Job-Class-Level Fixed Priority Scheduling of Weakly-Hard Real-Time Systems

Hyunjong Choi, Hyoseung Kim, Qi ${\rm Zhu}^{\dagger}$

Northwestern[†] University

Outline

I Introduction

- **II** Related Work & Motivation
- **III** Job-class-level Scheduling
- **IV** Schedulability Analysis

v Evaluation

VI Conclusion and Future Work

Outline

I Introduction

- II Related Work & Motivation
- III Job-class-level Scheduling
- **IV** Schedulability Analysis
- **v** Evaluation
- **VI** Conclusion and Future Work

Weakly-hard real-time systems

- Many practical systems
 - Tolerable to some deadline misses w/o affecting functional correctness

(*m*, *K*): at most *m* jobs can miss their deadlines among any *K* consecutive jobs

^{*}G. Bernat, A. Burns, and A. Liamosi, "Weakly hard real-time systems," IEEE transactions on Computers, 2001

Effectiveness of weakly-hard real-time systems

- Navigation of an autonomous vehicle in *Gazebo with ROS*
 - A periodic task: *ControlTask*[†]
 - Mission: Drive from start to end points
 - Injected deadline misses w.r.t. weakly-hard constraints

< Navigation of an autonomous vehicle – *ControlTask* exp. >

Tasks with bounded deadline misses can produce a functional correctness
 Resource can be reserved for the other tasks

¹ It sends velocity command to robot base(actuator) at the specified rate defined as a control frequency.

Limitation of task-level fixed-priority scheduling

Simple taskset with weakly-hard constraints

Contributions

- Main contributions
 - Propose a new job-class-level fixed-priority scheduler based on *meet-oriented classification* of jobs of tasks
 - Present the schedulability analysis framework for our proposed scheduler
 - Generalization of task-level fixed-priority scheduling
 - Outperforms the latest work in terms of task schedulability, analysis running time
 - Implement our scheduler in the Linux kernel running on Raspberry Pi

Outline

Introduction

III Job-class-level Scheduling

- **IV** Schedulability Analysis
- v Evaluation
- **VI** Conclusion and Future Work

System Model

Task model

- $\tau_i \coloneqq (C_i, D_i, T_i, (m_i, K_i))$
 - ✓ C_i : The worse-case execution time
 - ✓ D_i : The relative deadline
 - $\checkmark T_i$: The minimum inter-arrival time
 - ✓ (m_i, K_i) : The weakly-hard constraints $(m_i < K_i)$. For a hard real-time task, $m_i = 0$ and $K_i = 1$.
- Preemptive scheduling
- Uniprocessor system

Job-Class-Level Fixed-Priority Scheduling

- Job classification
 - Assign different priorities to individual job-classes

Meet-oriented : the number of prior deadlines consecutively met

- For instance, (m, K) = (2, 4) can have job classes: J⁰, J¹, and J²
- Priority of a job-class decrease monotonically

Bounding consecutive deadline misses

• Miss threshold w_i

 Limit the distance from the current job to the previous deadline-met jobs to bound the number of consecutive deadline misses

$$w_i = \max\left(\left|\frac{K_i}{K_i - m_i}\right| - 1, 1\right)$$

- Ensure enough number of jobs running with the highest priority job-class
- For instance, (m, K) = (5, 7) where $w_i = 2$ allows 2 consecutive deadline misses

Priority assignment

- A heuristic priority assignment
 - An extension of the deadline monotonic (DM) priority assignment

Subsumes the task-level DM priority assignment

- Rule.
 - ✓ Assign higher priority to a job-class with a smaller index
 - \checkmark For job-classes with the same index,
 - Higher priority to shorter deadline (q = 0)
 - Higher priority to shorter miss threshold with deadlines for tie-breaking (q > 0)

Algorithm 1 Job-class priority assignment **Input:** Γ : Taskset 1: $N \leftarrow |\Gamma|$ 2: Sort τ_i in Γ in ascending order of deadline 3: for all $\tau_i \in \Gamma$ do $l_i \leftarrow K_i - m_i + 1$ $\triangleright l_i$: number of job-classes for τ_i 5: end for 6: $prio \leftarrow \sum_{i=1}^{n} l_i$ ▷ Priority to be assigned next 7: if Γ is schedulable by DM then for all $\tau_i \in \Gamma$ do 8: \triangleright Assign the same priority to all job-classes of τ_i for all $q \leftarrow 0$ to $l_i - 1$ do 10. $\pi_i^q \leftarrow prio$ 11: end for 12: $prio \leftarrow prio - 1$ 13: end for 14:15: else $L \leftarrow \max_{\tau_i \in \Gamma} l_i$ 16: for $q \leftarrow 0$ to L - 1 do 17: if q > 0 then 18: Sort $\tau_i \in \Gamma$ in ascending order of w_i and deadline 19: 20: end if for all $\tau_i \in \Gamma$ do 21: 22: if $q < l_i$ then \triangleright Check if q is a valid index $\pi_i^q \leftarrow prio$ $prio \leftarrow prio - 1$ 24: 25: end if 26: end for end for 27.

An example of job-class-level scheduling

• With the same taskset at page 6.

	Specifications
Task 1	$T_1 = 11, C_1 = 6, m_1 = 2, K_1 = 4$
Task 2	$T_2 = 7, C_2 = 4, m_2 = 4, K_2 = 7$

< A taskset example >

Outline

Introduction

IRelated Work & Motivation

III Job-class-level Scheduling

IV Schedulability Analysis

v Evaluation

Schedulability Analysis

 The schedulability analysis of tasks with weakly-hard constraints under job-class-level scheduling decompose

< Schedulability analysis process of job-class-level scheduler >

Worse-case response time of job-classes

• Worse-case response time of J_i^q is bounded by the recurrence:

$$R_i^{q,n+1} \leftarrow C_i + \sum_{\tau_k \in \Gamma - \tau_i} W_i^q(R_i^{q,n}, \tau_k)$$

 $\checkmark W_i^q$ is an upper-bound of interference imposed on J_i^q

$$W_i^q(t,\tau_k) = \min\left(\sum_{\forall \ p:\pi_i^q < \pi_k^p} \left[\frac{t+J_k}{\eta(J_k^p)}\right] \times C_k, \left[\frac{t+J_k}{T_k}\right] \cdot C_k\right)$$

 \checkmark Each job-class has a *different minimum job-class inter-arrival time*, $\eta(J_k^p)$

- Lemma 8. Generalization of the task-level iterative response time test for hard real-time tasks.

M. Josephand P. Pandya, "Finding response times in a real-time system," The Computer Journal, 1986.

Schedulability check

• Schedulability test of a task with $m_i/K_i \ge 0.5$

— Lemma 10.

A task τ_i is always schedulable if the ratio of m_i/K_i is greater than or equal to 0.5 and it satisfies the prerequisite given by Lemma 9.

Step 1: Show at least 1 deadline met in K_i window by using a <u>necessary condition</u> $(w_i + 1) \cdot \alpha \le K_i$ WCRT $(J_i^0) \le D_i$

Step 2: Show that the number of deadline met satisfies the constraint

$$\frac{1}{w_i+1} \ge \frac{K_i - m_i}{K_i} \quad \Longrightarrow \quad \left| \frac{K_i}{K_i - m_i} \right| \le \frac{K_i}{K_i - m_i}$$

Always true as $m_i \leq K_i - 1$

Reachability tree

• For tasks with $m_i/K_i < 0.5$, find all possible job-class patterns for K_i job executions using *reachability tree*

— Lemma 13.

The reachability trees of a task τ_i represent all possible job-class patterns that the task can experience at its runtime for K_i execution window

Outline

Introduction

- II Related Work & Motivation
- III Job-class-level Scheduling
- **IV** Schedulability Analysis

Implementation cost

- Measure runtime overhead of the proposed scheduler implementation
- Experimental setup
 - Linux kernel v4.9.80 running on Raspberry Pi 3
 - ARM Cortex-A53 @ clock frequency of 1.2 GHz
 - Run 5 tasks with period of 20ms to 40ms for 10 minutes (118,569 jobs)

Туре		Mean	Max	Min	99%th
Updating μ -pattern [†]		0.3002	1.1460	0.1040	0.6250
Updating job-class index		1.5035	11.8750	0.5210	2.5000
Changing task priority		4.7633	28.9580	3.0210	11.3020
Rollback	Checkpointing	1.9413	9.3230	1.2500	3.2290
	Recovery	6.1257	24.8430	0.4680	8.3146

< Runtime overhead [μs] >

[†] Represents a sequence of deadline met and missed jobs of a task, (G. Bernat, A. Burns, and A. Liamosi. "Weakly hard real-time systems", 2001)

Schedulability experiments

- The evaluation is conducted in two ways:
 - Comparison with other weakly-hard scheduling schemes (WSA[†], RTO-RM^{*})
 - ✓ WSA: delayed completion for deadline-missed jobs
 - ✓ RTO-RM: job abort for deadline-missed jobs
 - Exploration of the proposed scheduler under diverse experimental conditions
 - Performance metric : *percentage of schedulable taskset*, *analysis running time*

Taskset generation

	Number of tasksets	Task utilization (UUniFast algorithm [#])	Task period [ms]	K range
Value	1,000	[0.8, 1.8]	[10, 1000]	{5, 10, 15}

[†] Y. Sun and M. D. Natale, "Weakly hard schedulability analysis for fixed priority scheduling of periodic real-time tasks," *TECS*, 2017
 ^{*} G. Koren and D. Shasha. "Skip-over: Algorithms and complexity for overloaded systems that allow skips", RTSS, 1995
 [#] E.Biniand G.C.Buttazzo. "Measuring the performance of schedulability tests", Real-Time Systems, 2005

Taskset schedulability

- Comparison of schedulability ratio with other schemes
 - 1,000 tasksets with 20 tasks
 - $K_i = 10, m_i = [1, 9]$, common (m, K) for a taskset

JCLS better utilizes CPU resource when there are overloaded weaklyhard tasksets

Analysis running time

- Time to determine the schedulability of a given taskset
 - By the number of tasks in a taskset (10, 30, and 50 tasks)
 - 1,000 tasksets, $K_i = 10, m_i = [1, 9]$
 - JCLS (on Raspberry Pi 3), WSA (on Intel Core-i7 for CPLEX Optimizer)

Number of tasks	Approach	Mean	Max
10	JCLS	0.0010	0.0046
10	WSA	0.2739	114.2892
20	JCLS	0.0112	0.0432
30	WSA	25.7284	1800.5996
50	JCLS	0.0331	0.1463
	WSA	78.5982	3002.5189

< Analysis running time [sec] >

The analysis time of JCLS is shorter than that of WSA

More applicable to runtime admission control

Conclusion & Future work

- Conclusion
 - New job-class-level fixed-priority scheduling and analysis for weakly-hard real-time systems
 - Proposed scheduler outperforms prior work with respect to taskset schedulability and analytical complexity
 - Proposed approach is effective in overloaded situations (e.g., maximum utilization is higher than 1)
- Future work
 - Address the pessimism of our schedulability analysis when the ratio of m_i/K_i is less than 0.5

Job-Class-Level Fixed Priority Scheduling of Weakly-Hard Real-Time Systems

Hyunjong Choi, Hyoseung Kim, Qi Zhu

Appendix

- 1. Related work
- 2. Utilizations
- 3. Benefits of the meet-oriented classification
- 4. Minimum time interval of a job-class
- 5. Interference of job-class-level analysis
- 6. Schedulability check
- 7. Complexity of reachability tree
- 8. An example of reachability tree

Related work

• Goals in weakly-hard systems : guarantee & improve schedulability

- Scheduling: task-level fixed-priority scheduling
- Assumptions : *initial offset is known*[†], *periodic task*[°] with no jitter[‡]

Limits applicability to recent cyber physical systems

- ^{†, ‡}Bernat et al. works on the schedulability of periodic tasks with weakly-hard constraints under fixed-priority scheduling (RTSS'2001)
- Typical worst-case analysis (TWCA) approaches significantly contributes to weakly-hard systems (DATE'2012, DATE'2013, EMSOFT'2014, ECRTS'2015)
 - Assume exact arrival patterns of task instances is known
- Sun et al. relaxed the assumption on offset and jitter (TECS'2017)
- ^{†,*, ‡} Goossens et al. distanced-based dynamic-priority scheduling (RTNS'2008)

Utilizations

- Represent the resource usage
 - Maximum utilization

Definition 1. *Maximum utilization* of a task τ_i , U_i^M , is the maximum amount of CPU resource that τ_i can utilize, defined as $U_i^M = \frac{C_i}{T_i}$

*Maximum total utilization: $U^M = \sum_{i=1}^N C_i / T_i$

Minimum utilization

Definition 2

Minimum utilization of a task τ_i , U_i^m , is the CPU resource used by τ_i when it experiences the maximum deadline misses allowed by its (m_i, K_i) constraint, i.e., $U_i^m = \frac{C_i}{T_i} \times \frac{K_i - m_i}{K_i}$

*Minimum total utilization: $U^m = \sum_{i=1}^{N} \frac{C_i}{T_i} \times \frac{K_i - m_i}{K_i}$

Benefits of the *meet-oriented* classification

- Benefits of meet-oriented classification
 - It reduces interferences imposed by higher priority jobs by modulating consecutive meets
 - Enables to avoid a pessimism when we evaluate WCRT of a job.

under *miss-oriented* job classification >

3 consecutive high priority jobs

Minimum job-class inter-arrival time (1/4)

- As a first step, analyzing the WCRT of individual job-classes
- Upper bound the maximum interference imposed by the jobs of other tasks with higher-priority job-classes

Minimum time interval of a job-class (2/4)

• A job-class whose the WCRT > D_i ,

- Lemma 5.

The minimum inter-arrival time of J_i^q where $q < K_i - m_i$ and the WCRT of J_i^q is greater than D_i is given by

$$\eta(\mathbf{J}_i^q) = \begin{cases} (q+1) \cdot T_i, & \text{if } w_i = 1\\ 1 \cdot T_i, & \text{if } w_i > 1 \end{cases}$$

Deadline met Deadline missed $J_i^{\ 0}$ J_i^0 J_i^0 J_i^0 J_i^0 J_i^0 J_i^0 J_i^0 J_i^0 $\bar{\eta}(\mathbf{J}_i^0) = T_i$ $J_i^{\ 1}$ $J_i^{\ 1}$ J_i^0 J_i^1 J_i^0 J_i^0 J_i^1 J_i^0 J_i^1 $\eta(\mathbf{J}_i^1) = 2 \cdot T_i$ $if, w_i = 1$ J_i^2 J_i^0 J_i^1 J_i^2 $J_i^{\ 1}$ J_i^0 J_i^1 J_i^2 J_i^0 $\int \eta \left(\mathbf{J}_{i}^{2} \right) = 3 \cdot T_{i}$ WCRT > D_i and $w_i = 1$ $w_i = 1$

Minimum time interval of a job-class (3/4)

• A job-class whose the WCRT > D_i ,

- Lemma 5.

The minimum inter-arrival time of J_i^q where $q < K_i - m_i$ and the WCRT of J_i^q is greater than D_i is given by

 $\eta(\mathbf{J}_i^q) = \begin{cases} (q+1) \cdot T_i, & \text{if } w_i = 1\\ 1 \cdot T_i, & \text{if } w_i > 1 \end{cases}$

WCRT > D_i and $w_i > 1$

Minimum time interval of a job-class (4/4)

• A job-class whose the WCRT $\leq D_i$,

- Lemma 6.

The minimum inter-arrival time of J_i^q where $q < K_i - m_i$ and the WCRT of J_i^q is less than or equal to D_i is given by

 $\eta(\mathbf{J}_i^q) = \begin{cases} (w_i + 1) \cdot T_i, & \text{if } q = 0\\ (q+2) \cdot T_i, & \text{if } q > 0 \end{cases}$

Interference of job-class-level analysis

- An upper-bound of interference imposed on J_i^q by the higher priority jobs J_k^p of
 - another tasks during arbitrary time t• Extension of previous work t $R_i = C_i + I_i$, $I_i = \sum_{j=1}^{i-1} \left[\frac{R_i}{T_j}\right] C_j$

 $\checkmark \mathcal{J}_k$ is a jitter of a higher priority job

M. Josephand P. Pandya, "Finding response times in a real-time system," The Computer Journal, 1986.

Worse-case response time of job-classes

• Worse-case response time of J_i^q is bounded by the recurrence:

$$R_i^{q,n+1} \leftarrow C_i + \sum_{\tau_k \in \Gamma - \tau_i} W_i^q (R_i^{q,n}, \tau_k)$$

Theorem 1.

✓ Γ is the entire taskset

✓ Starts with $R_i^{q,0} = C_i$ and terminates when $R_i^{q,n} + \mathcal{J}_i > D_i$ or $R_i^{q,n+1} = R_i^{q,n}$

Lemma 8. The job-class-level response time test for weakly-hard tasks given in Theorem 1 is a generalization of the task-level iterative response time test for hard real-time tasks.

Schedulability check

- Theorem 2.

A task is guaranteed to be schedulable if the μ -patterns at all leaf nodes in its reachability trees satisfy the weakly-hard constraint.

Complexity of a reachability tree

- Inspecting all possible patterns is an inefficient way ?
 - However, in a reachability tree, the upper-bound on the number of nodes follows the *Fibonacci sequence* $(f_{i+2} = f_{i+1} + f_i)$
 - For a task τ_i , the upper-bound of complexity of computing all the reachability trees is represented as

Theorem 4.[†]

$$O_i \leq (K_i - m_i + 1) \times \frac{\rho^{K_i + 1} - (1 - \rho)^{K_i + 1}}{\sqrt{5}}$$

Where $\rho = \frac{1 + \sqrt{5}}{2}$ which is golden ratio and $K_i - m_i + 1$ is the number of job-
classes

[†] Verner E. Hoggatt, *Fibonacci and Lucas Numbers*. Boston:Houghton Mifflin Co., 1969

An example of reachability tree

