
Work-in-Progress: A Unified Runtime Framework
for Weakly-hard Real-time Systems

Hyunjong Choi and Hyoseung Kim
University of California, Riverside

hchoi036@ucr.edu, hyoseung@ucr.edu

Abstract—A weakly-hard real-time system is a system that
can tolerate a bounded number of timing violations. There have
been various assumptions made by prior work on handling
deadline-missed instances (jobs) of a task in weakly-hard sys-
tems, e.g., terminate it immediately or continue to execute it
even after its deadline is missed. However, no prior work has
presented a system-level framework to support such options and
to quantitatively assess their effects on schedulability. In this
paper, we present a unified runtime framework to execute weakly-
hard tasks with the four major deadline-miss handling options:
job abort, delayed completion, job pre-skip, and job post-skip.
Our work is applicable to any type of operating systems that
support preemptive scheduling with task control blocks. We have
implemented our framework in the Linux platform running on
Raspberry Pi. We evaluate the performance of each scheme and
measure spatial and computational overheads.

I. INTRODUCTION

Weakly-hard real-time systems have been studied to capture
the occasional miss of deadlines that a system can tolerate. The
common notation of a weakly-hard constraint is in the (m,K)
form, which specifies that at most m instances can miss their
deadlines among K consecutive instances. A certain level of
quality of service can be guaranteed, provided that such a
timing violation happens in a known and predictable way.

In the literature of weakly-hard systems, there are various
assumptions on how to handle a task’s instance (job) when
it has missed or is likely to miss the deadline. A job may
be terminated immediately when it misses its deadline, i.e.,
job abort. It may continue to execute to completion even if its
deadline has passed, i.e., delayed completion. A prediction can
be made such that only the jobs that are expected to complete
by their deadlines are executed, i.e., job pre-skip. One may
also decide to skip the next job if the current job is executing
over the next period, i.e., job post-skip. Table I summarizes
the classifications of previous weakly-hard studies based on
the above assumptions.

Prior work, however, has not considered a runtime frame-
work to instantiate various deadline-miss handling options
and has not provided any comparative analysis among those
assumptions. Besides, an implementation cost, which is one of
the criteria to evaluate applicability in practical systems, has
not been thoroughly studied.

This paper presents our work-in-progress effort on develop-
ing a runtime framework for weakly-hard real-time systems.
Our framework includes systems primitives to support the
four aforementioned deadline-miss handling schemes, i.e.,

TABLE I: Weakly-hard studies based on the job handlings

Handling scheme Prior work

Job abort [5]∗, [6]∗, [3]

Delayed completion [4], [7]

Job pre-skip [5]∗, [6]∗

∗: multiple handling schemes are employed.

job abort, delayed completion, job pre-skip, and job post-
skip. The current version of our framework focuses on task-
level fixed-priority scheduling and has been prototyped in the
Linux kernel on Raspberry Pi 3. The proposed framework
design approaches can also be applied to any operating system
(OS) that uses preemptive task scheduling with task control
blocks. We expect that our framework can serve as a basis to
build real-time applications with weakly-hard constraints and
facilitates the comparison of different weakly-hard schemes on
a real platform.

II. RELATED WORK

Many weakly-hard studies have assumed the use of the
delayed completion scheme, where a job continues to run
although it exceeds its deadline. In overloaded systems, the
work in [4] bounds temporary violations of deadlines by using
typical worst-case analysis (TWCA) and job arrival curves.
The work in [7] also uses the delayed completion scheme and
focuses on a taskset with utilization less than or equal to 1.

In [3], the author assumes that the execution of a job
is aborted if it does not finish within its deadline. This
assumption is to ensure that a delayed job from the previous
period does not affect the execution of the next released job.
With this assumption, tasksets with utilization more than 1 can
be schedulable, but author has not provided details on the safe
recovery of task states after the job abortion.

To manage the overloaded situations, some prior work [5, 6]
has considered both the job abort and the job pre-skip schemes.
Ramanathan [6] classified jobs into mandatory and optional
ones such that only the mandatory jobs are guaranteed to be
schedulable in order to reduce the overall loads of the system.
The work in [5] also used similar classification approaches,
whereas the optional jobs may be executed by checking its
eligibility based on slack or predetermined patterns.

III. SYSTEM MODEL

Our framework primarily considers task-level fixed-priority
preemptive scheduling in a uniprocessor system. For the task

model, we assume periodic tasks with weakly-hard constraints.
Task model. Task τi is represented as follows:

τi := (Ci, Di, Ti, (mi,Ki))

• Ci: The execution time of each job of a task τi.
• Di: The relative deadline of each job of τi (Di ≤ Ti)
• Ti: The period of τi.
• (mi,Ki): The weakly-hard constraints of τi (mi < Ki). If
τi is a hard real-time task, mi = 0 and Ki = 1.

The j-th job of a task τi is denoted as Ji,j .
Performance metrics. To evaluate the performance of
weakly-hard schedulers with different deadline-miss handling
schemes, we define the following metrics.

Def. 1. The effective utilization of a task τi, Ue
i (t), measures

the ratio of the time used for jobs that have met their deadlines
during a given time interval t. Hence, Ue

i (t) =
Ci×Mi

t , where
Mi is the number of jobs completed by τi’s relative deadline
during t.

The total effective utilization, Ue(t), is thus the sum of the
effective utilization of all tasks in the system during a given
time interval t, i.e., Ue(t) =

∑N
i=1 U

e
i (t), where N is the

number of tasks and it cannot exceed 1.

Def. 2. The runtime utilization of a task τi, Ur
i (t), measures

the ratio of the time used for a task that has occupied the
processor during a given time t. Hence, Ur

i (t) =
Ri(t)

t , where
Ri(t) is the processor time used by a task τi during t.

The total runtime utilization, Ur, is the sum of the runtime
utilization of all tasks in the system during time t, i.e., Ur(t) =∑N

i=1 U
r
i (t), and it cannot exceed 1. Also, Ur(t) ≥ Ue(t).

IV. RUNTIME FRAMEWORK

This section presents our framework to support the four
deadline-miss handling schemes mentioned in Section I: job
abort, delayed completion, job pre-skip and job post-skip. We
begin with a fundamental runtime mechanism for periodic
execution of tasks, and then present the detailed design of
each scheme based on it.

A. Periodic execution support

Fig. 1 illustrates the overview of our runtime mechanism
for periodic task execution, which is organized as user space
and kernel space. In the user space, a task can request specific
actions to the OS kernel as needed, e.g., registering a task as a
real-time task or putting it in sleep mode when the current job
finishes execution. In the kernel space, our runtime consists of
four core modules: initializer, scheduler, timer, and complete
sequence. We detail the functions of each module as follows:
• Initializer: The system registers a task as a periodic real-

time task by assigning real-time priority, and creating re-
lease and deadline timers for this task In A©.

• Scheduler: In B©, a scheduler determines the readiness of
periodic tasks based on the deadline-miss handling scheme
in use, and records task execution traces and resource usage
for profiling.

Call to register as a real-
time task (SYSCALL)

- Interrupt at every cycle of a
periodic task
- Awake a sleeping task
- Stamp a release time (profiling)

- Put a task sleep
- Record a complete time (profiling)
- Wait until the next timer interrupt

Job complete
(SYSCALL)

Complete sequence
- Assign a real time priority
- Set a task as a real-time task
- Register a timer

Initializer

System call Awake a taskLegend

Timer : release & deadline

Periodic task

Kernel-space

User-space

A C D

- Trace tasks on the resource (profiling)

SchedulerB

Begin

Execution of a task
Create a thread

Sequence in user-space

Repeat

Fig. 1: Runtime mechanism for periodic task execution

• Timer: There are two timers involved for each periodic task.
First, the release timer (C©) fires at the beginning of each
period of the task. The deadline timer fires when the task has
not completed its job execution and is still in running mode,
different sequences are followed based on the deadline-miss
handling used.

• Job completion sequence.: Once the task finishes its job
execution, it makes a job_complete system call to the
kernel (D©). The system then puts the task into sleep mode
so that it waits until the next job is released by the timer
module.

Note that this mechanism shown in Fig. 1 is generally appli-
cable to most OSs supporting preemptive task scheduling.

B. Job abort

In this scheme, a job is terminated immediately if it misses
its deadline. This scheme can be beneficial in the case where
a deadline-missed job will no longer need to run as the
remainder of its execution does not yield any gain.

However, the termination of a running job is not trivial in
the implementation. When a task misses its deadline, it needs
to be rolled back to its previous state so that its next job can
safely and correctly execute in the next period. This rollback
mechanism is typically done by creating a checkpoint [1].

Task rollback. There are two types of rollback approaches
we may consider. The first is task-level checkpointing, where
each task creates its own checkpoints as part of execution and
implements a handler to recover from the stored checkpoints.
The second approach is system-level checkpointing, where the
OS or middleware creates each task’s checkpoint, e.g., by
storing all memory pages recently modified, and recovers the
task state when needed. In this work, we focus on the task-
level approach due to its lower overhead that can be done in
three steps as follows:
• Step 1. Store a checkpoint: Since our rollback technique

is achieved in a task-level, a checkpoint is stored at the
beginning of a task execution. We used sigsetjmp in the
standard C library to save a program counter (PC) and a
stack pointer (SP)

• Step 2. Notify a deadline miss to the user space: If the
job has missed its deadline, the kernel notifies the task by
sending a signal.

• Step 3. Recover from the checkpoint: By the signal
generated in Step 2, the signal handler of the task is

2

triggered so that the PC and SP are recovered from the
stored checkpoint by using siglongjmp.

TABLE II: Taskset 1

Tasks T (Period) [ms] C (WCET) [ms] (m,K) Priority
τ1 65 35 (2,4) High
τ2 125 35 (2,4) Middle
τ3 200 35 (2,4) Low

Example. We have implemented this scheme in the Linux
kernel v4.9.76 running on Raspberry Pi 3, and tested the
operation of the job abort scheme by running a taskset given
in Table II. In Fig. 2, τ1 and τ2 are always schedulable while
J3,1 and J3,4 of Task 3 do not meet their deadlines.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time[sec]

1

2

3

Execution of a job Release a job Complete a job Abort a job

Abort a jobAbort a jobJ
3,1

J
3,2 J

3,3
J

3,4
J

3,5

Fig. 2: Job abort

C. Delayed completion

The delayed completion scheme allows a deadline-missed
job to continue to run until it completes. This scheme is
effective when the quality of service of the system can be
improved by the execution of remainder of a deadline-missed
job.

Under this scheme, however, if a job continues to run over
its deadline, the next released job is delayed by the execution
of the previous job. Thus, this scheme does not get benefit
from the weakly-hard concept in overloaded situations, i.e.,
taskset with total utilization is more than 1.

In order to realize the scheme, the task is put in sleep mode
only when the job just completed is the latest released job.
This is checked in by the job completion sequence module
(D© in Fig. 1).
Example. As shown in Fig. 3, deadline-missed jobs are
running until it completes its execution under the delayed
completion scheme.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time[sec]

1

2

3

Execution of a job Release a job Complete a job

Delayed completionDelayed completionJ
3,1

J
3,3

J
3,5

J
3,4J

3,2

Fig. 3: Delayed completion

D. Job pre-skip

The job pre-skip scheme determines whether to execute a
job or not at its release time (the release timer C© of Fig. 1).
A decision for the execution can be made in either online or
offline. In case of the online approach, the system can use the
slack time of a task at the moment of its job release. In the

offline approach, a predetermined execution pattern is used,
e.g., 1010 where 1 means execution and 0 means skip.

However, there are two major drawbacks. The first is the
runtime overhead which may be high because the scheduler
needs to check the slack time (online) for job execution.
Moreover, especially when the average-case execution time is
much lower than the WCET, the scheduler may unnecessarily
skip jobs, which results in processor underutilization.

In this scheme, the release timer (C©) is the major module
to be modified to enable the pre-skip scheme. The overall
sequence of the modified release timer handler is depicted in
Fig. 4.

Wake up a task

Do not wake up a task

If online

Timer ISR

SlackTime τ+ ≥ WCET+

Online/Of4line
If offline

Next release pattern = 1

Yes (=>?_ABC=_DEFG = 1)

No (=>?_ABC=_DEFG = 0)

Release the next instance

Yes (=>?_ABC=_DEFG = 1)

No
(=>?_ABC=_DEFG = 0)

Fig. 4: Timer sequence in job pre-skip scheme
Example. Under the online approach (slack) with the same
taskset as in the above examples, only J3,2, J3,3, and J3,5 are
executed (Fig. 5a). Under the offline approach, a predefined
pattern of 1010 is applied to all tasks so that every other
instance is executed as depicted in Fig. 5b.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time[sec]

1

2

3

Execution of a job Release a job Complete a job

Skip Skip

(a) Job pre-skip (slack time)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time[sec]

1

2

3

Execution of a job Release a job Complete a job

J
3,1

J
3,2

J
3,3

J
3,4 J

3,5

(b) Job pre-skip (pattern)

Fig. 5: Job pre-skip

E. Job post-skip

In this scheme, the scheduler allows a deadline-missed job
(released at jth) continue to run, but it always skip the next
released job (released at j+1th). Under this scheme, jobs are
discarded occasionally, resulting in degradation of the quality
of service of a system.

Since task instances are discarded occasionally without the
determination process for its execution, it needs to keep track
of the index of the latest released jobs (Jidx) after skipping a
previous job in the sequence of D©.
Example. Under the job post-skip scheme, J3,2 and J3,5 are
skipped because the previous jobs have violated their deadlines

3

and affected the execution of the next released jobs, as shown
in Fig. 6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time[sec]

1

2

3

Execution of a job Release a job Complete a job

Post-skipPost-skipJ
3,1

J
3,2

J
3,3

J
3,4

J
3,5

Fig. 6: Job post-skip

V. EVALUATION

In this section, we evaluate the proposed framework in
the Linux kernel running on Raspberry Pi 3 (Quad Cortex
A53 @ 1.2GHz). The evaluation consists of two parts: the
measurement of computational overheads and the case study.
Overheads. For the computational overhead of our framework,
it is worth noting that the delayed completion and post-skip
schemes do not cause any additional cost other than those
for the periodic execution mechanism shown in Section IV-A.
However, under the job abort and job pre-skip schemes, there
are the following four major sequences that can cause extra
runtime overhead:
• sigsetjmp (job abort): the cost in the user space to create

a checkpoint
• siglongjmp (job abort): the cost in the kernel space to

send a signal to the user-space task
• Slack (job pre-skip): the cost of calculation of the slack
• Pattern (job pre-skip): a transition cost of pointing to the

next element in the pattern

1.5540

4.6360

1.2500

6.0780

9.7920

3.6980

2.0520

5.6770

1.7180

0.2130

2.5000

0.1040

setjmp siglongjmp Slack time Pattern
Overheads

0

5

10

O
v
er

h
ea

d
s

[
 s

ec
] Mean

Max

Min

Fig. 7: Overheads of taskset
Fig. 7 summarizes the overhead measurement on Raspberry Pi
3. As can be seen, siglongjmp for the rollback mechanism
is the most costly operation. However, they are acceptably
small in µs units, compared to the WCET and periods typically
denoted in ms units.
Case study. For our case study, we have selected a taskset
given in [5] (table 5 on page 7) where its total utilization
is higher than 1. This taskset is not schedulable under any
conventional fixed-priority scheduler. However, if the RM-
RTO1 algorithm of [5] is used, the job execution pattern of
each task is determined as either 10 or 01 and this pattern
can be realized by the job-skip scheme.

Fig. 8 shows the result of dynamic failures of τ3. As can
be seen, the number of dynamic failures under the pre-skip
scheme (pattern) is zero, meaning that τ3 satisfies its weakly-
hard constraint. However, all the other schemes suffer from a
high number of dynamic failures.

1RM-RTO stands for Rate Monotonic Red Task Only.

15035

31577 31577

0

25563

Abort Delayed completion Pre-skip(slack) Pre-skip(pattern) Post-skip
0

1

2

3

N
u
m

b
er

 o
f

d
y
n
am

ic
 f

ai
lu

re
s

10
4

Dynamic failures

Fig. 8: Dynamic failures of τ3 (total 31578 jobs released)

Fig. 9 shows the observed effective and runtime utilization
values. The abort scheme shows the highest effective utiliza-
tion and the pre-skip scheme (pattern) has the lowest. This
is because the pattern-based scheduling pessimistically skips
the execution of higher-priority tasks even if there is enough
processor time to use.

0.7996
0.7453 0.7485

0.5064

0.7713

0.9896 1.0000

0.7485

0.5064

0.8920

Abort Delayed completion Pre-skip(slack) Pre-skip(pattern) Post-skip

Handling scheme

0

0.2

0.4

0.6

0.8

1

E
ff

ec
ti

v
e/

R
u

n
ti

m
e

u
ti

li
za

ti
o

n

Effective util

Runtime util

Fig. 9: Total effective and runtime utilization

VI. CONCLUSION

We proposed a unified runtime framework for multiple
deadline-miss handling schemes in weakly-hard real-time sys-
tems. The framework has been implemented in the Linux
kernel on Raspberry Pi with very low overhead, but it is
easily applicable to other OSs using fixed-priority preemptive
schedulers. Experimental results show that, depending on the
deadline-miss handling scheme used, the number of violations
of weakly-hard constraints as well as utilization metrics can
vary significantly for the same taskset and a different trend can
be observed for other tasksets. These results pave an interest-
ing research direction to investigating weakly-hard tasks under
diverse experimental conditions and new analysis techniques.
Furthermore, our framework can be extended beyond task-
level fixed-priority scheduling, e.g., a job-class-level fixed-
priority scheduler [2] to be presented in RTAS 2019. It can
also be used as an assessment tool for the issues that have
not studied much in the weakly-hard context such as an
inter-task dependency, shared resources, multicore systems,
and temporal interference from contention in cache and main
memory.

REFERENCES
[1] M. Asberg et al. Resource sharing using the rollback mechanism in

hierarchically scheduled real-time open systems. In IEEE RTAS, 2013.
[2] H. Choi, H. Kim, and Q. Zhu. Job-class-level fixed priority scheduling

of weakly-hard real-time systems. In IEEE RTAS, 2019.
[3] J. Goossens. (m, k)-firm constraints and dbp scheduling: impact of the

initial k-sequence and exact schedulability test. 2008.
[4] Z. A. H. Hammadeh, S. Quinton, M. Panunzio, R. Henia, L. Rioux, and

R. Ernst. Budgeting Under-Specified Tasks for Weakly-Hard Real-Time
Systems. In ECRTS, 2017.

[5] G. Koren and D. Shasha. Skip-over: Algorithms and complexity for
overloaded systems that allow skips. In RTSS, 1995.

[6] P. Ramanathan. Overload management in real-time control applications
using (m, k)-firm guarantee. IEEE Trans. on Par and Dist. Syst.,
10(6):549–559, Jun 1999.

[7] Y. Sun and M. D. Natale. Weakly hard schedulability analysis for fixed
priority scheduling of periodic real-time tasks. ACM TECS, 2017.

4

	Introduction
	Related work
	System model
	Runtime Framework
	Periodic execution support
	Job abort
	Delayed completion
	Job pre-skip
	Job post-skip

	Evaluation
	Conclusion

