A Unified Runtime Framework for Weakly-hard Real-time Systems

Hyunjong Choi, Hyoseung Kim

Weakly-hard real-time systems

- Improve resource usage efficiency
 - Tolerable to some deadline misses w/o affecting functional correctness

(*m*, *K*): at most *m* jobs can miss their deadlines among any *K* consecutive jobs

Various assumptions on handling of deadline-missed jobs

Handling scheme	Prior work	
Job abort	Goossens (RTN, 2008), Koren (RTSS, 1995), Ramanathan (1999)	
Delayed completion	Hammadeh (ECRTS 2017), Sun (TECS, 2017)	
Job pre-skip	Koren (RTSS, 1995), Ramanathan (1999)	

< Weakly-hard studies based on job handlings >

No prior work of comparative analysis among various handling schemes

^{*} G. Bernat, A. Burns, and A. Liamosi, "Weakly hard real-time systems," IEEE transactions on Computers, 2001

Handling of deadline-missed jobs

Four handling schemes

Job abort

- ✓ Terminate immediately
- $\checkmark\,$ No effect on the next released job
- ✓ Drawback: implementation cost (rollback : system-level vs. <u>task-level</u>)

Delayed completion

- ✓ Run until a job completes
- ✓ Can Improve quality of service of a system
- Drawback: no merits of weakly-hard concept in overloaded situations

Job pre-skip

- \checkmark Determine at a job release time
- ✓ Online (slack time) and offline (predetermined patterns)
- ✓ Drawback: runtime overhead (slack) and underutilization

Job post-skip

- ✓ Run until a job completes, but discard the next released job
- Drawback: degradation of quality of service of a system

Runtime framework

Job abort

- Rollback mechanism (task-level)
- Step 1. Store a checkpoint
- Step 2. Notify a deadline miss to the user space
- Step 3. Recover from the checkpoint
- Delayed completion
 - Put in sleep mode when the latest released job is completed
- Job pre-skip
 - Online vs offline

Additional sequences based on handling schemes

Computational overheads

- Experimental setup
 - Linux kernel running on Raspberry Pi 3 (Quad Cortex A53 @ 1.2GHz)
- Four major sequences that can cause extra runtime overhead
 - sigsetjmp (job abort), siglongjmp (job abort), slack (job pre-skip), pattern (job pre-skip)

Conclusion & Future work

- Conclusion
 - Proposed a unified runtime framework for multiple deadline-miss handling schemes in weakly-hard real-time systems
 - Applicable to other OSs using fixed-priority preemptive schedulers
 - Different results (violation of the constraints, utilization) observed depending on the handling scheme for the same taskset
- Future work
 - Will use for the issues that have not studied much in weakly-hard context (e.g., inter-task dependency, shared resources, multicore systems, and contention in cache and main memory)

A Unified Runtime Framework for Weakly-hard Real-time Systems

Hyunjong Choi, Hyoseung Kim

Runtime mechanism

• A fundamental runtime mechanism for periodic task execution

Job abort scheme

Employed *task-level rollback* approach

PC & SP rollback,

Case study

- Select a taskset given in the study
 - RM-RTO[‡] algorithm

Tasks	T [ms]	C [ms]
$ au_1$	6	1
$ au_2$	7	4
$ au_3$	19	5

< Taskset 2 with skip parameter * of 2 >

[†] RM-RTO stands for Rate Monotonic Red Task Only

^{*} G. Koren and D. Shasha. Skip-over: Algorithms and complexity for overloaded systems that allow skips. In *RTSS*, 1995

* Tolerance of a task to missing deadlines

^{\circ} A task experiences more than *m* deadline misses in a window of *K* jobs.