore, tw + ts < t′w + t′s. But the periods for

the two cases are the same tw + ts = t′w + t′s. �

Experimental Example To support our claim, we measure
the temperature of big cores on the Exynos 5422 SoC [13]
using IR camera FLIR A325sc [15] with the sampling rate of
60 frames per second. Four periodic computationally-intensive
workloads are ran on four big cores of the board. In all cases,
the CPU frequency is set to 1.4 GHz, and each workload
executes every 10 seconds with the utilization of 40%. Let
φ(i) denote the delay of starting time of a workload execution
on core i. Table I shows the configurations of each case.

Table I: Descriptions of workload executions on big cores.
Name description workloads delay

settings (seconds)
Case 1 all workloads execute at the same time φ(1) = φ(2) = 0

φ(3) = φ(4) = 0

Case 2 workloads on two cores begin after those
of other cores

φ(1) = φ(2) = 0

φ(3) = φ(4) = 4

Case 3 workloads on two cores begin 1 second
before finishing those of on other cores

φ(1) = φ(2) = 0

φ(3) = φ(4) = 3

Case 4 workloads on each core execute with a
2-second overlap

φ(1) = 0 φ(2) = 2

φ(3) = 4 φ(4) = 6

Fig. 9 shows our observations of the maximum temperature
of the SoC for the described cases in the steady state. As one
can see, in Case 1 where all workloads execute synchronously,
the maximum temperature of the chip reaches its highest value
and its minimum temperature is the lowest among all cases.
On contrary, in Case 4 where workloads of different cores
have the least overlap, the maximum temperature of the chip
fluctuates the least of other cases and it is close to the average
temperature in the steady state. In Case 2 where there is no
overlap between executions of two pairs of workloads, the rate
of temperature rise is lower than the Case 3 where there is 1
second overlap within all workload executions.

72

74

76

78

80

82

1000 1005 1010 1015 1020 1025 1030 1035 1040

Te
m

p
e

ra
tu

re
(°

C
)

Time(s)

Case 1 Case 2 Case 3 Case 4

Figure 9: The maximum temperature of big cores in the Exynos 5422
captured by FLIR A325sc IR camera in the operating frequency of
1.4 GHz without heat sink.

VI. MULTIPLE SERVER ANALYSIS

In this section, we extend our analysis for multiple servers
running on the multi-core CPU at each criticality level. We are
interested to see if there are enough sleeping slacks between
active times of servers to cool down the CPU. The cooling
time must be large enough such that the CPU does not exceed
the maximum temperature constraint under any circumstance.
Hence, we should check if the amount of the sleeping time
required for cooling is guaranteed for a given period of time.

We propose an idle thermal server technique in this regard.
Unlike regular servers, the idle server does not execute;

instead, its budget represents the amount of time that the CPU
core needs to be idle in the cooling phase. The reasoning be-
hind this technique is to simplify the modeling of the resulting
idle time from the execution of multiple regular servers as
a single budget parameter. Hence, the idle server’s budget
can be determined such that the maximum CPU operating
temperature caused by heat dissipation during the idle server’s
inactive time is the same as or higher than that of running
regular servers under any task execution pattern. If such an
idle server is schedulable, one can conclude that the given
taskset is thermally schedulable. The thermal effect of multiple
servers is analyzed by the complement signal of periodic idle-
server execution, the worst-case behavior of which has been
proved by Theorems 1-5.

After analytically finding the relation between the budget
and period of the idle server, we check its schedulability.

Since the idle server does not actually exist on the CPU, it
is considered as the lowest-priority server in the schedulability
test. In our proposed framework, the CPU is not forced to sleep
so that the proposed idle server has no effect on the timing
schedulability of regular running servers.

The idle server utilization corresponds to the time during
which all regular servers are deactivated. Based on this, we
investigate the feasibility of the idle server with its minimum
possible period within a valid range. In this work, we focus
on designing homogeneous idle servers, i.e., all idle servers
on different CPU cores share the same parameters at each
criticality level. It is worth mentioning that this does not mean
that sleeping time in different cores must happen at the same
time. Finding the different idle server settings for each CPU
core is beyond the scope of this paper.

Idle server design First, we compute the total utiliza-
tion of the CPU core c at the criticality level l by
ulc =

∑
∀i P(vi)=c∧vi∈V l

Ci
Ti

, where P(vi) is the CPU core
assigned to vi. The maximum per-core CPU utilization is then
ulmax = max∀c u

l
c. Due to the homogeneity of idle servers on

all cores, ulmax is considered as the utilization of one core so
that each core is supposed to be idle at least 1 − ulmax. As
a result, we are looking for a server that can be schedulable
with the amount of utilization of at least 1− ulmax. Let ulidle
denote this value. According to Theorem 3, the period of the
idle server T lidle can be modeled as:

T lidle ≤
ln(1 + α e

1−ulidle+
1
2β −1

θM
)

2β
. (22)

It is worth noting that the period is determined based on the
back-to-back execution under in presence of multiple servers
for both polling and deferrable budget replenishment policies
since servers can preempt each other and sleeping time does
not happen in a contiguous manner. T lidle is an increasing
function in terms of utilization. As one can figure out from
Eq. 22, an increase in the workload on the CPU core (hence
resulting in a decrease in ulidle) leads to a decrease in T lidle.
In other words, under heavier workload, the CPU has to
sleep more frequently but in a shorter duration, to satisfy the
maximum temperature constraint.

Thermal schedulability Hereby, we present our proposed
thermal schedulability test for a specific utilization of idle
servers. The worst-case response time of each idle server of
each core at each criticality level can be obtained as follows

Rn+1,l
idle,c = ulidle × T lidle +

∑
∀i P(vi)=c∧vi∈V l

⌈
Rn,lidle,c
Ti

⌉
Ci (23)

where Rn+1,l
idle,c denotes the worst-case response time of the idle

server on the core c at the criticality level l. As shown in
Eq. 23, the idle server of each core can be preempted by all
active servers at l. The only unknown parameter in above test
is the idle server settings. Next, we discuss the optimal valid
range of idle server’s setting range to reduce the number of
tests for each criticality level.

3 4
2

1
valid range

iC
l
idleu

l
idleT

max1 lu
Figure 10: Search space for the idle server settings.

Optimal server setting range As discussed in Eq. 22, the
period of the idle server is an increasing function in terms of its
utilization. Fig. 10 plots the period with respect to utilization of
the idle server. The area of the plot is divided to four regions.
We discuss that only the highlighted area needs to be searched
for finding the valid settings of idle servers.

• region 1 : In this region, the CPU violates the maximum
temperature constraint according to Eq. 22
• region 2 : The utilization of idle server has to be less than

1−ulmax. Choosing a setting in this region causes the system
to be unschedulabe at this criticality level.
• region 3 : Since idle servers have the lowest priority, they

cannot preempt other servers. According Eq. 23, in the worst
case all servers preempt the idle servers.
• region 4 : Valid settings can be found in this region, but

it is unnecessary to search the entire of this region because
there exists a valid setting with period of T ′, a solution is
valid on the highlighted range with the same utilization value.

Therefore, the only period of Tidle =
ln(1+α e

1−uidle+
1
2β −1

θM
)

2β
within the optimal range of utilization, uidle, needs to be
checked. One may try to insert Tidle into Eq. 23 and assign
Tidle to Rn+1,l

idle,c to find a single optimum point. However,
because of the ceiling operation in Eq. 23, finding the optimum
uidle would need an exhaustive search.

After finding the idle server settings, the critical ambient
temperature for each criticality level is computed by using
Eq. 9 with u = 1− ulidle. The shifting time from criticality
level l + 1 to l can be determined by applying Eq. 12.
Timing schedulability Due to our separate thermal schedu-
lability analysis, we are able to use the existing response
time test developed for independent tasks with no thermal

constraints under hierarchical scheduling [38]:

Wn+1,l
i = Ei +

∑
τh∈Vl(τi)
h>i

⌈
Wn,l
i + Ji + (W l

h − Eh)

Dh

⌉
Eh+

⌈
Wn,l + Cj

Tj

⌉
(Tj − Cj)

(24)

where Wn,l
i is the worst-case response time of τi at criticality

level l, Vl(τi) is the server of τi, Jj is the jitter of a task
running in a server vj (see Sec III), and W 0,l

i = Ei.

VII. EVALUATION

This section gives the experimental evaluation of our frame-
work. First, we show the model validation by measuring the
physical system parameters on a real platform. After the anal-
ysis of server characteristics in different ambient temperatures,
we present our discussion with a case study.

A. Experimental platform

The experimental platform is an ODroid-XU4 development
board [33] equipped with a Samsung Exynos5422 SoC. There
exist two different CPU clusters of little Cortex-A7 and
big Cortex-A15 cores, where each cluster consists of four
homogeneous cores. Built-in sensors with the sampling rate
of 10 Hz with the precision of 1°C are on each big CPU core
to measure the chip temperature. Note that there are no temper-
ature sensors on little cores since the power consumption and
heat generation of the little cluster is considerably low. The
DTM throttles the frequency of the big CPU cluster to 900
MHz when one of its cores reaches the pre-defined maximum
temperature constraint of 95°C. During experiments, the CPU
fan is turned off and the CPU is set to run at 1400 MHz.

B. Model Validation

According to Eq. 3 and 19, the characteristic matrices A
and B can be determined by a utilization test at different CPU
frequencies. A zero utilization (idle) at different ambient tem-
peratures can reveal the range of the static and consequently
the dynamic dissipation. After finding the thermal parameters
of the system and model calibration, the analytical model is
validated with the experimental results. For this purpose the
CPU temperature is recorded at 90% utilization with a period
of 1 s in Θamb of 23°C. Then utilization is decreased to
30% and the CPU is cooled down until reaching a steady
state. Afterwards, the CPU working at 30% is placed in the
furnace with Θamb of 42°C. The CPU temperature is recorded
until the steady state. The same conditions are simulated using
the developed model. Fig. 11 compares the CPU temperature
recorded in the experiment at different stages of workloads and
ambient temperature with the predicted values by the model. It
can be seen that there is a good agreement between the model
and the experimental results.

C. Workload, period, and ambient temperature relations

We investigate the effect of ambient temperature, server
period, and utilization using Eq. 9 and Eq. 10. Assuming
the temperature threshold of Θm = 95°C, the maximum

Figure 11: Comparison of the experimental results and the model
prediction for CPU temperature at different workloads and ambient
temperatures.

allowable utilization is plotted in Fig. 12a against period and
ambient temperatures. It can be seen that for all considered
periods, when the ambient temperature is increased from 23°C,
the maximum workload decreases almost linearly with the
ambient temperature. At higher ambient temperatures lower
workloads can be used until the ambient temperature of 69°C
where even an idle CPU usage will result in a working
temperature equal to the threshold temperature. To better see
the effect of period, the maximum workload is plotted against
period at different ambient temperatures in Fig. 12b. The
period has been changed from 10 ms to 30 s. It can be
seen that the maximum workload decreases by increasing the
value of the period in an almost linear manner. This has
been discussed and confirmed in Theorem 2. Moreover, it
can be concluded that the effect of ambient temperature on
the maximum allowable workload is more prominent than the
effect of period.

0
30

20

0.5u

10
70

amb

6050400 30

1

20

T (s)

(°C)

(a)

0 5 10 15 20 25 30
T (s)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

u
amb

amb

amb

 = 50 °C

 = 45 °C

 = 40 °C

(b)
Figure 12: a) Utilization versus period and ambient temperature. b)
Utilization versus period at different ambient temperatures.

D. Shifting time analysis

As mentioned before, any change in the working parameters
of the system may cause a transient thermal behavior and
change the steady state conditions. Here, we discuss the effects
of changing workload and also ambient temperature on the
thermal response of the CPU cores. In Fig. 13a. shifting times
are plotted against the final ambient temperature at different
workloads assuming the initial ambient temperature is 23°C
or 50°C. It can be seen that at higher workloads it takes less
time for the CPU to reach the steady state when ambient
temperature is changed from Θambi to Θambf . Also, at all
workloads, it takes more time for the CPU to reach the final
ambient temperature Θambf if it starts from a lower initial

20 40 60 80 100 120
Final

amb

0

500

1000

1500

2000
Sh

if
ti

ng
 t

im
e

(s
)

u = 0
u = 20%
u = 40%
u = 60%
u = 80%
u = 100%

(°C)

(a)

0 0.2 0.4 0.6 0.8 1
Final u

0

500

1000

1500

2000

Sh
if

ti
ng

 t
im

e
(s

)

u_i = 0
u_i = 20%
u_i = 40%
u_i = 60%
u_i = 80%
u_i = 100%

(b)
Figure 13: Shifting time a) from initial ambient temperature to
different final ambient temperatures at various workloads, b) from
different initial workloads to different final workloads at an ambient
temperature of 23°C.

ambient temperature Θambi . Furthermore, for all utilizations,
the time it takes for the CPU to reach the steady state when
the ambient temperature goes up by ∆Θ is almost equal to
the time it takes when it goes down by the same amount.

In Fig. 13b. shifting times are plotted against the final
workload uf for different initial workloads ui. It can be seen
that it takes more time to reach the steady state of final uf
when starting from a lower workload ui. Also, opposite to the
case of ambient temperature, if ui < uf , it takes less time to
reach the steady state when shifting from ui to uf (heating),
compared to when shifting from uf to ui (cooling).

E. Case study
We emulate the mixed-criticality Flight Management Sys-

tem (FMS) application [2, 20] which comprises two criticality
levels of H and L. The parameters of the executing real-
time tasks are given in [2]. In our experiment, there exist
one high-criticality and one low-criticality server on each
CPU core. The budget replenishment period of each thermal-
aware server is considered 50 ms under the deferrable budget
replenishment policy. The budget for high-criticality and low-
criticality servers are 15 ms and 27 ms, respectively. Tasks
are assigned to CPU cores by using the worst-fit decreasing
(WFD) heuristic for load balancing across cores and are
scheduled by the Rate Monotonic (RM) policy. Since the
amount of the workload in low-criticality level is insignificant
to reach the maximum temperature, non-real-time tasks are
also assigned to low-criticality servers with the lowest priority
level.

Critical ambient temperatures have been determined by
Eq. 9: 24°C for the low-criticality and 40°C for the high-
criticality level. As shown in Fig. 14, the experiment has been
performed in the furnace. Nordic Semiconductor Thingy:52™
IoT sensor development kit [43] is used to capture the ambient
temperature with the sampling rate of 10 Hz.

Fig. 15 shows the experimental and model results for a case
study with period of 50 ms. In step I, the CPU is idling for
1800 s, and then in step II, workload with u = 95% is applied
at Θamb = 24°C. The system is left to work with u = 95%
until it reaches steady state conditions and keeps working for
about 10000 s. The CPU temperature reaches to a value around
89°C. Afterwards, in step III, the CPU is placed in the furnace
with Θamb = 40°C and the workload is changed to 30% at

Figure 14: Experimental environment using furnace.

the same time. The temperature increases to 92°C and remains
steady for about 4000 s. The CPU is then taken out of the
furnace and left to work with u = 30% for a fast cooling.
Finally, in step IV, the workload is set to 95% at ambient
temperature Θamb = 24°C. It can be seen that the developed
model matches the experimental results with a good accuracy.
The time step in the model is more accurate than the actual
temperature sensor and temperature variations for each period
can be captured by the developed model. Temperature curve
from 6000 s to 6002 s is zoomed for a better comparison of
the variations.

0 5000 10000 15000
Time (s)

40

50

60

70

80

90

100

Experiment
Model

6000 6002

Te
m

pe
ra

tu
re

 (°
C

)

Figure 15: Experimental and model results for a case study with a
period of 50 ms at two ambient temperatures and workloads.

VIII. CONCLUSION

In this paper, we proposed a novel mixed-criticality thermal-
aware server framework to bound the maximum temperature
of CPU cores in the presence of dynamic ambient temperature.
In this framework, the server schedule is flexible – fully
preemptive and priority-based. We investigated the thermal
feasibility by analyzing the amount of slack between execution
of preemptive thermal servers with the notion of idle servers.
We presented a mechanism to optimally search the maximum
ambient temperature for every criticality level. We provided
analytical foundations to check thermal safety while tempo-
ral safety is guaranteed. Experimental results show that our
proposed framework is effective in bounding the maximum
temperature at every criticality level.

For future work, we plan to extend our analysis to allow dif-
ferent idle server settings per CPU core, which can improve the
range of ambient temperature supported by mixed-criticality
levels. In addition, we will study the thermal behavior of
tasks to alleviate the pessimism of thermal schedulability. For
instance, a task frequently accessing the system memory may
generate much less heat than those being computationally-
intensive. We will develop our analysis to capture the effect
of cooling packages and forced heat convection.

ACKNOWLEDGMENT

The authors would like to thank Alexander A. Balandin and
Fariborz Kargar for their help with experimental environment
using the furnace. The authors are also indebted to Daniel
Wong and Sheldon Tan for their help in IR thermal imaging.

REFERENCES

[1] M. Ahmed, N. Fisher, S. Wang, and P. Hettiarachchi. Minimizing peak
temperature in embedded real-time systems via thermal-aware periodic
resources. Sustainable Computing: Informatics and Systems, 1(3):226–
240, 2011.

[2] R. Ahmed, P. Huang, M. Millen, and L. Thiele. On the design and
application of thermal isolation servers. ACM Trans. Embed. Comput.
Syst., 16(5s):165:1–165:19, Sept. 2017.

[3] R. Ahmed, P. Ramanathan, and K. K. Saluja. On thermal utilization of
periodic task sets in uni-processor systems. In 2013 IEEE 19th Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications, pages 267–276. IEEE, 2013.

[4] R. Ahmed, P. Ramanathan, and K. K. Saluja. Temperature minimiza-
tion using power redistribution in embedded systems. In 2014 27th
International Conference on VLSI Design and 2014 13th International
Conference on Embedded Systems, pages 264–269. IEEE, 2014.

[5] G. Bernat and A. Burns. New results on fixed priority aperiodic servers.
In IEEE Real-Time Systems Symposium, 1999.

[6] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs. In 2008
Design, Automation and Test in Europe, pages 288–293, March 2008.

[7] T. Chantem, X. S. Hu, and R. P. Dick. Online work maximization under
a peak temperature constraint. In Proceedings of the 2009 ACM/IEEE
international symposium on Low power electronics and design, pages
105–110. ACM, 2009.

[8] T. Chantem, X. S. Hu, and R. P. Dick. Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 19(10):1884–
1897, 2010.

[9] J.-J. Chen, C.-M. Hung, and T.-W. Kuo. On the minimization for
the instantaneous temperature for periodic real-time tasks. In 13th
IEEE Real Time and Embedded Technology and Applications Symposium
(RTAS’07), pages 236–248. IEEE, 2007.

[10] J.-J. Chen, S. Wang, and L. Thiele. Proactive speed scheduling for real-
time tasks under thermal constraints. In 2009 15th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 141–
150. IEEE, 2009.

[11] S. M. D’Souza and R. Rajkumar. Thermal implications of energy-saving
schedulers. In ECRTS, 2017.

[12] A. Elghool, F. Basrawi, T. K. Ibrahim, K. Habib, H. Ibrahim, and D. M.
N. D. Idris. A review on heat sink for thermo-electric power generation:
Classifications and parameters affecting performance. Energy conversion
and management, 134:260–277, 2017.

[13] Exynoss 5422. https://www.samsung.com/semiconductor/minisite/exynos
/products/mobileprocessor/exynos-5-octa-5422, 2019.

[14] R. Farrington and J. Rugh. Impact of vehicle air-conditioning on
fuel economy, tailpipe emissions, and electric vehicle range. In Earth
technologies forum, pages 1–6. NREL Washington, DC, 2000.

[15] FLIR A325sc. https://www.flir.com/products/a325sc, 2019.
[16] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. D. Koutsoukos, and H. Wang.

Feedback thermal control for real-time systems. In 2010 16th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages
111–120. IEEE, 2010.

[17] Y. Fu, N. Kottenstette, C. Lu, and X. D. Koutsoukos. Feedback thermal
control of real-time systems on multicore processors. In Proceedings of
the tenth ACM international conference on Embedded software, pages
113–122. ACM, 2012.

[18] A. Ghahremannezhad and K. Vafai. Thermal and hydraulic performance
enhancement of microchannel heat sinks utilizing porous substrates.
International Journal of Heat and Mass Transfer, 122:1313–1326, 2018.

[19] A. Ghahremannezhad, H. Xu, M. A. Nazari, M. H. Ahmadi, and
K. Vafai. Effect of porous substrates on thermohydraulic performance
enhancement of double layer microchannel heat sinks. International
Journal of Heat and Mass Transfer, 131:52–63, 2019.

[20] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling
of mixed-criticality applications on resource-sharing multicore systems.

In Proceedings of the Eleventh ACM International Conference on
Embedded Software, page 17. IEEE Press, 2013.

[21] S. Hosseinimotlagh and H. Kim. Thermal-aware servers for real-time
tasks on multi-core gpu-integrated embedded systems. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 254–266. IEEE, 2019.

[22] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu. Throughput
maximization for periodic real-time systems under the maximal temper-
ature constraint. ACM Trans. Embed. Comput. Syst., 13(2s):70:1–70:22,
Jan. 2014.

[23] A. Iranfar, M. Kamal, A. Afzali-Kusha, M. Pedram, and D. Atienza.
Thespot: Thermal stress-aware power and temperature management for
multiprocessor systems-on-chip. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2017.

[24] R. Jayaseelan and T. Mitra. Temperature aware task sequencing and
voltage scaling. In Proceedings of the 2008 IEEE/ACM International
Conference on Computer-Aided Design, pages 618–623. IEEE Press,
2008.

[25] H. Kim and R. Rajkumar. Predictable shared cache management for
multi-core real-time virtualization. ACM Transactions on Embedded
Computing Systems (TECS), 17(1):1–27, 2017.

[26] H. Kim, S. Wang, and R. Rajkumar. vMPCP: A synchronization
framework for multi-core virtual machines. In 2014 IEEE Real-Time
Systems Symposium, pages 86–95, Dec 2014.

[27] P. Kumar and L. Thiele. Cool shapers: shaping real-time tasks for
improved thermal guarantees. In Proceedings of the 48th Design
Automation Conference, pages 468–473. ACM, 2011.

[28] P. Kumar and L. Thiele. System-level power and timing variability
characterization to compute thermal guarantees. In Proceedings of the
seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 179–188. ACM, 2011.

[29] P. Kumar and L. Thiele. Thermally optimal stop-go scheduling of task
graphs with real-time constraints. In 16th Asia and South Pacific Design
Automation Conference (ASP-DAC 2011), pages 123–128. IEEE, 2011.

[30] C. J. Lasance. Thermally driven reliability issues in microelec-
tronic systems: status-quo and challenges. Microelectronics Reliability,
43(12):1969–1974, 2003.

[31] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-
dependent integrated circuit leakage power estimation is easy. In 2007
Design, Automation Test in Europe Conference Exhibition, pages 1–6,
April 2007.

[32] Y. Ma, T. Chantem, X. S. Hu, and R. P. Dick. Improving lifetime of
multicore soft real-time systems through global utilization control. In
Proceedings of the 25th edition on Great Lakes Symposium on VLSI,
pages 79–82. ACM, 2015.

[33] ODROID-XU4. http://www.hardkernel.com/, 2016.
[34] S. Pagani, J.-J. Chen, M. Shafique, and J. Henkel. Matex: Efficient

transient and peak temperature computation for compact thermal models.
In 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 1515–1520. IEEE, 2015.

[35] S. Park, J.-J. Chen, D. Shin, Y. Kim, C.-L. Yang, and N. Chang.
Dynamic thermal management for networked embedded systems under
harsh ambient temperature variation. In 2010 ACM/IEEE International
Symposium on Low-Power Electronics and Design (ISLPED), pages
289–294. IEEE, 2010.

[36] F. Paterna and T. S. Rosing. Modeling and mitigation of extra-
soc thermal coupling effects and heat transfer variations in mobile
devices. In 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 831–838, Nov 2015.

[37] D. Rai, H. Yang, I. Bacivarov, J.-J. Chen, and L. Thiele. Worst-case
temperature analysis for real-time systems. In 2011 Design, Automation
& Test in Europe, pages 1–6. IEEE, 2011.

[38] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis
of hierarchical fixed-priority scheduling. In ECRTS, 2002.

[39] O. Sahin and A. K. Coskun. Providing sustainable performance in ther-
mally constrained mobile devices. In 2016 14th ACM/IEEE Symposium
on Embedded Systems For Real-time Multimedia (ESTIMedia), pages
1–6, Oct 2016.

[40] L. Sha, J. Lehoczky, and R. Rajkumar. Solutions for some practical
problems in prioritized preemptive scheduling. In IEEE Real-Time
Systems Symposium. IEEE Computer Society Press, 1986.

[41] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-
real-time systems. Real-Time Systems, 1(1):27–60, 1989.

[42] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server

algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments. IEEE Transactions on Computers, 44(1):73–91, 1995.

[43] Nordic Semiconductor Thingy:52 IoT Sensor Development Kit.
https://www.mouser.com/new/nordicsemiconductor/nordic-thingy-52/,
2019.

[44] B. A. Toribio, C. D. Peterson, D. P. Rubenstein, and T. P. Neilan. Fire
containment drone. Technical report, Worcester Polytechnic Institute,
2016.

[45] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), pages 239–243. IEEE,
2007.

[46] S. Wang and R. Bettati. Delay analysis in temperature-constrained
hard real-time systems with general task arrivals. In 2006 27th IEEE
International Real-Time Systems Symposium (RTSS’06), pages 323–334.
IEEE, 2006.

[47] S. Xi, J. Wilson, C. Lu, and C. Gill. RT-Xen: towards real-time
hypervisor scheduling in Xen. In International Conference on Embedded
Software (EMSOFT), 2011.

[48] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang. System-
level reliability modeling for mpsocs. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, pages 297–306. ACM, 2010.

[49] H. Yang, I. Bacivarov, D. Rai, J.-J. Chen, and L. Thiele. Real-time
worst-case temperature analysis with temperature-dependent parameters.
Real-Time Systems, 49(6):730–762, 2013.

[50] K. G. S. Youngmoon Lee, Hoonsung Chwa and S. Wang. Thermal-aware
resource management for embedded real-time systems. In Embedded
Software (EMSOFT), 2018 International Conference on. IEEE, 2018.

[51] S. Zhang and K. S. Chatha. Thermal aware task sequencing on embedded
processors. In Proceedings of the 47th Design Automation Conference,
pages 585–590. ACM, 2010.

