
RTAS-WiP 2019

A Unified Runtime Framework for
Weakly-hard Real-time Systems

Hyunjong Choi, Hyoseung Kim

Weakly-hard real-time systems ‡

 Improve resource usage efficiency
 Tolerable to some deadline misses w/o affecting functional correctness

Various assumptions on handling of deadline-missed jobs

2

I. Introduction & Related Work

𝒎𝒎,𝑲𝑲 : at most 𝑚𝑚 jobs can miss their deadlines
among any 𝐾𝐾 consecutive jobs

‡ G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,” IEEE transactions on Computers, 2001

Handling scheme Prior work
Job abort Goossens (RTN, 2008), Koren (RTSS, 1995), Ramanathan (1999)

Delayed completion Hammadeh (ECRTS 2017), Sun (TECS, 2017)
Job pre-skip Koren (RTSS, 1995), Ramanathan (1999)

< Weakly-hard studies based on job handlings >

No prior work of comparative analysis among various handling schemes

 Four handling schemes
Handling of deadline-missed jobs

3

I. Introduction & Related Work

 Terminate immediately
 No effect on the next released job
 Drawback: implementation cost (rollback :

system-level vs. task-level)

Job abort

 Run until a job completes
 Can Improve quality of service of a system
 Drawback: no merits of weakly-hard concept

in overloaded situations

Delayed completion

 Determine at a job release time
 Online (slack time) and offline

(predetermined patterns)
 Drawback: runtime overhead (slack) and

underutilization

Job pre-skip

 Run until a job completes, but discard the
next released job

 Drawback: degradation of quality of service
of a system

Job post-skip

Runtime framework
 Job abort
 Rollback mechanism (task-level)
Step 1. Store a checkpoint
Step 2. Notify a deadline miss to the user space
Step 3. Recover from the checkpoint

Delayed completion
 Put in sleep mode when the
latest released job is completed

 Job pre-skip
 Online vs offline

4

Additional sequences based on handling schemes

< Runtime mechanism for periodic task execution >

< Timer sequence in job pre-skip scheme >

Computational overheads
 Experimental setup
 Linux kernel running on Raspberry Pi 3 (Quad Cortex A53 @ 1.2GHz)

 Four major sequences that can cause extra runtime overhead
 sigsetjmp (job abort), siglongjmp (job abort), slack (job pre-skip),

pattern (job pre-skip)

5

III. Evaluation

Acceptabily small in 𝜇𝜇𝜇𝜇 units, compared to periods of tasks denoted in ms

Conclusion & Future work
Conclusion
 Proposed a unified runtime framework for multiple deadline-miss handling

schemes in weakly-hard real-time systems
 Applicable to other OSs using fixed-priority preemptive schedulers
 Different results (violation of the constraints, utilization) observed depending

on the handling scheme for the same taskset

 Future work
Will use for the issues that have not studied much in weakly-hard context (e.g.,

inter-task dependency, shared resources, multicore systems, and contention in
cache and main memory)

6

Q & A
7

Thank you

A Unified Runtime Framework for
Weakly-hard Real-time Systems

Hyunjong Choi, Hyoseung Kim

Runtime mechanism
A fundamental runtime mechanism for periodic task execution

8

II. Runtime Framework

Call to register as a real-
time task (SYSCALL)

- Interrupt at every cycle of a
periodic task
- Awake a sleeping task
- Stamp a release time (profiling)

- Put a task sleep
- Record a complete time (profiling)
- Wait until the next timer interrupt

Job complete
(SYSCALL)

Complete sequence
- Assign a real time priority
- Set a task as a real-time task
- Register a timer

Initializer

System call Awake a taskLegend

Timer : release & deadline

Periodic task

Kernel-space
User-space

A C D

- Trace tasks on the resource (profiling)

SchedulerB

Begin

Execution of a task
Create a thread

Sequence in user-space

Repeat

Additional sequences based on
handling schemes

Job abort scheme
 Employed task-level rollback approach

// Kernel signal handler
signal_handler {
siglongjmp(sigjmp_buf);

}
// Periodic task
While (1) {
sigsetjmp(sigjmp_buf);

}
User-space

// Deadline timer
Timer {
If (!𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) {

// Send signal to User-space
send_sig_info();

}
}

PC & SP rollback,

Kernel-space

Step 1. Store a checkpoint
Step 2. Notify deadline miss

Step 3. Recover from
the checkpoint

Case study
 Select a taskset given in the study ‡

 RM-RTO⤉ algorithm

10

III. Evaluation

‡ G. Koren and D. Shasha. Skip-over: Algorithms and complexity for overloaded systems that allow skips. In RTSS, 1995
✻ Tolerance of a task to missing deadlines
♀ A task experiences more than m deadline misses in a window of K jobs.

Tasks T [ms] C [ms]

𝜏𝜏1 6 1
𝜏𝜏2 7 4
𝜏𝜏3 19 5

< Taskset 2 with skip parameter✻ of 2 >

< Dynamic failures ♀ >

⤉RM-RTO stands for Rate Monotonic Red Task Only.

	A Unified Runtime Framework for Weakly-hard Real-time Systems
	Weakly-hard real-time systems ‡
	Handling of deadline-missed jobs
	Runtime framework
	Computational overheads
	Conclusion & Future work
	Q & A
	Runtime mechanism
	Job abort scheme
	Case study

