RTAS-WIP 2019

A Unified Runtime Framework for
Weakly-hard Real-time Systems

Hyunjong Choi, Hyoseung Kim

|. Introduction & Related Work

Weakly-hard real-time systems

» |[mprove resource usage efficiency
= Tolerable to some deadline misses w/o affecting functional correctness

(m, K): at most m jobs can miss their deadlines
among any K consecutive jobs

= Various assumptions on handling of deadline-missed jobs

Handling scheme

Job abort Goossens (RTN, 2008), Koren (RTSS, 1995), Ramanathan (1999)
Delayed completion Hammadeh (ECRTS 2017), Sun (TECS, 2017)
Job pre-skip Koren (RTSS, 1995), Ramanathan (1999)

< Weakly-hard studies based on job handlings >
» No prior work of comparative analysis among various handling schemes

G Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,” IEEE transactions on Computers, 2001

2

|. Introduction & Related Work

Handling of deadline-missed jobs

* Four handling schemes

Job abort Job pre-skip

v Terminate immediately v Determine at a job release time
v No effect on the next released job v Online (slack time) and offline
v Drawback: implementation cost (rollback : (predetermined patterns)
system-level vs. task-level) v Drawback: runtime overhead (slack) and

underutilization

Job post-skip

v" Run until a job completes

v Can Improve gquality of service of a system

v" Drawback: no merits of weakly-hard concept
In overloaded situations

v Run until a job completes, but discard the
next released job

v" Drawback: degradation of quality of service
of a system

. < Runtime mechanism for periodic task execution >
Runtime framework el ok oot

Create a thread /—b Periodic task
\ Call to register as a real- Repeat Job complete
ime fask .
[] J O b ab 0 rt L Use:-fspac:me_r(SYSCALL) Begin MO (SYSCALL)
~ Kernel-space I -
- &) Initiali ©) Thmer : release & deadline (@) Complet:
= Rollback mechanism (task-level) e e MR
- Set a task as a real-time task || pedodic task - Record a complete time (profiling)
- _Reoi Hm - Awake a slecping task - Wait until the next timer intermipt
Step 1. Store a checkpoint BT e mtoing) | 0 1o ne

Step 2. Notify a deadline miss to the user space | === N _
Step 3. Recover from the checkpoint Additional sequences based on handling schemes

Timer ISR
» Delayed completion
= Put in sleep mode when the i

No | (pre_skip_flag = 0)

latest released job Is completed @ ,(p skip_flag = o)D
o not wake up a task
Yes (pre_skip_flag = 1)

- Wake up a task < . -
| JOb p re_SkI p | ‘ Yes (pre_skip_flag = 1)
u O N I INe VS Ofﬂ Ine Release the next instance

< Timer sequence in job pre-skip scheme >

I11. Evaluation

Computational overheads

= Experimental setup
» Linux kernel running on Raspberry Pi 3 (Quad Cortex A53 @ 1.2GHz)

» Four major sequences that can cause extra runtime overhead

= sigsetjmp (job abort), siglongjmp (job abort), slack (job pre-skip),
pattern (job pre-skip)

"o 10+ 9.7920 B Mean-

a B Max

= —Min

P 4 360 6.078 5.6770

g7 ' 6980 :

= 2052 2.5000

> 15540888 2500 7180

o 0] 0.213 .1040
setjmp siglongjmp Slack time Pattern

Overheads

» Acceptabily small in us units, compared to periods of tasks denoted in ms

B
Conclusion & Future work

= Conclusion

= Proposed a unified runtime framework for multiple deadline-miss handling
schemes in weakly-hard real-time systems

= Applicable to other OSs using fixed-priority preemptive schedulers

= Different results (violation of the constraints, utilization) observed depending
on the handling scheme for the same taskset

= Future work

= Will use for the issues that have not studied much in weakly-hard context (e.g.,
Inter-task dependency, shared resources, multicore systems, and contention in
cache and main memory)

Thank you

A Unified Runtime Framework for
Weakly-hard Real-time Systems

Hyunjong Chol, Hyoseung Kim

Q0&A

Runtime mechanism

= A fundamental runtime mechanism for periodic task execution

 Create a thread Periodic task
| — Repeat
\ Call to register as a real-
Job complete

time task (SYSCALL) Begin I

SYSCALL
- User-space I _'IL () J
~ Kernel- space % N
@ Initializer (© Timer : release & deadline @ Complete sequence

- Assign a real time priority - Interrupt at every cycle of a - Put a task sleep

- Set a task as a real-time task || periodic task - Record a complete time (profiling)

- Register a timer - Awake a sleeping task - Wait until the next timer interrupt

Scheduler - Stamp a release time (profiling)) -
- Trace tasks on the resource (profiling) Additional S.e quences based on

L handling schemes)

—
Job abort scheme
» Employed task-level rollback approach mmmm) PC & SP rollback,

N\

(// Deadline timer // Kernel signal handler EESIEoReRREIEolEI@i{oliy

Timer { signal_handler { the checkpoint

If (! Criag) { siglonggmp(sigjmp_buf);
// Send signal to User-space
send_sig _info();

}

/I Periodic task :
While (1) { Step 1. Store a checkpoint

sigsetjmp(sigjmp_buf);

R

t

Kernel-space “ 1}

User-space
iJ3,1 Abort a job~_ I:T TJ‘ﬁA Abort a job

S R 0 | “TJﬁT .
woitg hg bd i B BI B .

0 0.1 02 0.3 04 0.5 0.6 07 08 09 1
Time[sec] M Execution of a job 4 Release ajob ¢ Complete ajob ¢Abort a job

I11. Evaluation

Case study

= Select a taskset given in the study i

. P 4
= RM-RTO? algorithm - B ——— 31577 31577 |
&3f 25563 -
=
71 6 1 ; 1 l Q _
=]
T2 7 4 E 0 Abort Delayed completion Pre-skip(slack) Pre-skip(pattem) Post-skip
s 19 5 < Dynamic failures % >
=
. . - S | | : o
< Taskset 2 with skip parameter™ of 2 > g 0.9896 1.0000 M Eifective uil
S 1r Ak 0.8920 ~
Sog 0J20 0.7453 0.74850.7485 0.7713 -
g
goor 0.5064 0.5064 -
o4t -
2
S02F -
0
= 9 ! ! ! ! !
. = Abort Delayed completion Pre-skip(slack) Pre-skip(pattern) Post-skip
*RM-RTO stands for Rate Monotonic Red Task Only: Handling scheme

* G. Koren and D. Shasha. Skip-over: Algorithms and complexity for overloaded systems that allow skips. In RTSS, 1995
* Tolerance of a task to missing deadlines
¢ Atask experiences more than m deadline misses in a window of K jobs.

10

	A Unified Runtime Framework for Weakly-hard Real-time Systems
	Weakly-hard real-time systems ‡
	Handling of deadline-missed jobs
	Runtime framework
	Computational overheads
	Conclusion & Future work
	Q & A
	Runtime mechanism
	Job abort scheme
	Case study

