
RTAS 2019

Job-Class-Level Fixed Priority Scheduling
of Weakly-Hard Real-Time Systems

Hyunjong Choi, Hyoseung Kim, Qi Zhu†

†

Outline

Introduction

Related Work & Motivation

Job-class-level Scheduling

Schedulability Analysis

Evaluation

Conclusion and Future Work

2

I

II

III

IV

V

VI

Outline

Related Work & Motivation

Job-class-level Scheduling

Schedulability Analysis

Evaluation

Conclusion and Future Work

3

II

III

IV

V

VI

I Introduction

Weakly-hard real-time systems
Many practical systems
 Tolerable to some deadline misses w/o affecting functional correctness

4

I. Introduction

‡ G. Bernat, A. Burns, and A. Liamosi, “Weakly hard real-time systems,” IEEE transactions on Computers, 2001

Weakly-hard real-time systems
to improve resource usage efficiency‡

𝒎𝒎,𝑲𝑲 : at most 𝑚𝑚 jobs can miss their deadlines
among any 𝐾𝐾 consecutive jobs

Effectiveness of weakly-hard real-time systems
Navigation of an autonomous vehicle in Gazebo with ROS
 A periodic task: ControlTask†

 Mission: Drive from start to end points
 Injected deadline misses w.r.t. weakly-hard constraints

5

I. Introduction

† It sends velocity command to robot base(actuator) at the specified rate defined as a control frequency.

< Navigation of an autonomous vehicle – ControlTask exp. >

Tasks with bounded deadline misses can produce a functional correctness

(0, 10)
(2, 10)
(4, 10)
(6, 10)
(8, 10)
(9, 10)

Resource can be reserved for the other tasks

Limitation of task-level fixed-priority scheduling
 Simple taskset with weakly-hard constraints

6

Specifications

Task 1 𝑇𝑇1 = 11,𝐶𝐶1 = 6, 𝑚𝑚1= 2,𝐾𝐾1 = 4

Task 2 𝑇𝑇2 = 7,𝐶𝐶2 = 4, 𝑚𝑚2= 4,𝐾𝐾2 = 7
< A taskset example >

II. Motivation

No matter which task has a higher priority,
NOT schedulable !

Dynamic failure †

Dynamic failure

Time[sec]

Completed job Missed job

Task 2 has a higher priority

Task 1 has a higher priority

New approach

† Task experiences more than m deadline misses in a window of K jobs.

Contributions
 Main contributions
 Propose a new job-class-level fixed-priority scheduler based

on meet-oriented classification of jobs of tasks
 Present the schedulability analysis framework for our

proposed scheduler
 Generalization of task-level fixed-priority scheduling
 Outperforms the latest work in terms of task schedulability,

analysis running time
 Implement our scheduler in the Linux kernel running on

Raspberry Pi

7

II. Contributions

Outline

Introduction

Related Work & Motivation

Schedulability Analysis

Evaluation

Conclusion and Future Work

8

I

II

III

IV

V

VI

Job-class-level Scheduling

System Model
Task model
 𝜏𝜏𝑖𝑖 ≔ (𝐶𝐶𝑖𝑖 ,𝐷𝐷𝑖𝑖 ,𝑇𝑇𝑖𝑖 , 𝑚𝑚𝑖𝑖 ,𝐾𝐾𝑖𝑖)
 𝐶𝐶𝑖𝑖: The worse-case execution time
 𝐷𝐷𝑖𝑖: The relative deadline
 𝑇𝑇𝑖𝑖: The minimum inter-arrival time
 (𝑚𝑚𝑖𝑖 , 𝐾𝐾𝑖𝑖): The weakly-hard constraints (𝑚𝑚𝑖𝑖 < 𝐾𝐾𝑖𝑖). For a hard real-time task,
𝑚𝑚𝑖𝑖 = 0 and 𝐾𝐾𝑖𝑖 = 1.

Preemptive scheduling
Uniprocessor system

9

III. Job-Class-Level Fixed-Priority Scheduling

Job-Class-Level Fixed-Priority Scheduling

10

III. Job-Class-Level Fixed-Priority Scheduling

 Job classification
 Assign different priorities to individual job-classes

 For instance, (m, K) = (2, 4) can have job classes: J0, J1, and J2

 Priority of a job-class decrease monotonically

Meet-oriented : the number of prior deadlines consecutively met

Meet
J𝟑𝟑J𝟎𝟎 J𝟑𝟑 J𝟎𝟎 J𝟏𝟏

Miss MeetMeet
J𝟏𝟏

Meet
J𝟐𝟐

Miss Meet
J𝟐𝟐

Bounding consecutive deadline misses
Miss threshold 𝑤𝑤𝑖𝑖
 Limit the distance from the current job to the previous deadline-met jobs to

bound the number of consecutive deadline misses

 Ensure enough number of jobs running with the highest priority job-class
 For instance, (m, K) = (5, 7) where 𝑤𝑤𝑖𝑖 = 2 allows 2 consecutive deadline

misses

11

III. Job-Class-Level Fixed-Priority Scheduling

𝑤𝑤𝑖𝑖 = max
𝐾𝐾𝑖𝑖

𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖
− 1,1

Priority assignment

12

III. Job-Class-Level Fixed-Priority Scheduling

 A heuristic priority assignment
 An extension of the deadline monotonic

(DM) priority assignment

 Rule.
 Assign higher priority to a job-class with

a smaller index
 For job-classes with the same index,

• Higher priority to shorter deadline (q =
0)

• Higher priority to shorter miss threshold
with deadlines for tie-breaking (q > 0)

Subsumes the task-level DM priority assignment
Lemma 3.

An example of job-class-level scheduling
With the same taskset at page 6.

13

III. Job-Class-Level Fixed-Priority Scheduling

Completed Missed

Specifications

Task 1 𝑇𝑇1 = 11,𝐶𝐶1 = 6, 𝑚𝑚1= 2,𝐾𝐾1 = 4

Task 2 𝑇𝑇2 = 7,𝐶𝐶2 = 4, 𝑚𝑚2= 4,𝐾𝐾2 = 7

Schedulable !!

< A taskset example >

Outline

14

Introduction

Related Work & Motivation

Job-class-level Scheduling

Evaluation

Conclusion and Future Work

I

II

IV

III

V

VI

Schedulability Analysis

Schedulability Analysis
 The schedulability analysis of tasks with weakly-hard constraints

under job-class-level scheduling decompose

15

IV. Schedulability Analysis

Step 2: Finding all possible job-class patterns
Used reachability tree

Step 1: Analyzing the WCRT of each job-class
Extension of WCRT in task-level

< Schedulability analysis process of job-class-level scheduler >

Worse-case response time of job-classes
Worse-case response time of J𝑖𝑖

𝑞𝑞 is bounded by the recurrence:

𝑊𝑊𝑖𝑖
𝑞𝑞 is an upper-bound of interference imposed on J𝑖𝑖

𝑞𝑞

 Each job-class has a different minimum job-class inter-arrival time, 𝜂𝜂(𝐽𝐽𝑘𝑘
𝑝𝑝)

16

IV. Schedulability Analysis > Step 1. WCRT of job-classes

𝑅𝑅𝑖𝑖
𝑞𝑞,𝑛𝑛+1 ← 𝐶𝐶𝑖𝑖 + �

𝜏𝜏𝑘𝑘∈ Γ − 𝜏𝜏𝑖𝑖

𝑊𝑊𝑖𝑖
𝑞𝑞(𝑅𝑅𝑖𝑖

𝑞𝑞,𝑛𝑛, 𝜏𝜏𝑘𝑘)

Generalization of the task-level iterative response time test for hard real-time tasks.
Lemma 8.

† M. Josephand P. Pandya, “Finding response times in a real-time system,” The Computer Journal, 1986.

𝑊𝑊𝑖𝑖
𝑞𝑞(𝑡𝑡, τ𝑘𝑘) = min �

∀𝑝𝑝:𝜋𝜋𝑖𝑖
𝑞𝑞<𝜋𝜋𝑘𝑘

𝑝𝑝

𝑡𝑡 + 𝐽𝐽𝑘𝑘
𝜂𝜂(𝐽𝐽𝑘𝑘

𝑝𝑝)
× 𝐶𝐶𝑘𝑘 ,

𝑡𝑡 + 𝐽𝐽𝑘𝑘
𝑇𝑇𝑘𝑘

⋅ 𝐶𝐶𝑘𝑘

Schedulability check
 Schedulability test of a task with 𝑚𝑚𝑖𝑖/𝐾𝐾𝑖𝑖 ≥ 0.5

17

IV. Schedulability Analysis > Step 2. Schedulability check

A task 𝜏𝜏𝑖𝑖 is always schedulable if the ratio of 𝒎𝒎𝒊𝒊/𝑲𝑲𝒊𝒊 is greater than
or equal to 0.5 and it satisfies the prerequisite given by Lemma 9.

Lemma 10.

Step 1: Show at least 1 deadline met in 𝐾𝐾𝑖𝑖 window by using a necessary condition
WCRT(J𝑖𝑖0) ≤ 𝐷𝐷𝑖𝑖𝑤𝑤𝑖𝑖 + 1 ⋅ 𝛼𝛼 ≤ 𝐾𝐾𝑖𝑖

Step 2: Show that the number of deadline met satisfies the constraint
1

𝑤𝑤𝑖𝑖+1
≥ 𝐾𝐾𝑖𝑖−𝑚𝑚𝑖𝑖

𝐾𝐾𝑖𝑖
𝐾𝐾𝑖𝑖

𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖
≤

𝐾𝐾𝑖𝑖
𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖

Always true as 𝑚𝑚𝑖𝑖 ≤ 𝐾𝐾𝑖𝑖 − 1

Reachability tree
 For tasks with 𝑚𝑚𝑖𝑖/𝐾𝐾𝑖𝑖 < 0.5, find all possible job-class patterns for 𝐾𝐾𝑖𝑖

job executions using reachability tree

18

IV. Schedulability Analysis > Step 2. Schedulability check

Branch
(meet)
Branch
(miss)
Node

J0

J0

Depth 1

Depth K

…

Root

01010 11111
Leaf

10110 < Reachability tree >
𝐾𝐾𝑖𝑖 sequences

The reachability trees of a task 𝜏𝜏𝑖𝑖 represent all possible job-class patterns
that the task can experience at its runtime for 𝐾𝐾𝑖𝑖 execution window

Lemma 13.

Outline

19

Introduction

Related Work & Motivation

Job-class-level Scheduling

Schedulability Analysis

Conclusion and Future Work

I

II

V

III

VI

Evaluation

IV

Implementation cost
 Measure runtime overhead of the proposed scheduler implementation
 Experimental setup
 Linux kernel v4.9.80 running on Raspberry Pi 3
 ARM Cortex-A53 @ clock frequency of 1.2 GHz
 Run 5 tasks with period of 20ms to 40ms for 10 minutes (118,569 jobs)

20

V. Evaluation > Implementation cost

Type Mean Max Min 99%th

Updating 𝜇𝜇-pattern† 0.3002 1.1460 0.1040 0.6250

Updating job-class index 1.5035 11.8750 0.5210 2.5000

Changing task priority 4.7633 28.9580 3.0210 11.3020

Rollback
Checkpointing 1.9413 9.3230 1.2500 3.2290

Recovery 6.1257 24.8430 0.4680 8.3146

< Runtime overhead [𝜇𝜇𝜇𝜇] >
† Represents a sequence of deadline met and missed jobs of a task, (G. Bernat, A. Burns, and A. Liamosi. “Weakly hard
real-time systems”, 2001)

 The evaluation is conducted in two ways:
 Comparison with other weakly-hard scheduling schemes (WSA†, RTO-RM✻)
 WSA: delayed completion for deadline-missed jobs
 RTO-RM: job abort for deadline-missed jobs

 Exploration of the proposed scheduler under diverse experimental conditions
 Performance metric : percentage of schedulable taskset, analysis running time

 Taskset generation

21

V. Evaluation > Schedulability experiments

† Y. Sun and M. D. Natale, “Weakly hard schedulability analysis for fixed priority scheduling of periodic real-time tasks,” TECS, 2017
⋇ G. Koren and D. Shasha. “Skip-over: Algorithms and complexity for overloaded systems that allow skips”, RTSS, 1995
E.Biniand G.C.Buttazzo. “Measuring the performance of schedulability tests”, Real-Time Systems, 2005

Number of tasksets Task utilization
(UUniFast algorithm#) Task period [m𝜇𝜇] K range

Value 1,000 [0.8, 1.8] [10, 1000] {5, 10, 15}

Schedulability experiments

Taskset schedulability
 Comparison of schedulability ratio with other schemes
 1,000 tasksets with 20 tasks
 𝐾𝐾𝑖𝑖 = 10,𝑚𝑚𝑖𝑖 = [1, 9], common (𝑚𝑚,𝐾𝐾) for a taskset

22

V. Evaluation > Schedulability experiments > Comparison

56%

26%
16%

JCLS better utilizes CPU resource when there are overloaded weakly-
hard tasksets

Analysis running time
 Time to determine the schedulability of a given taskset
 By the number of tasks in a taskset (10, 30, and 50 tasks)
 1,000 tasksets, 𝐾𝐾𝑖𝑖 = 10,𝑚𝑚𝑖𝑖 = 1, 9
 JCLS (on Raspberry Pi 3), WSA (on Intel Core-i7 for CPLEX Optimizer)

23

V. Evaluation > Schedulability experiments > Comparison

The analysis time of JCLS is shorter than that of WSA
More applicable to runtime admission control

Number of tasks Approach Mean Max

10
JCLS 0.0010 0.0046
WSA 0.2739 114.2892

30
JCLS 0.0112 0.0432
WSA 25.7284 1800.5996

50
JCLS 0.0331 0.1463
WSA 78.5982 3002.5189

< Analysis running time [sec] >

Conclusion
 New job-class-level fixed-priority scheduling and analysis for weakly-hard

real-time systems
 Proposed scheduler outperforms prior work with respect to taskset

schedulability and analytical complexity
 Proposed approach is effective in overloaded situations (e.g., maximum

utilization is higher than 1)

 Future work
 Address the pessimism of our schedulability analysis when the ratio of 𝑚𝑚𝑖𝑖/𝐾𝐾𝑖𝑖

is less than 0.5

24

VI. Conclusion & Future work

Conclusion & Future work

Q & A
25

Thank you

Job-Class-Level Fixed Priority Scheduling
of Weakly-Hard Real-Time Systems

Hyunjong Choi, Hyoseung Kim, Qi Zhu

Appendix
1. Related work
2. Utilizations
3. Benefits of the meet-oriented classification
4. Minimum time interval of a job-class
5. Interference of job-class-level analysis
6. Schedulability check
7. Complexity of reachability tree
8. An example of reachability tree

26

Related work
Goals in weakly-hard systems : guarantee & improve schedulability
 Scheduling: task-level fixed-priority scheduling
 Assumptions : initial offset is known†, periodic task⋄ with no jitter‡

†, ‡Bernat et al. works on the schedulability of periodic tasks with weakly-hard
constraints under fixed-priority scheduling (RTSS’2001)
 Typical worst-case analysis (TWCA) approaches significantly contributes to

weakly-hard systems (DATE’2012, DATE’2013, EMSOFT’2014, ECRTS’2015)
 Assume exact arrival patterns of task instances is known

⋄Sun et al. relaxed the assumption on offset and jitter (TECS’2017)

†,⋄, ‡ Goossens et al. distanced-based dynamic-priority scheduling (RTNS’2008)

27

II. Related work

Limits applicability to recent cyber physical systems

 Represent the resource usage
 Maximum utilization

 Minimum utilization

Utilizations

28

Maximum utilization of a task 𝜏𝜏𝑖𝑖, 𝑈𝑈𝑖𝑖𝑀𝑀, is the maximum amount
of CPU resource that 𝜏𝜏𝑖𝑖 can utilize, defined as 𝑈𝑈𝑖𝑖𝑀𝑀 = 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖

Definition 1.

Minimum utilization of a task 𝜏𝜏𝑖𝑖 , 𝑈𝑈𝑖𝑖𝑚𝑚, is the CPU resource
used by 𝜏𝜏𝑖𝑖 when it experiences the maximum deadline misses
allowed by its (𝑚𝑚𝑖𝑖 ,𝐾𝐾𝑖𝑖) constraint, i.e., 𝑈𝑈𝑖𝑖𝑚𝑚 = 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖
× 𝐾𝐾𝑖𝑖−𝑚𝑚𝑖𝑖

𝐾𝐾𝑖𝑖

Definition 2.

✻Maximum total utilization: 𝑈𝑈𝑀𝑀 = ∑𝑖𝑖=1𝑁𝑁 𝐶𝐶𝑖𝑖/𝑇𝑇𝑖𝑖

✻Minimum total utilization: 𝑈𝑈𝑚𝑚 = ∑𝑖𝑖=1𝑁𝑁 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖

× 𝐾𝐾𝑖𝑖−𝑚𝑚𝑖𝑖
𝐾𝐾𝑖𝑖

Benefits of meet-oriented classification
 It reduces interferences imposed by higher priority jobs by modulating

consecutive meets
 Enables to avoid a pessimism when we evaluate WCRT of a job.

Benefits of the meet-oriented classification

29

May miss or meet
Always meet

Deadline missed
Deadline met

Low High

Job-classes J0 J1 J2 J3

Meet/Miss

Priorities 1 3 5 7

< After scheduling >

Start scheduling

J1,2
1 J1,3

2 J1,4
3 J1,5

3J1,1
0

J1,6
3 release

3 missed jobs

3 consecutive high priority jobs

J1,2
1 J1,3

2J1,1
0

J1,5
3 release

3 missed jobs

J1,4
3

J1,2
1 J1,3

2 J1,4
3 J1,5

3J1,1
0

J1,7
2 release

J1,6
3

< Consecutive execution of high-priority jobs
under miss-oriented job classification >

𝑚𝑚,𝐾𝐾 = (3,6)

As a first step, analyzing the WCRT of individual job-classes
Upper bound the maximum interference imposed by the jobs of other

tasks with higher-priority job-classes

30

IV. Schedulability Analysis > Step 1. WCRT of job-classes

Minimum job-class inter-arrival time (1/4)

• 𝜂𝜂 J𝑖𝑖
𝑞𝑞 = 1 ⋅ 𝑇𝑇𝑖𝑖𝑞𝑞 = 𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖

• 𝜂𝜂 J𝑖𝑖
𝑞𝑞 = 𝑞𝑞 + 1 ⋅ 𝑇𝑇𝑖𝑖, if 𝑤𝑤𝑖𝑖 = 1

• 𝜂𝜂 J𝑖𝑖
𝑞𝑞 = 1 ⋅ 𝑇𝑇𝑖𝑖, if 𝑤𝑤𝑖𝑖 > 1

𝑞𝑞 < 𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖 &

WCRT(J𝑖𝑖
𝑞𝑞) > 𝐷𝐷𝑖𝑖

• 𝜂𝜂 J𝑖𝑖
𝑞𝑞 = 𝑤𝑤𝑖𝑖 + 1 ⋅ 𝑇𝑇𝑖𝑖, if 𝑞𝑞 = 0

• 𝜂𝜂 J𝑖𝑖
𝑞𝑞 = 𝑞𝑞 + 2 ⋅ 𝑇𝑇𝑖𝑖, if 𝑞𝑞 > 0

𝑞𝑞 < 𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖 &

WCRT(J𝑖𝑖
𝑞𝑞) ≤ 𝐷𝐷𝑖𝑖

J0

Ex) Maximum job-class index : 3

J1 J3J2 J?

1) WCRT(J𝑖𝑖
𝐾𝐾𝑖𝑖−𝑚𝑚𝑖𝑖) ≤ 𝐷𝐷𝑖𝑖

2) WCRT(J𝑖𝑖
𝐾𝐾𝑖𝑖−𝑚𝑚𝑖𝑖) > 𝐷𝐷𝑖𝑖

J0 J1 J3J2 J?Meet

Miss J0 J1 J3J2 J?

Deadline met
Deadline missed

Worst case, 𝜂𝜂 J𝑖𝑖
𝑞𝑞 = 1 ⋅ 𝑇𝑇𝑖𝑖

Minimum time interval of a job-class (2/4)
 A job-class whose the WCRT > 𝐷𝐷𝑖𝑖,

31

The minimum inter-arrival time of J𝑖𝑖
𝑞𝑞 where 𝑞𝑞 < 𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖 and the WCRT of

J𝑖𝑖
𝑞𝑞 is greater than 𝐷𝐷𝑖𝑖 is given by

𝜂𝜂 J𝑖𝑖
𝑞𝑞 = � 𝑞𝑞 + 1 ⋅ 𝑇𝑇𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖 = 1

1 ⋅ 𝑇𝑇𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖 > 1

Lemma 5.

WCRT > 𝐷𝐷𝑖𝑖 and 𝑤𝑤𝑖𝑖 = 1

Minimum time interval of a job-class (3/4)
 A job-class whose the WCRT > 𝐷𝐷𝑖𝑖,

32

The minimum inter-arrival time of J𝑖𝑖
𝑞𝑞 where 𝑞𝑞 < 𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖 and the WCRT of

J𝑖𝑖
𝑞𝑞 is greater than 𝐷𝐷𝑖𝑖 is given by

𝜂𝜂 J𝑖𝑖
𝑞𝑞 = � 𝑞𝑞 + 1 ⋅ 𝑇𝑇𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖 = 1

1 ⋅ 𝑇𝑇𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖 > 1

Lemma 5.

WCRT > 𝐷𝐷𝑖𝑖 and 𝑤𝑤𝑖𝑖 > 1

Minimum time interval of a job-class (4/4)
 A job-class whose the WCRT ≤ 𝐷𝐷𝑖𝑖,

33

The minimum inter-arrival time of J𝑖𝑖
𝑞𝑞 where 𝑞𝑞 < 𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖 and the WCRT of

J𝑖𝑖
𝑞𝑞 is less than or equal to 𝐷𝐷𝑖𝑖 is given by

𝜂𝜂 J𝑖𝑖
𝑞𝑞 = � 𝑤𝑤𝑖𝑖 + 1 ⋅ 𝑇𝑇𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑞𝑞 = 0

(𝑞𝑞 + 2) ⋅ 𝑇𝑇𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑞𝑞 > 0

Lemma 6.

WCRT ≤ 𝐷𝐷𝑖𝑖

 An upper-bound of interference imposed on J𝑖𝑖
𝑞𝑞 by the higher priority jobs J𝑘𝑘

𝑝𝑝 of
another tasks during arbitrary time 𝑡𝑡
 Extension of previous work †

 𝒥𝒥𝑘𝑘 is a jitter of a higher priority job

34

Equation 1

† M. Josephand P. Pandya, “Finding response times in a real-time system,” The Computer Journal, 1986.

Overcome
pessimism of job-
class-level analysis

Jitter

𝑅𝑅𝑖𝑖 = 𝐶𝐶𝑖𝑖 + 𝐼𝐼𝑖𝑖 , 𝐼𝐼𝑖𝑖 = �
𝑗𝑗=1

𝑖𝑖−1
𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

𝐶𝐶𝑗𝑗

𝑊𝑊𝑖𝑖
𝑞𝑞 𝑡𝑡, 𝜏𝜏𝑘𝑘 = �

∀𝑝𝑝:𝜋𝜋𝑖𝑖
𝑞𝑞<𝜋𝜋𝑘𝑘

𝑝𝑝

𝑡𝑡 + 𝒥𝒥𝑘𝑘
𝜂𝜂(𝐽𝐽𝑘𝑘

𝑝𝑝)
× 𝐶𝐶𝑘𝑘,

𝑡𝑡 + 𝒥𝒥𝑘𝑘
𝑇𝑇𝑘𝑘

× 𝐶𝐶𝑘𝑘min

IV. Schedulability Analysis > Step 1. WCRT of job-classes

Interference of job-class-level analysis

Worse-case response time of job-classes
 Worse-case response time of J𝑖𝑖

𝑞𝑞 is bounded by the recurrence:

 Γ is the entire taskset
 Starts with 𝑅𝑅𝑖𝑖

𝑞𝑞,0 = 𝐶𝐶𝑖𝑖 and terminates when 𝑅𝑅𝑖𝑖
𝑞𝑞,𝑛𝑛 + 𝒥𝒥𝑖𝑖 > 𝐷𝐷𝑖𝑖 or 𝑅𝑅𝑖𝑖

𝑞𝑞,𝑛𝑛+1 =
𝑅𝑅𝑖𝑖
𝑞𝑞,𝑛𝑛

35

IV. Schedulability Analysis > Step 1. WCRT of job-classes

Theorem 1.

𝑅𝑅𝑖𝑖
𝑞𝑞,𝑛𝑛+1 ← 𝐶𝐶𝑖𝑖 + �

𝜏𝜏𝑘𝑘∈ Γ − 𝜏𝜏𝑖𝑖

𝑊𝑊𝑖𝑖
𝑞𝑞(𝑅𝑅𝑖𝑖

𝑞𝑞,𝑛𝑛, 𝜏𝜏𝑘𝑘)

The job-class-level response time test for weakly-hard tasks
given in Theorem 1 is a generalization of the task-level iterative
response time test for hard real-time tasks.

Lemma 8.

Schedulability check

36

IV. Schedulability Analysis > Step 2. Schedulability Check

A task is guaranteed to be schedulable if the μ-patterns at
all leaf nodes in its reachability trees satisfy the weakly-
hard constraint.

Theorem 2.

 Inspecting all possible patterns is an inefficient way ?
 However, in a reachability tree, the upper-bound on the number of nodes

follows the Fibonacci sequence (𝑖𝑖𝑖𝑖+2 = 𝑖𝑖𝑖𝑖+1 + 𝑖𝑖𝑖𝑖)
 For a task 𝜏𝜏𝑖𝑖 , the upper-bound of complexity of computing all the reachability

trees is represented as

37

𝑂𝑂𝑖𝑖 ≤ 𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖 + 1 ×
𝜌𝜌 𝐾𝐾𝑖𝑖+1 − 1 − 𝜌𝜌 𝐾𝐾𝑖𝑖+1

5
Where 𝜌𝜌 = 1+ 5

2
which is golden ratio and 𝐾𝐾𝑖𝑖 − 𝑚𝑚𝑖𝑖 + 1 is the number of job-

classes

Theorem 4. †

† Verner E. Hoggatt, Fibonacci and Lucas Numbers. Boston:Houghton Mifflin Co., 1969

IV. Schedulability Analysis

Complexity of a reachability tree

An example of reachability tree
A job-class J10 of Task 1

38

Miss Meet

Depth

0 : miss
1 : meet

Root J0,0
: 0

J1,0

J0,1

J1,1 J0,1

J2,0

J2,0
: 010

: 01

0

: 0101

: 011

: 0110 : 0111

𝑘𝑘1 = 1

𝑘𝑘1 = 2

𝑘𝑘1 = 3

𝑘𝑘1 = 4

𝒞𝒞−patterns : 0101 0120 0122

: 𝝁𝝁−patterns

𝒞𝒞−patterns

Jq, m

m : number of misses
q : index of a job-class

	Job-Class-Level Fixed Priority Scheduling �of Weakly-Hard Real-Time Systems
	Outline
	Outline
	Weakly-hard real-time systems
	Effectiveness of weakly-hard real-time systems
	Limitation of task-level fixed-priority scheduling
	Contributions
	Outline
	System Model
	Job-Class-Level Fixed-Priority Scheduling
	Bounding consecutive deadline misses
	Priority assignment
	An example of job-class-level scheduling
	Outline
	Schedulability Analysis
	Worse-case response time of job-classes
	Schedulability check
	Reachability tree
	Outline
	Implementation cost
	Schedulability experiments
	Taskset schedulability
	Analysis running time
	Conclusion & Future work
	Q & A
	Appendix
	Related work
	Utilizations
	Benefits of the meet-oriented classification
	Minimum job-class inter-arrival time (1/4)
	Minimum time interval of a job-class (2/4)
	Minimum time interval of a job-class (3/4)
	Minimum time interval of a job-class (4/4)
	Interference of job-class-level analysis
	Worse-case response time of job-classes
	Schedulability check
	Complexity of a reachability tree
	An example of reachability tree

