
Thermal-Aware Servers for Real-Time Tasks on
Multi-Core GPU-Integrated Embedded Systems

Seyedmehdi Hosseinimotlagh and Hyoseung Kim
University of California, Riverside

shoss007@ucr.edu, hyoseung@ucr.edu

Abstract—The recent trend in real-time applications raises
the demand for powerful embedded systems with GPU-CPU
integrated systems-on-chips (SoCs). This increased performance,
however, comes at the cost of power consumption and resulting
heat dissipation. Heat conduction interferes the execution time
of tasks running on adjacent CPU and GPU cores. The violation
of thermal constraints causes timing unpredictability to real-
time tasks due transient performance degradation or permanent
system failure. In this paper, we propose a thermal-aware server
framework to safely upper bound the maximum temperature
of GPU-CPU integrated systems running real-time sporadic
tasks. Our framework supports variants of real-time server
policies for CPU and GPU cores to satisfy both thermal and
timing requirements. In addition, the framework incorporates
two mechanisms, miscellaneous-operation-time reservation and
pre-ordered scheduling of GPU requests, which significantly
reduce task response time. We present analysis to design thermal-
server budget and to check the schedulability of CPU-only
and GPU-using sporadic tasks. The thermal properties of our
framework have been evaluated on a commercial embedded
platform. Experimental results with randomly-generated tasksets
demonstrate the performance characteristics of our framework
with different configurations.

I. INTRODUCTION

High temperature in embedded systems with modern

systems-on-chips (SoCs) causes several major issues. An in-

crease in temperature has a considerable impact in the growth

of leakage current which leads to rise in static power consump-

tion. An increase in power consumption levels up the device

temperature, thereby resulting in again an increase in power

consumption. This detrimental loop causes not only rapid

battery drain but also “thermal runaway” [3]. Furthermore,

studies show that operating in high temperature reduces the

system reliability substantially [42]. For instance, 10◦C to

15◦C increase in temperature doubles the probability of failure

of the underlying electronic devices [44]. Thermal violation

not only reduces the reliability in real-time implantable med-

ical devices, but also causes physical harm [6]. Therefore,

bounding the maximum temperature is an important issue,

especially when real-time requirements have to be satisfied.
Thermal management on today’s multi-core CPU-GPU inte-

grated platforms with real-time requirements is a challenging

problem. Dynamic Thermal Management (DTM) is triggered

when thermal violation occurs so that it forces frequency

throttling or shutdown of the SoC for cooling purpose. This

unwanted performance degradation leads to timing unpre-

dictability in task execution, and real-time tasks may miss

their deadlines. Thermal violation avoidance in uni-processor

systems has been studied extensively in the literature of

real-time systems [6, 46] but it cannot be directly used for

multi-core GPU-integrated devices due to heat conduction

between processor units. Dynamic Voltage Frequency Scaling

(DVFS) techniques to mitigate the heat and power dissipation

of processors also has been widely studied in the litera-

ture [8, 46]. However, aside from a considerable reduction

in system reliability over time due to continuous frequency

changes [16, 24, 47], not all embedded devices support DVFS,

especially for integrated GPUs.

Despite the popularity of integrated GPUs in modern multi-

core SoCs, state-of-the-art approaches are incapable of si-

multaneously addressing thermal management and real-time

schedulability issues. On the one hand, the GPU access

segment of a real-time task has been modeled as a critical sec-

tion to ensure schedulability [11, 12, 30]. These approaches,

however, are oblivious of thermal constraints so that the system

may suffer from heat dissipation and intermittent performance

drops by DTM. On the other hand, there are previous stud-

ies [1, 2] introducing the concept of thermal servers for

real-time uni-processor and multi-core platforms. However,

their schemes are not ready to use for a multi-core SoC

with an integrated GPU. The unique characteristics of GPU

operations, e.g., kernel execution on the GPU and interactions

between CPU and GPU cores for data transfer, introduce

new challenges to thermal server design and schedulability

analysis. To the best of our knowledge, there is no prior work

that offers both thermal safety and real-time schedulability in

multi-core GPU-integrated embedded systems.

In this paper, we propose a thermal-aware CPU-GPU frame-

work to handle both real-time CPU-only and GPU-using tasks.

Our framework enhances the notion of thermal servers to

satisfy the given thermal constraint on CPU and GPU cores

and to offer bounded response time to real-time tasks. The

framework also introduces two mechanisms, miscellaneous-

operation-time reservation and pre-ordered waiting queue for

GPU requests, to reduce task response time. We will show

with experimental results that our framework is effective in

satisfying both thermal and temporal requirements.

Contributions. The contributions of this paper are as follows:

• We propose a thermal-aware CPU-GPU server framework

for multi-core GPU-integrated real-time systems. We char-

acterize different timing penalties and present a protocol for

CPU and GPU thermal servers.

• For real-time predictability on a GPU, we propose a GPU

server design with a variant of the sporadic server policy,

where the GPU segments of tasks execute with no thermal

violation.

• We propose an enhancement to the waiting queue of the

GPU server to mitigate the pessimism of a priority-based

queue.

• We introduce a miscellaneous operation time reservation
mechanism for deferrable and sporadic CPU servers to

reduce CPU-GPU handover delay and remote blocking time.

• We extensively analyze the thermal safety and task schedu-

lability of CPU and GPU servers with various budget

replenishment policies.

II. RELATED WORK

Real-time GPU management has been studied to han-

dle GPU requests with the goal of improving timing pre-

dictability [17, 18, 19, 49]. To guarantee the schedulabil-

ity of GPU-using real-time tasks, synchronization-based ap-

proaches [11, 12, 30] that model GPU access segments as

critical sections have been developed. The work in [20, 21]

introduces a dedicated GPU-serving task as an alternative

to the synchronization-based approaches. While these prior

studies have established many fundamental aspects on real-

time task schedulability with GPUs, thermal violation issues

have not been considered.

There exist extensive studies on bounding the maximum

temperature in real-time uni-processor systems [6, 48] and

non-real-time heterogeneous multi-core systems [14, 31, 32,

36, 39]. In [6], the authors proposed a novel scheme that

bounds the maximum temperature by analyzing task execution

and cooling phases in uni-processor real-time systems. Real-

time thermal-aware resource management for uni-processor

systems has been developed with the consideration of varying

ambient temperature and diverse task-level power dissipa-

tion [48]. For non-real-time heterogeneous systems, Singla

et. al [39] proposed a dynamic thermal and power manage-

ment algorithm to adjust the frequency of GPU and CPU

as well as number of active cores by computing the power

budget. Prakash et al. [32] proposed a control-theory based

dynamic thermal management technique for mobile games.

Gong et al. [14] presented a thermal model on a real-life

heterogeneous mobile platform. In [31] and [36], the authors

proposed a proactive frequency scheduling for heterogeneous

mobile devices to maintain their performance. However, these

studies cannot be directly applied to real-time multi-core GPU-

integrated systems where the GPU is shared among tasks.

The notion of periodic thermal-aware servers was proposed

in [1] for uni-processors. In this work, the optimal server

utilization has been proved and the budget replenishment

period is determined by a heuristic algorithm. Similar to the

thermal server, the notion of cool shapers was proposed in [23]

to satisfy the maximum temperature constraint by throttling

task execution. The notion of hot tasks was introduced in [15]

to partition lengthy tasks into several chunks to avoid contin-

uous task execution and thermal violation while maximizing

throughput. Although all of these aforementioned studies have

brought valuable contributions, they have been proposed for

uni-processor platforms. In contrast, our framework addresses

the temperature bounding problem for real-time tasks with

GPU segments running on modern CPU-GPU integrated SoCs.

Recently, the authors of [10] introduced a novel technique

for periodic tasks executing on multi-core platform. This tech-

nique introduces an Energy Saving (ES) task that runs with the

highest priority and captures the sleeping time of CPU cores.

The technique can be seen as an alternative to a thermal server

because the ES task effectively models the budget-depleted

duration of a thermal server. The authors of [2] proposed

thermal-isolation servers that avoid the thermal interference

among tasks in temporal and spatial domains with thermal

composability. These techniques, however, cannot address the

challenges of scheduling GPU-using real-time tasks.

III. BACKGROUND ON THERMAL BEHAVIOR

In this section, we briefly introduce the thermal model

used in this paper. It depends on power consumption, heat

dissipation, and the conductive heat transfer between adjacent

power-consuming resource components, which includes CPU

cores, CPU peripherals, GPU, caches, and other IPs.

Uni-processor thermal model. With respect to the power

function [7, 26], the thermal model of a uni-processor is mod-

eled as an RC circuit in the literature [7, 37, 40]. According to

the Fourier’s Law [45] and considering t0 = 0, the temperature

of a core θ(t) after t time units operating at a fixed clock

frequency is given by:1

θ(t) = α+ (θ(t0)− α)eβt (1)

where α > 0 and β < 0 are constants.

Most operating systems in embedded platforms transition

the processor to the sleep state when there is no task execution.

Therefore, the power consumption can be assumed to be

negligible in such a case. The thermal function in the sleep

state (aka cooling phase) where the frequency is switched off

can be modeled as:

θ(t) = θ(t0)e
βt. (2)

because in the cooling phase, α = 0.

Heterogeneous multi-core thermal model. With the presence

of multiple cores and other power-consuming resources, there

is heat dissipation not only to ambient but also between nodes.

In this paper, we only consider CPU and GPU cores as power-

consuming nodes because other IPs consume much less power

than them, thereby causing negligible thermal effects.

In such a CPU-GPU integrated system with the lateral ther-

mal conductivity between processing cores, the temperature

of a core depends not only on its current temperature and

power consumption, but also on those of adjacent cores. Prior

work [13] showed that the temperature of each core at time

t+Δ can be modeled with an acceptable accuracy as follows:

Θ(t+Δ) = A× P (t+Δ) + Γ×Θ(t)

1Details are available in [10] and [2].

where A is m×m matrix, and Γ, P and Θ are m×1 matrices,

respectively. One can interpret the thermal model as a function

of the current temperature and heat produced by execution and

the thermal conductivity between cores. Hence, according to

the thermal composability characteristics of heat transfer [2]

with the initial temperature of θ(t0), the temperature after t
time units is given by:

θi(t0 + t) = α+ (θ(t0)− α)eβt +

m∑
j=1

γijθj(t0 + t). (3)

IV. SYSTEM MODEL

In this section, we describe the thermal-aware server as

well as the task models used in this paper and explain the

procedure of a kernel launch on a GPU. Then, we characterize

the scheduling penalties that arise from the use of a GPU with

thermal-aware servers.

A. Computing platform

We consider a temperature-constrained embedded platform

equipped with an integrated CPU-GPU SoC. The SoC has

multiple CPU cores and one GPU core, each running at a fixed

clock frequency. Note that such SoC design with a single GPU

is popular in today’s embedded processors, such as Samsung

Exynos 5422 and NVIDIA TX2. The assumption on the fixed

operating frequency is particularly suitable for the GPU as

DVFS capabilities are not widely supported on embedded on-

chip GPUs. The thermal behavior of CPU and GPU cores

follows the model described in Section III. For simplicity, we

assume that the amount of temperature generated by other

SoC components, such as peripherals and caches, is either

negligible or acceptably small.

B. Thermal-aware servers

We consider one thermal-aware server for each CPU and

GPU core.2 Each server is statically associated with one core

and does not migrate to another core at runtime. However,

unlike prior work [1, 2], we do not limit the server to follow

only the polling server policy. We will show in the later

section that this flexibility brings significant benefit in the

schedulability of tasks accessing the GPU.

To bound the temperature of each core, its corresponding

server vi is modeled as vi = (Cv
i , T

v
i) where Cv

i is the

maximum execution budget and T v
i is the budget replenish-

ment period of vi. For brevity, we will use vg = (Cg, T g) to

denote the GPU server and vc = (Cc, T c) for the CPU server.

For budget replenishment policies, we consider polling [38],

deferrable [43], and sporadic servers [41]. Under the polling

server policy, the corresponding server activates periodically

and executes ready tasks until its budget is depleted. The

budget is fully replenished at the start of the next period. If

there is no task ready, the remaining budget is immediately

depleted. In contrast, under the deferrable server, any unused

budget is preserved until the end of the period. Hence, a

2Running multiple thermal servers on each CPU/GPU core is left for future
work.

CPU

GPU

Normal exec. segment

Copy data
 to GPU1 Copy data
 to GPU1 Copy data

 to GPU2 Copy data
 to GPU2 Copy results

 to CPU4 Copy results
 to CPU4

Normal exec. segmentGPU access segment

Notify completion3 Notify completion3

GPU kernel execution

Ci, 1 Ci, 2Mi, 1 Mi, 2Ki

Ei

Figure 1: Task execution with a GPU segment.

task can execute at any time during the server period while

the budget is available. The sporadic server also preserves

remaining budget, but replenishes the budget sporadically;

only the amount of budget consumed is replenished after T v

time units from the time when that budget is used. Let Jv

denote the task release jitter relative to the server release. The

value of Jv is T v under the polling server policy and T v−Cv

under the deferrable and sporadic server policies [4].

C. Task model

This work considers sporadic tasks with implicit deadlines

under partitioned fixed-priority preemptive scheduling, which

is widely used in many real-time systems. Each task τi has

been statically allocated to one CPU core (thus to the server

of that core) with a unique priority. Tasks are labeled in

an increasing order of priority, i.e., i < j implies τi has

lower priority than τj . Without loss of generality, each task

can contain at most one GPU segment, but it can be easily

extended to multiple GPU segments. A task τi is modeled

as τi = ((Ci,1, Ei, Ci,2), Ti, si), where Ci,1 and Ci,2 are the

worst-case execution time (WCET) of the normal execution

segments of task τi, and Ei is the worst-case time of the

GPU access segment. The normal execution segments run

entirely on the CPU core and the GPU segment involves GPU

operations. Let Ti denote the the minimum inter-arrival time

of τi and si indicate whether τi has a GPU segment, i.e.,

si = 1 means a GPU-using task. In case τi executes only on

the CPU, si, Ei and Ci,2 are all zero. Thus, the accumulated

sum of the WCETs of τi is denoted as

Ci = si × (Ci,1 + Ei + Ci,2) + (1− si)× Ci,1.

Furthermore, V (τi) represents the CPU server where τi is

assigned. Tasks are considered as fully compute-intensive and

independent from each other during normal segment execution.

The only resource shared among tasks is the GPU and it is

modeled as a critical section protected by a suspension-based

mutually-exclusive lock (mutex). Note that this approach fol-

lows the well-established locking-based real-time GPU access

schemes [11, 12, 30]. We will later present how pending GPU

requests are queued in our proposed framework.

D. GPU execution model

The GPU has its own memory region, which is assumed

to be sufficient enough for the tasks under consideration. We

do not consider the concurrent execution of GPU requests

from different tasks because of the resulting unpredictability

in kernel execution time [29, 30]. Once a task acquires the

GPU lock, its GPU segment is handled through the following

steps (see Fig. 1):

1) Data Transfer to the GPU: The task first copies data

needed for the GPU computation, from CPU memory to

GPU memory. This can be done by Direct Memory Access

(DMA), which requires minimal CPU intervention. If the

GPU uses a unified memory model, this step can be omitted.

2) Kernel Launch: Kernel launches on the GPU. Meanwhile,

the task on the CPU side self-suspends and waits for the

GPU computation to complete.

3) Kernel Notification Signal: The GPU signals the CPU to

notify the completion of kernel execution.

4) Data Transfer to the CPU: The task wakes up and transfers

the results from GPU memory to CPU memory.

It is worth noting that a GPU kernel cannot self-suspend on

the GPU in the middle of execution.3 On the other hand, since

there is no CPU intervention during kernel execution, the task

on the CPU side self-suspends to save CPU cycles. As a result,

other tasks have a chance to execute or the CPU core sleeps

during the kernel execution. For a task τi, the total time for

the above four steps consists of two major parts:

• Miscellaneous operations that require CPU intervention. Let

Mi,1 denote the time for data transfer before the kernel

execution and Mi.2 denote that after the kernel execution.

• Pure GPU kernel operations that do not require any CPU

intervention denoted as Ki.

In such aspect, the GPU segment time of a task τi is modeled

as Ei = Mi,1 +Ki +Mi,2. As the GPU is non-suspendable

during kernel execution, the GPU server should have enough

budget larger than or equal to Ei. The CPU server only needs

to have budget larger than Mi,1 or Mi,2.

E. Challenges of thermal-aware servers with an integrated
GPU

Aside from the blocking delays coming from the locking-

based GPU access approach, e.g., local and remote blocking

to acquire the GPU lock [11, 12, 30], there are other new

challenges faced by thermal-aware servers in a CPU-GPU

integrated system.

• Server budget depletion: Task execution in a server is

scheduled with respect to the available budget. When the

server budget is depleted, a task has to wait until the budget

is replenished.

• Mutual budget availability: If a task τi issues a GPU request,

both CPU and GPU servers must have enough budget to

handle this request. It is worth noting that server budget

needs for the CPU and GPU servers are different (Mi,1 or

Mi,2 vs. Ei).

• CPU-GPU handover delay: Even if both servers are de-

signed to have enough budget, each server may have to

wait for the other’s budget to be replenished when their

3Although GPU kernel preemption is available on some recent GPU
architectures, e.g., Nvidia Pascal [9], to the best of our knowledge, the self-
suspension of a kernel is not supported in any of today’s GPU architectures.

CPU

GPU

 τ1((2, 10, 2), 25, 1)

 v1(4,5)

(a)

CPU

GPU

 τ1((2, 10, 2), 25, 1)

 v1(4,5)

Busy wait Busy wait

(b)

Figure 2: Example task scheduling with an unlimited GPU server
budget and a CPU server following the polling server policy. a) No
busy waiting: τ1 finishes at 22. b) Busy waiting: τ1 finishes at 14.

interactions are needed, e.g., data transfer between the CPU

and the GPU.

• Back-to-back heat generation: In case of the deferrable

server, some tasks can use up all the budget at the end of

the budget replenishment period, and at the very beginning

of the next period, some other tasks can start to consume

the replenished budget. This causes the server to run longer

than its budget and generate heat in a back-to-back manner.

V. FRAMEWORK DESIGN

In this section, we present our proposed framework. We

first give a protocol for CPU and GPU thermal servers, and

then explain thermal server design to address the challenges

discussed in the previous section. We lastly describe a mis-
cellaneous operation time reservation mechanism to trade-off

between server budget and GPU waiting time.

A. Thermal-aware CPU-GPU server protocol

Our framework simultaneously bounds the worst-case

blocking time for GPU access and the maximum temperature

of CPU and GPU cores. The thermal server designed with

our framework isolates the thermal conductive effects of each

compute node to other nodes. To achieve these properties, we

establish the following rules in our framework.

Shared GPU server
1) Pending GPU requests are inserted to a priority queue

that orders the requests based on the priorities of the

corresponding tasks. This rule assures that the GPU request

of a high-priority task is blocked by at most one lower-

priority request in the queue.

2) To handle the GPU request of a task τi, there must exist at

least Ei budget available on the GPU server. This rule is due

to the preemptive and non-self-suspending characteristics of

the GPU.

3) If there is an insufficient amount of budget to launch a GPU

segment, the GPU is locked until having enough budget for

that GPU segment. This rule assures that starvation does not

happen and the critical section of a higher-priority task waits

for just a single critical section of a lower-priority task. With

these rules, remote blocking time can be bounded. Later, we

will propose an enhancement to these rules.

CPU Core Server
1) Servicing a GPU request boosts the priority of the corre-

sponding task to the highest-priority level. As a result, the

normal segments of higher-priority tasks are blocked until

the GPU segment completes. If there is not enough budget

on the corresponding CPU server (e.g., Mi,1) or on the GPU

server (e.g., Ei), no other task can execute on the CPU or

the GPU.

2) During data transmission to/from the GPU, the CPU server

“busy-waits”. The reasoning behind this rule is to reduce

the total response time of a task. Fig. 2 illustrates task

scheduling with and with or without this rule on a CPU

server using the polling server policy. As one can see in this

example, without this rule, it takes one additional replenish-

ment period for transferring data to/from the CPU, because

during processing the transferring request on the GPU, the

CPU server has no other workload to execute; hence it

deactivates until the beginning of the next replenishment

period.

B. GPU server design

We now discuss budget replenishment policies for the GPU

server and their implications. One may consider both the CPU

and GPU servers following the polling server policy. In this

case, the CPU-GPU handover delay can be at least three

complete replenishment periods of a CPU server. For instance,

consider a task holding a GPU lock and its kernel being

executed on the GPU. Once the kernel execution completes,

the GPU has to wait for the task on the CPU to transfer the

results and release the lock. It is possible that at this time, the

CPU server budget has been already depleted. Thus, the GPU

has to wait for the next period of the CPU server, and this

kind of extra delay happens for each sub-segment of the CPU

segment, i.e., Mi,1, Ki and Mi,2. Moreover, since operations

on the GPU are non-preemptive and non-suspendable, the

GPU server budget has to be large enough that at least one

entire GPU sub-segment of Mi,1, Ki or Mi,2 can complete

its execution within the same period. However, having a large

replenishment period woudl exacerbate the response time of

GPU segments especially for small kernels.

One may consider busy waiting between GPU sub-segments

so as to fill their execution gaps because such gaps may

deactivate the GPU’s polling server. This approach, however,

not only requires over-provisioning of the GPU budget, but

also produces a considerable amount of heat. In the worst

case, the extra heat generation due to the busy-waiting on the

GPU server may continue over two periods of the CPU server

because the CPU server with the polling server policy can be

deactivated between GPU sub-segments.

One may suggest the deferrable server policy for the GPU

to mitigate the heat generation issue and to minimize the

response time of a GPU segment. This approach, however

leads to the thermal back-to-back execution phenomenon.

Fig. 3a illustrates an example of possible drawbacks of the

deferrable server chosen for the GPU. The first jobs of τ1
and τ2 arrive at the latest moments in the first GPU server

period, and the second job of τ1 arrives at the beginning of the

second GPU server period. Although the tasks are schedulable

by the given server budgets, it causes burst heat generation by

back-to-back execution, which can potentially lead to thermal

violation. In order to avoid this, the budget of the deferrable

CPU

GPU

 τ1((2, 8, 0), 30, 1)

 v1(4, 5)

 τ2((0, 8, 0), 40, 1)

vg(16, 32)
Time = 10

4

16

(a)

CPU

GPU

 τ1((2, 8, 0), 30, 1)

 v1(4, 5)

 τ2((0, 8, 0), 40, 1)

 vg(16, 32)

Time = 10

4

16

 BEGIN Time = 17 Time = 49

(b)

Figure 3: Example task scheduling with the GPU server under a) the
deferrable server policy and b) the sporadic server policy. For both
tasks τ1 and τ2, Ei = 8 and Mi,1 = Mi,2 = 2.

server for the GPU has to be halved to avoid thermal violation

but it can drastically lower task schedulability.

In contrast, the sporadic server policy can take the merits

of both the polling server and deferrable server policies. If the

sporadic server policy is used for the GPU, a GPU segment

can execute at any time as long as there is enough budget, and

back-to-back heat generation does not occur. Fig. 3b illustrates

the previous example with the sporadic server on the GPU.

As can be seen, unlike the deferrable server case, the budget

replenishment of the GPU server is one period apart from

its consumption time, thereby preventing potential thermal

violation. The sporadic server on the GPU is also practically

effective because the GPU server needs to have a relatively

large budget with a long replenishment period due to its non-

preemptive nature whereas the CPU server typically has a short

replenishment period to reduce task response time.

In summary, due to the aforementioned reasons, our frame-

work specifically uses the sporadic server policy for the GPU,

while all the three policies (polling, deferrable, and sporadic)

are allowed for CPU cores. We also set the budget of the GPU

sporadic server to be at least as large as one complete GPU

segment of any task, i.e., max(Ei), because this can reduce

the response time of a GPU segment and remote blocking

time. The detailed analysis on these delays will be presented

in Section VI.

The thermal server for the GPU is a resource abstraction

managed on the CPU side, similar to other real-time GPU

management schemes [11, 12, 20, 21, 30]. One can implement

the GPU thermal server as part of GPU drivers or application-

level APIs.

C. Miscellaneous operation time (MOT) reservation

In order to reduce the CPU-GPU handover delay, we pro-

pose an MOT reservation mechanism. With this mechanism,

a small portion of the CPU server budget is reserved only for

miscellaneous operations in a GPU segment, e.g., transferring

data to/from the GPU. The MOT reservation is feasible with

the deferrable and sporadic server policies but not with the

polling server policy because the polling server is unable to

Core2

GPU

 τ3((0, 19, 0), 50, 1)

 v2(7, 10)

 τ1((8, 0, 0), 20, 0)

 vg(35, 60)

7

35

Core1

 τ2((0, 6, 0), 25, 1)

 v1(7, 10)
7

Deadline missing

(a)

Core2

GPU

 τ3((0, 19, 0), 50, 1)

 v2(5, 10)
MOT = 2

 τ1((8, 0, 0), 20, 0)

 vg(35, 60)

5

35

Core1
 τ2((0, 6, 0), 25, 1)

 v1(5, 10)
MOT = 2

5

MOT budget

τ2 finishes after 22 time units

(b)

Figure 4: Data transfer in a GPU request a) without and b) with the
MOT reservation mechanism.

keep unused budget by design. Although this MOT reservation

reduces the amount of CPU budget for regular task execution,

it guarantees that the GPU does not need to wait for the budget

replenishment of the CPU server during the data transmission

phase of a GPU segment. It can also reduce the remote

blocking time of other tasks. This reserved budget for MOT

has to be the largest amount of the CPU intervention time in

all GPU requests. The trade off between the MOT reservation

and the reduced budget for regular task execution will be

extensively investigated in the evaluation.
Fig. 4 illustrates an example to highlight the benefit of the

MOT reservation mechanism. As one can see in Fig. 4a, τ3
has to wait until 10 to transfer its data to the GPU because τ1
already has consumed all budget of v2. Similarly, although the

result of the GPU kernel of τ3 is ready at 27, its result begins

to be transferred at 30. These delays cause the remote blocking

of τ2 lasts for 22 time units although there exists an available

amount of the server budget on v1. Designating 2 time units as

the MOT budget (see Fig. 4b) leads τ3 to transfer its data to the

GPU at 7 and finishes its kernel launch at 27; hence τ2 initiates

its kernel launch accordingly. Consequently, designating some

amount of the server budget as MOT reservation leads to

reduction in the remote blocking of a GPU-using task from

other CPU core.

VI. THERMAL AND SCHEDULABILITY ANALYSIS

In this section, we present the schedulability analysis of

our framework. We first design our thermal-aware servers for

multi-core GPU-integrated platforms to avoid thermal viola-

tion. Then, we analyze task schedulability with and without

the MOT reservation mechanism.

A. Design of server budget
In our framework, task execution is performed within

thermal-aware servers. As discussed, the notion of servers is to

isolate each compute node from others in terms of the thermal

aspect. Accordingly, under any circumstance of task execution,

the thermal violation avoidance has to be guaranteed in the

server design. The specifications of servers are independent

of their running tasks (except for the design of the MOT

reservation), whereas task schedulability does depend on them.

In our proposed framework, introducing the thermal-aware

servers for both the CPU and the GPU makes the physical

characteristics of underlying platforms be transparent of the

task schedulability test.

1) Single-core platforms: First, we calculate the “max-

imum” budget that a server can have while limiting the

temperature not to exceed the given thermal constraint in a

single-core platform under a given replenishment period. In

the worst case of a polling server, the server exhausts all of

its budget at the beginning of its period and then sleeps until

the beginning of the next replenishment period. Let twk and

tslp denote the active time (i.e., the budget-consuming phase)

and the sleeping time (i.e., the cooling phase) of a CPU core

server, respectively. Hence, the server period T is

T = twk + tslp. (4)

In the steady state of the system, we are interested in bounding

the server’s maximum temperature. According to Eq. 1,

α+ (θs − α)eβtwk ≤ θM

where θs and θM are the steady state temperature and the

thermal constraint, respectively. Therefore,

eβtwk ≥ θM − α

θs − α
=⇒ twk ≤ 1

β
ln

θM − α

θs − α
. (5)

On the other hand, in the cooling phase, according to Eq. 2

to respect the steady state, θMeβtslp = θs. Hence,

tslp =
1

β
ln

θs
θM

. (6)

By substituting Eqs. 5 and 6 by Eq. 4, we have
1

β
ln

θM − α

θs − α
+

1

β
ln

θs
θM

≤ T

θM − α

θs − α
× θs

θM
≤ eβT .

Therefore, the worst-case steady state temperature at the

beginning of each period is

θs =
αθMeβT

θM (eβT − 1) + α
. (7)

Accordingly, the maximum budget for the period T is

twk = T − 1

β
ln

θs
θM

. (8)

Consequently, for a given replenishment period, a server

vi = (T − 1
β ln θs

θM
, T) can bound the maximum temperature

to θM .

As one can figure out from the analysis, the maximum

budget converges because of α. This means that after some

point, an increase in the replenishment period has no effect

on the maximum feasible budget. As discussed earlier through

our framework design, the budget has to be considered as
twk

2 for a deferrable server due to the thermal back-to-back
phenomenon. This phenomenon does not occur in a sporadic

server, and it can use the computed budget as is.

2) Homogeneous multi-core platforms: The worst case for

the budget of polling servers on a multi-core CPU happens

when all of them exhaust their budget completely. Therefore,

according to Eq. 3 for the composability characteristics of the

heat transfer, we have

α+ (θs − α)eβtwk +

m∑
j=1
j �=i

γi,jθ
j
M ≤ θiM

where θiM is the maximum temperature for the ith node. In the

worst case, every core may reach its maximum temperature at

the same time. Hence,

(1 +

m∑
j=1
j �=i

γi,j)

︸ ︷︷ ︸
λi

[α+ (θs − α)eβtwk] ≤ θiM .

However, the geographic location of cores on the chip re-

sults in different values of the conduction coefficients al-

though it remains symmetric (i.e., γi,j = γj,i). Denoting

λ = max1≤i≤m λi, θM is given by θM = λ[α+(θs−α)eβtwk].
Similar to the single-core analysis given in the previous

subsection, the steady state temperature is

θs =
α θM

λ eβT

θM
λ (eβT − 1) + α

(9)

Therefore, the server budget for each compute node i is

Cc = twk = T − 1

β
ln

θs × λ

θM
. (10)

3) Heterogeneous multi-core GPU-integrated platforms:
Hereby, we will determine the budget of servers in the

presence of an integrated GPU. Similar to the homogenous

multi-core platform, the worst case happens when all servers

exhaust their budgets completely. There is also a GPU segment

execution on the GPU which causes extra heat dissipation.

Since the GPU runs at a different frequency and its architecture

is different from the CPU cores, its heat generation parameters

differ from those of the CPU cores. Hence,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θiM = λi[α+ (θs − α)eβtwk] + γi,g[α
g + (θgs − αg)eβ

gtgwk]

θgM = αg + (θgs − αg)eβ
gtgwk +

m∑
j=1

γg,j

︸ ︷︷ ︸
γg

[α+ (θs − α)eβtwk]

=⇒
{

λθiMeβtslp + γi,gθ
g
Meβ

gtgslp = θs
θgMeβ

gtgslp + γgθiMeβtslp = θgs
(11)

where the symbols with a superscript g represent the corre-

sponding parameters of the GPU.

4) Miscellaneous operation time reservation: To reduce the

remote locking time, some portion of the CPU server budget

can be reserved for data transferring from/to the GPU that

needs CPU intervention. The MOT budget has to be large

enough to handle the longest data transferring time, therefore

Cc = twk −max
∀τi

(Mi,1,Mi,2) (12)

It is noteworthy that acquiring a lock on the GPU happens

when there is enough budget on the GPU server to execute the

whole GPU request; hence, no budget reservation is needed

on the GPU side.

B. Task schedulability analysis

The thermal analysis in the previous subsection gives the

maximum budget of each CPU/GPU server that satisfies the

thermal constraint of the system. Hereby, we present the

schedulability analysis of a task τi in our framework.

Before introducing our analysis, we review the existing

response time test for independent tasks with no thermal con-

straints and no shared GPU under hierarchical scheduling [35],

which is

Wn+1
i = Ci+

∑
τh∈V (τi)
h>i

⌈
Wn

i + Jc

Th

⌉
Ch+

⌈
Wn + Cc

T c

⌉
(T c−Cc)

(13)

where Jc is the jitter of a task running in a server (see

Section IV) and W 0 = Ci. The recursion terminates success-

fully when Wn+1 = Wn and fails when Wn+1 > Ti. This

equation considers the budget depletion of a CPU server. The

first term is the amount of CPU time used by the task τi,
the second term captures the back-to-back execution of each

higher-priority task τh, and the third term captures the amount

of interference that the server can generate due to the periodic

budget replenishment. However, this equation cannot be used

directly for the thermal constraint problem with a shared GPU.

Our analysis extends the existing response time test by con-

sidering the factors discussed in Section V: (i) local blocking

time, (ii) remote blocking time, (iii) back-to-back execution

due to remote blocking, (iv) mutual budget availability, (v)

CPU-GPU handover delay, (vi) multiple priority inversions,

and (vii) CPU and GPU server budget co-depletion. We take

into account the factors (iv) and (v) together in the analysis of

the handover delay, the factor (vi) as part of the local blocking

time analysis, and the factor (vii) as part of the remote

blocking time analysis. By considering all these factors, the

following recurrence equation bounds the worst-case response

time of a task τi:

Wn+1
i = Ci +Bl

i +Br
i +Hgc

i +⌈
Wn

i + Cc − si(H
gc
i +Ki)

T c

⌉
(T c − Cc)+

∑
τh∈V (τi)
h>i

⌈
Wn

i + Jc + (Wh − Ch)− si(H
gc
i + Ei)

Th

⌉
Ch

(14)

where Ci is the worst-case execution time of τi, B
l
i is the local

blocking time, Br
i is the remote blocking time, Hgc

i is the

CPU-GPU handover delay. We will later discuss each of them

in details. The recurrence equation terminates when Wn+1
i =

Wn
i , and the task τi is schedulable if its response time does

not exceed its implicit deadline (i.e., Wn
i <= Ti).

The second line of the equation captures the delay due to

the server budget depletion on the CPU side (an extension of

the last term of Eq. 13). It is worth noting that during the pure

GPU kernel execution of τi (Ki), no CPU budget is consumed

by τi. Any other tasks can execute on the CPU core if there is

a remaining budget. The task τi only consumes the CPU server

budget when it executes normal segments or the miscellaneous

operations (e.g. data copy) of GPU segments. Therefore, Hgc
i

and Ki, which already exist in Wn
i for a GPU-using task

τi, are excluded such that only the CPU-consuming parts of

this task is affected by the CPU server budget depletion. Any

additional delay due to CPU budget replenishments during

GPU segment execution will be captured by Hgc
i .

The last line captures the preemption time by the normal

execution segments of higher-priority tasks (an extension of

the second term of Eq. 13). The fact that a higher-priority

task τh can only preempt the normal execution segments of τi
leads to the deduction of Hgc

i and Ei from Wn
i . There can be

at most one additional job of τh that has arrived during τi’s
GPU segment execution and interfere τi’s normal segments.

This holds true if τh is schedulable, i.e., Wh ≤ Th, because

other arrivals of τh during τi’s GPU segment will finish their

executions while τi is self-suspended for its kernel execution

on the GPU. The interference from this additional carry-in

job of τh is taken into account by modeling it as a dynamic

self-suspending model and adding Wh − Ch to Wn
i [5].

Now, we present the detailed analysis of the delay factors

used in our response time test.

1) CPU-GPU handover delay: It captures an extra delay

a task can experience after acquiring the GPU lock because

of the factors (iv) and (v). Fig. 5 illustrates this type of delay

decomposed into three parts when the polling server policy

is used for a CPU server. 1 When there is not enough

budget available in the GPU server for the execution of a GPU

segment, the task has to wait at most the jitter of the GPU

server (T g −Cg). 2 After the GPU budget is replenished, if

the CPU server is inactive, the task has to wait for additional

T c time units for the next period of the CPU server. 3 After

the completion of kernel execution on the GPU, at most T c

time units are needed for the CPU server to be activated in

order to transfer the results back from the GPU to the CPU.

Hence,

Hgc
i = si(T

g − Cg + 2T c). (15)

For a CPU server with the deferrable and sporadic server

policies, 2 and 3 change to the jitter of the CPU server

(i.e., T c −Cc) because a GPU segment needs to wait for the

replenishment of its corresponding CPU server’s budget. The

handover delay is then given by

Hgc
i = si[T

g − Cg + 2(T c − Cc)]. (16)

2) Local blocking: It occurs when a task τi is blocked

by the lower-priority task on the same core. As in the case

of MPCP [33, 34], a task can be blocked by each of its

lower-priority task τl’s GPU segment at most once due to

the priority boosting of our framework. To obtain a tight

bound, we analyze local blocking time from two different

perspectives.

On the one hand, the worst-case local blocking time of

a task τi happens when each normal execution segment of

τi is blocked by the GPU segment of each lower-priority

Ei

CPU
server

GPU
server

CPU-GPU Handover
Delay

... ...

... iK ,2iM,1iM

21 3

cT cT

g gT C

Figure 5: The worst-case scenario for CPU-GPU handover delay
with a CPU polling server. When a GPU request with Ei is chosen
from the GPU waiting queue for execution, it experiences the delay
highlighted in blue boxes.

task τl with the amount of El −Kl = Mi,1 +Mi,2, which

is the maximum CPU time used by the GPU segment of

τl. Hence, the total local blocking time of a task τi is

(1 + si)
∑

l<i & τl∈V (τi) & si>0 El −Kl, where (1 + si) in-

dicates the number of normal execution segments of τi. It

is worth noting that under the RM policy, the total blocking

time can be bounded by just
∑

l<i & τl∈V (τi) & si>0 El −Kl

because each task has only one GPU segment and the period

of any lower-priority task τl is larger than that of τi, which

leads to only one blocking time from each τl during the job

execution of τi.

On the other hand, the worst-case local blocking time of τi
can also be bounded by the amount of GPU budget available

during one period of τi. The reasoning behind this approach is

that lower-priority tasks cannot execute GPU segments more

than the available budget on the GPU. Thus, the maximum

total blocking time of τi is bounded by (1 + si)(� Ti

T g �+ 1)Cg

where “+1” is due to the carry-in effect.

Using these two approaches, the total local blocking time

of τi is bounded by

Bl
i = (si + 1) ·min

⎛
⎜⎜⎜⎜⎝
(⌈

Ti

T g

⌉
+ 1

)
Cg,

∑
l<i
τl∈V (τi)
si>0

El −Kl

⎞
⎟⎟⎟⎟⎠ .

(17)

3) Remote blocking: It occurs when the GPU segment of

a task is blocked in the GPU waiting queue due to other

GPU requests. Recall that the GPU segments of tasks are

ordered in a priority queue according to their tasks’ original

priorities. The response time of a GPU segment of τi is given

by W ′
i = Hgc

i + Ei. The reasoning is that after a task acquires

the GPU lock, it has to wait Hgc
i for the handover delay of

data transferring and mutual server synchronization (Eq. 15).

There is no other delay than Hgc
i added to the GPU segment

length Ei because our framework sets the GPU budget to

be large enough to perform any GPU segment in one GPU

period and boosts the priority of the task executing a GPU

segment. Hence, the remote blocking time of τi is bounded

by the following recurrence equation:

Br,n+1
i = max

l<i
si>0

W ′
l +

∑
h>i
si>0

(⌈
Br,n

i

Th

⌉
+ 1

)
.W ′

h. (18)

where the base is Br,0
i = maxl<i

si>0
W ′

l . The first term of the

equation captures the waiting time for acquiring the GPU lock

due to the currently-running of one GPU segment of a lower-

priority task and the second term represents the waiting time

for the GPU segments of higher-priority tasks. This analysis

is pessimistic because it assumes that the GPU budget is

exhausted after the completion of each GPU segment and the

GPU segment of the next task has to wait for the amount

of Hgc. It is noteworthy that because of the non-preemptive

GPU resource, the GPU server budget has to be large enough

that the GPU segment of any task is able to execute without

interruption which leads to enormous remote blocking time

due to a considerable data handover delay. Let Γg denote

the set of GPU-using tasks in a taskset. For the lowest-

priority GPU-using task, |Γg − 1| × (T g − Cg) is the amount

of delay only from the GPU server budget replenishment of

higher-priority GPU-using tasks. To mitigate this issue, we will

present another design of the waiting queue for GPU requests

in the later part of this section.

C. Improvement

1) Miscellaneous operation time reservation policy:
Recall our MOT reservation mechanism presented in Sec-

tion V-C. When enabled, it ensures that there is always an

enough amount of budget for miscellaneous operations (e.g.

data copy from/to GPU); thus, the GPU does not have to wait

until the start of the next CPU budget replenishment. Hence,

the CPU-GPU handover delay with the MOT mechanism is

Hgc
i = si(T

g − Cg). (19)

The improvement in the handover delay has also a profound

impact on the remote blocking delay by reducing the worst-

case response time of a GPU segment. However, it is worth

noting that for deferrable CPU servers, their budget needs to

be halved as discussed earlier in Section VI-A to avoid the

thermal back-to-back phenomenon.

2) Remote blocking enhancement: To address the problem

of enormous remote blocking time due to CPU-GPU handover

delay, we propose an alternative approach to the GPU waiting

queue. This approach implements the queue based on a variant

of the first-come first-served (FCFS) policy with a pre-defined

bin-packing order. To be more precise, a bin-packing heuristic

is employed to determine the number of bins, where the size of

each bin is the GPU budget and the length of a GPU segment is

the size of an item to be packed. The total number of items in

the bins is |Γg| and the number of bins is related to the waiting

time for a GPU segment. The reason for employing the FCFS

policy is to avoid starvation of jobs with large period because

under this policy, jobs with shorter period get serviced only

once at any time. If a small-period job arrives meanwhile,

it waits until the rest of waiting jobs get serviced and after

finishing all other jobs, it gets serviced according to its position

in the bins. Since in this approach all tasks have the same

amount of waiting time, it leads to a significant reduction in the

waiting time of low-priority GPU-using tasks but a moderate

increase in that of high-priority ones. It is worth reminding

that the replenishment period of the GPU server is typically

much larger than that of the CPU server. The remote blocking

time for a GPU-using task τi under the polling server policy

for CPU cores is

Br
i = si [(|bins|+ 1)T g + 2(|Γg| − 1)T c] . (20)

In this approach, missing activation points of the CPU polling

server can still happen in the transferring time of data from/to

the CPU server and due to the FCFS characteristics of the

queue, the total amount is 2(|Γg| − 1)T c. The remote blocking

time of τi under the deferrable and sporadic CPU server

policies without the MOT mechanism is

Br
i = si (|bins|+ 1)T g + 2(|Γg| − 1)(T c − Cc). (21)

This is because in the worst case, the GPU server waits for the

amount of CPU server jitter. The remote blocking time with

the MOT mechanism is

Br
i = si (|bins|+ 1)T g. (22)

To this end, our framework takes a hybrid scheduling

scheme that chooses one of the proposed queue implemen-

tations which successfully passes the schedulability analysis.

VII. EVALUATION

This section gives the experimental evaluation of our frame-

work. First, we explain our implementation on a real platform.

Then, we explore the impact of proposed approaches on

task schedulability with randomly-generated tasksets based on

practical parameters.

A. Implementation

We did our experiments on an ODroid-XU4 development

board [28] equipped with a Samsung Exynos5422 SoC. There

exist two different CPU clusters of little Cortex-A7 and big

Cortex-A15 cores, where each cluster consists of four homo-

geneous cores. There exists an integrated Mali-T628 GPU on

the chip which supports OpenCL 1.1. Built-in sensors with

sampling rate of 10 Hz with the precision of 1◦ C are on each

big CPU core and also the GPU to measure the temperature4.

The DTM throttles the frequency of the big CPU cluster to 900

MHz when one of its cores reaches the pre-defined maximum

temperature. During experiments, the CPU fan is always either

turned off or on at its maximum speed and the CPU is set to

run at its maximum frequency.

We stressed the CPU cores of the big cluster and the GPU

with different settings by executing sgemm program of the

Mali SDK benchmark [27] to measure the system parameters

used in Section VI. We observed that without launching

any kernel on the GPU, because of the heat conduction,

the temperature on the GPU rises from 40◦ C (the ambient

temperature) to 70◦ C. However, the GPU has less thermal

effect on CPU cores due to the low heat dissipation. The kernel

execution on the GPU in the presence of CPU workloads raises

the CPU temperature by 5-10◦ C.

4There are no temperature sensors on little cores since the power consump-
tion and heat generation of the little cluster is considerably low.

45

55

65

75

85

95

3,800 3,850 3,900 3,950 4,000

Te
m

pe
ra

tu
re

 (℃
)

Time (seconds)

CPU GPU Max. bound = 95 Steady

(a)

20

40

60

80

100

70 75 80 85 90 95

Se
rv

er
 u

til
iza

tio
n

(%
)

Maximum temperature bound (℃)

Fan off Fan on

(b)

60
65
70
75
80
85
90
95

600 800 1000 1200 1400 1600

Te
m

pe
ra

tu
re

 (℃
)

Replenishment period (milliseconds)

Maximum bound

(c)

Figure 6: a) Server design with the given maximum temperature of 95◦ C when the CPU fan is off. b) Server utilization w.r.t the given
maximum temperature. c) The maximum observed temperature w.r.t the server replenishment period when the CPU fan is off and CPU
utilization is 30%.

Fig. 6a illustrates the result of the implementation of the

CPU polling server with the replenishment period of 1 second5

and the maximum temperature bound of 95◦ C when the CPU

fan is off. As one can see, the CPU temperature oscillates

between 78◦ C to 95◦ C after a long time of the system

operating in the steady state.

Figures 6b depicts the server utilization with respect to the

maximum temperature bound. The maximum achievable uti-

lization of the CPU server is only 43% when the fan is off and

almost 95% when the fan is on. The gap in server utilization

between these two cases (fan on/off) decreases as the value of

the maximum temperature bound reduces. The steady state

temperatures under different maximum temperature bounds

remain almost the same regardless of whether the fan is on/off.

With our proposed thermal-aware server design, it is pos-

sible to bound the operating temperature to any thermal

constraint. It is worth noting that the same server utilization

value can give different temperature bounds depending on

the value of replenishment period used. Fig. 6d shows the

temperature bounds at the invariant server utilization of 30%

and the replenishment period in the range of [600, 1600]
milliseconds. The length of 1600 milliseconds is the maximum

feasible server replenishment period at the server utilization

of 30% that the board can reach when the fan is off. This

is because with a larger period value, the CPU exceeds its

maximum temperature bound during the active phase.

With these results, we have shown that it is possible to

satisfy the maximum temperature constraint based on our

proposed server design. Next, we will use the measured

parameters in our analysis and discuss its effect in taskset

schedulability.

B. Schedulability Experiments

Task Generation. We randomly generate 10,000 tasksets

for each experimental setting. The base parameters given in

Table I and the measured parameters from the board are used

for the taskset generation and the server design, respectively.

It is worth noting that the GPU parameters are in compliance

with the case study of prior work [18, 19, 20, 22]. Server

budgets are determined according to the maximum temperature

need by applying the equations of Section VI-A and the

5We conducted the experiment with large values of replenishment period
because of the coarse granularity of the sampling rate of the on-board
temperature sensors.

measured system parameters. The number of tasks in each

taskset is determined based of the uniform distribution in

the range of [8, 20]. Then, the utilization of the taskset is

partitioned randomly for these tasks in a way that no task has

the utilization more than the CPU server utilization. The total

WCET of each task (i.e., Ci) is calculated based on the task’s

utilization and its randomly-chosen period. If the task τi is a

CPU-only task, the whole Ci is assigned to Ci,1 otherwise Ci

is divided into Ei, Ci,1 and Ci,2, according to the random ratio

of the GPU segment length to the normal WCET. In this phase,

if Ei is more than the GPU server budget, another random

ratio is generated. Then, Ei is partitioned randomly into the

miscellaneous time (Mi,1+Mi,2) and the pure kernel execution

time (ki) according to the ratio of miscellaneous operations

given in Table I. The accumulated miscellaneous-operation

time is randomly divided into Mi,1 and Mi,2. Finally, tasks

are assigned to CPU cores by using the worst-fit decreasing

(WFD) heuristic for load balancing across cores. When the

MOT reservation is used, the MOT budget is determined by

the maximum of Mi,1 and Mi,2 for all tasks.

Table I: Base parameters for taskset generation
Parameters Values

Number of CPU cores 4
Number of tasks [8, 20]

Taskset utilization [0.4, 1.6]
Task period and deadline [30, 500] ms

Percentage of GPU-using tasks [10, 30] %
Ratio of GPU segment len. to normal WCET [2, 3]:1

Ratio of misc. operations in GPU segment
Mi,1+Mi,2

Ei
[10, 20]%

Server Period 10 ms
GPU Period 20 ms

Results. Figures 7a-b depict the percentage of the schedu-

lable tasksets when the CPU fan is on or off with different

taskset utilization. The CPU sporadic servers outperform the

other CPU server policies as expected because their replen-

ishment budget are as large as the polling server and the

remote blocking and CPU-GPU handover delays are as low as

those in the deferrable server. Compared to the polling server,

the deferrable server with MOT yields a higher percentage

of schedulable tasksets especially when taskset utilization is

low. Designating some portion of CPU server budget under

the deferrable replenishment policy results in improvement in

taskset schedulability. However, the percentage of schedulable

taskset under the deferrable server drops sharply as taskset

0

20

40

60

80

100

0.4 0.6 0.8 1 1.2 1.4 1.6Sc
he

du
la

bl
e

ta
sk

se
ts

 (%
)

Taskset utilization rate

Polling Deferrable MOT deferrable
Sporadic MOT sporadic

(a)

0

20

40

60

80

100

0.4 0.6 0.8 1 1.2 1.4 1.6Sc
he

du
la

bl
e

ta
sk

se
ts

 (%
)

Taskset utilization rate

Polling Deferrable MOT deferrable
Sporadic MOT sporadic

(b)

0

20

40

60

80

100

0.4 0.6 0.8 1 1.2 1.4 1.6

Sc
he

du
la

bl
e

ta
sk

se
ts

 (%
)

Taskset utilization rate

Without enhanchment With enhancement

(c)

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sc
he

du
la

bl
e

ta
sk

se
ts

 (%
)

GPU-using tasks rate

Sporadic MOT sporadic

(d)

0

20

40

60

80

100

5 10 15 20 25 30Sc
he

du
la

bl
e

ta
sk

se
ts

 (%
)

Server replenishment period (milliseconds)

Taskset utilization = 0.4 fan on Taskset utilization = 0.4 fan off
Taskset utilization = 1 fan on Taskset utilization = 1 fan off

(e)

Figure 7: a) and b) The percentage of schedulable tasksets under the given maximum temperature constraint of 95◦ C when the CPU fan is
off and on, respectively. c) Taskset schedulability results with and without the remote blocking enhancement under the polling server policy
while the CPU fan is off. d) The percentage of schedulable tasksets w.r.t the ratio of GPU-using tasks.

utilization increases because of the insufficient amount of

server budget (which is just the half of the polling/sporadic

server budget). It is worth noting that when the CPU fan is

off, there is a large gap between the two sporadic servers with

and without MOT at low taskset utilization. This is due to the

advantage of the MOT mechanism that also reduces enhanced

remote blocking delay.

Fig. 7c shows the effect of the proposed remote blocking

enhancement under the polling policy. As one can see, the

remote blocking reduces substantially due to our proposed

remote blocking enhancement by up to 20% especially when

there exists less workload in the system. Fig. 7d depicts the

impact of the rate of GPU-using tasks on schedulable taskset

rate under the CPU sporadic server policy with and without

MOT. As the number of GPU-using tasks increases, taskset

schedulability goes decreases as more tasks contend for the

shared GPU.

Next, we investigate the effect of server periods on the

schedulability rate. In this experiment, the temperature con-

straint is fixed to the maximum level and the server period is

varied from 5 to 30 milliseconds (see Fig. 7e) under the polling

server policy. As expected, because of the large CPU-GPU

handover delay, the percentage of schedulable tasksets drops

significantly as the server replenishment period increases.

VIII. CASE STUDY

We have implemented a prototype of our framework and

conducted a case study on ODroid-XU4. We show that without

our framework, a real-time task experiences unexpectedly

large delay due to the thermal violation, but with our frame-

work, the operating temperature is safely bounded within a

desired range.

In the case study, we used three types of applications: a

real-time GPU-using task, and non-real-time CPU-only and

GPU-using tasks. The non-real-time CPU-only application is

run on each of the four big CPU cores with the lowest

priority. The non-real-time GPU-using matrix multiplication

task is run on one big CPU core with the medium priority.

This task randomly generates two matrices and performs the

matrix multiplication repetitively using the GPU-accelerated

Mali OpenCL library. The size of matrix is set to 512×512 in

order not to cause unnecessarily long waiting time to the real-

time task. On the other big CPU core, the highway workzone

recognition application for autonomous driving [25] is run as

the real-time GPU-using task with the highest priority. This

task is configured to process 8 frames per second and has

one GPU segment based on OpenCL. A video consisting of

around 800 frames is given as input to this task. To avoid

unexpected delay in data fetching, video frames are preloaded

into memory as a vector during the initialization of the task and

the loaded frames are repeatedly processed at runtime. After

the initialization, all tasks are signaled to start their execution

together and the CPU fan is turned off during the experiment.

Other tasks in the system, including system maintenance and

monitoring processes, are assigned to the little cluster cores.

The thermal-aware servers are implemented based on the

polling server policy with the budget replenishment period of

10 milliseconds.

Two scenarios are used to show the effectiveness of our

proposed framework. The first one is the baseline system with

no thermal-aware server. Fig. 8a shows the response time of

each frame (job) of the real-time workzone recognition task,

and Fig. 8b depicts the temperature measurements during the

experiment. As one can see, after processing around 1040

frames, the DTM was triggered and it started throttling the

CPU frequency from 2.0 GHz to 900 MHz since the CPU

temperature had reached the threshold of 95◦ C. However,

0
20
40
60
80

100
120
140
160

0 200 400 600 800 1000 1200

Re
sp

on
se

 ti
m

e
(m

s)

Frame #

Frequency throttling

CPU powering offDeadline

(a)

30
40
50
60
70
80
90

100

0 20 40 60 80 100 120 140

Te
m

pe
ra

tu
re

 (°
C)

Time (seconds)

CPU GPU Threshold bound

(b)

0
20
40
60
80

100
120
140
160

0 1000 2000 3000 4000 5000 6000 7000

Re
sp

on
se

 ti
m

e
(m

s)

Frame #

Deadline

(c)

30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800

Te
m

pe
ra

tu
re

 (°
C)

Time (seconds)

CPU GPU Steady state temp. Threshold bound

(d)

Figure 8: a) Response time of the real-time workzone recognition task
without our framework. b) Temperature of CPU and GPU without
our framework. c) Response time of the real-time task with our
framework d) Temperature of CPU and GPU with our framework.

the frequency throttling did prevent the operating temperature

from rising on both the CPU and the GPU, which caused the

OS to power off the big CPU cluster temporarily. This exper-

iment took less than three minutes. In the second scenario, all

tasks execute within the thermal-aware servers. As illustrated

in Fig. 8c, the observed response time of each frame was larger

compared to the first scenario due to the budget of servers,

but all frames were processed before the deadline. Fig. 8d

depicts that it took around 500 seconds to reach the steady state

temperature. Moreover, the operating temperature was tightly

bounded by the thermal threshold in any circumstance. This

result shows the thermal safety and accuracy of our framework

in practical settings.

IX. CONCLUSION

In this paper, we proposed a novel thermal-aware framework

to bound the maximum temperature of CPU cores as well as

an integrated GPU while guaranteeing real-time schedulability.

Our framework supports various server policies and provides

analytical foundations to check both thermal and tempo-

ral safety. Experimental results show that each CPU server

policy provided by our framework is effective in bounding

the maximum temperature. We proposed the miscellaneous

operation time reservation mechanism for the CPU servers in

order to improve task schedulability by reducing the CPU-

GPU handover delay. We also introduced a remote blocking

enhancement technique that employs the bin-packing strategy

to reduce the remote blocking caused by other tasks.

As our future work, we will study task allocation to CPU

and GPU cores to further increase the schedulability for

a given temperature constraint. Also, the thermal behavior

of GPU-using tasks may depend significantly on the type

of resources used by their kernels. For instance, a GPU

kernel frequently accessing local memory may generate much

less heat than those using global memory or being compute

intensive. We plan to investigate such issues in the future.

REFERENCES

[1] M. Ahmed, N. Fisher, S. Wang, and P. Hettiarachchi. Minimizing peak
temperature in embedded real-time systems via thermal-aware periodic
resources. Sustainable Computing: Informatics and Systems, 1(3):226 –
240, 2011.

[2] R. Ahmed, P. Huang, M. Millen, and L. Thiele. On the design and
application of thermal isolation servers. ACM Trans. Embed. Comput.
Syst., 16(5s):165:1–165:19, Sept. 2017.

[3] R. Ahmed, P. Ramanathan, and K. K. Saluja. Necessary and sufficient
conditions for thermal schedulability of periodic real-time tasks under
fluid scheduling model. ACM Transactions on Embedded Computing
Systems (TECS), 15(3):49, 2016.

[4] G. Bernat and A. Burns. New results on fixed priority aperiodic servers.
In IEEE Real-Time Systems Symposium, 1999.

[5] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen.
Errata for three papers (2004-05) on fixed-priority scheduling with self-
suspensions. Leibniz Transactions on Embedded Systems, 5(1):02–1,
2018.

[6] Y. Chandarli, N. Fisher, and D. Masson. Response time analysis for
thermal-aware real-time systems under fixed-priority scheduling. In
IEEE International Symposium on Real-Time Distributed Computing
(ISORC), 2015.

[7] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling
and assignment for hard real-time applications on mpsocs. In 2008
Design, Automation and Test in Europe, pages 288–293, March 2008.

[8] J. J. Chen, S. Wang, and L. Thiele. Proactive speed scheduling for real-
time tasks under thermal constraints. In IEEE Real-Time and Embedded
Technology and Applications Symposium, 2009.

[9] Pascal Tuning Guide. https://docs.nvidia.com/cuda/pascal-tuning-
guide/index.html, 2018.

[10] S. M. D’Souza and R. Rajkumar. Thermal implications of energy-saving
schedulers. In ECRTS, 2017.

[11] G. A. Elliott and J. H. Anderson. Globally scheduled real-time
multiprocessor systems with gpus. Real-Time Systems, 48(1):34–74,
2012.

[12] G. A. Elliott, B. C. Ward, and J. H. Anderson. Gpusync: A framework
for real-time gpu management. In IEEE Real-Time Systems Sympo-
sium(RTSS), 2014.

[13] M. Fan, V. Chaturvedi, S. Sha, and G. Quan. An analytical solution
for multi-core energy calculation with consideration of leakage and
temperature dependency. In International Symposium on Low Power
Electronics and Design (ISLPED), pages 353–358, Sept 2013.

[14] Y. H. Gong, J. J. Yoo, and S. W. Chung. Thermal modeling and
validation of a real-world mobile ap. IEEE Design Test, 35(1):55–62,
Feb 2018.

[15] H. Huang, V. Chaturvedi, G. Quan, J. Fan, and M. Qiu. Throughput
maximization for periodic real-time systems under the maximal temper-

ature constraint. ACM Trans. Embed. Comput. Syst., 13(2s):70:1–70:22,
Jan. 2014.

[16] A. Iranfar, M. Kamal, A. Afzali-Kusha, M. Pedram, and D. Atienza.
Thespot: Thermal stress-aware power and temperature management for
multiprocessor systems-on-chip. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2017.

[17] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. Rgem: A responsive gpgpu execution model for runtime
engines. In Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd,
pages 57–66. IEEE, 2011.

[18] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. Timegraph: Gpu
scheduling for real-time multi-tasking environments. In Proc. USENIX
ATC, pages 17–30, 2011.

[19] S. Kato, M. McThrow, C. Maltzahn, and S. A. Brandt. Gdev: First-class
gpu resource management in the operating system. In USENIX Annual
Technical Conference, pages 401–412. Boston, MA;, 2012.

[20] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar. A server-based approach
for predictable gpu access control. In IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2017.

[21] H. Kim, P. Patel, S. Wang, and R. R. Rajkumar. A server-based approach
for predictable GPU access with improved analysis. Journal of Systems
Architecture, 88:97–109, 2018.

[22] H. Kim, S. Wang, and R. Rajkumar. vmpcp: A synchronization
framework for multi-core virtual machines. In 2014 IEEE Real-Time
Systems Symposium, pages 86–95, Dec 2014.

[23] P. Kumar and L. Thiele. Cool shapers: Shaping real-time tasks for
improved thermal guarantees. In Proc. of Design Automation Conference
(DAC 2011), pages 468–473, San Diego, California, Jun 2011. ACM.

[24] C. J. Lasance. Thermally driven reliability issues in microelec-
tronic systems: status-quo and challenges. Microelectronics Reliability,
43(12):1969–1974, 2003.

[25] J. Lee, Y.-W. Seo, W. Zhang, and D. Wettergreen. Kernel-based traffic
sign tracking to improve highway workzone recognition for reliable
autonomous driving. In Intelligent Transportation Systems-(ITSC), 2013
16th International IEEE Conference on, pages 1131–1136, 2013.

[26] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-
dependent integrated circuit leakage power estimation is easy. In 2007
Design, Automation Test in Europe Conference Exhibition, pages 1–6,
April 2007.

[27] Mali OpenCl SDK. https://developer.arm.com/products/software/mali-
sdks, 2016.

[28] ODROID-XU4. http://www.hardkernel.com/, 2016.
[29] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith,

A. Berg, and S. Wang. An evaluation of the nvidia tx1 for supporting
real-time computer-vision workloads. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2017 IEEE, pages
353–364. IEEE, 2017.

[30] P. Patel, I. Baek, H. Kim, and R. R. Rajkumar. Analytical enhancements
and practical insights for mpcp with self-suspensions. 2017.

[31] F. Paterna and T. S. Rosing. Modeling and mitigation of extra-
soc thermal coupling effects and heat transfer variations in mobile
devices. In 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pages 831–838, Nov 2015.

[32] A. Prakash, H. Amrouch, M. Shafique, T. Mitra, and J. Henkel. Improv-
ing mobile gaming performance through cooperative cpu-gpu thermal
management. In Proceedings of the 53rd Annual Design Automation

Conference, DAC ’16, pages 47:1–47:6, New York, NY, USA, 2016.
ACM.

[33] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. In Distributed Computing Systems, 1990. Proceedings.,
10th International Conference on, pages 116–123. IEEE, 1990.

[34] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization
protocols for multiprocessors. In Real-Time Systems Symposium, 1988.,
Proceedings., pages 259–269. IEEE, 1988.

[35] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis
of hierarchical fixed-priority scheduling. In ECRTS, 2002.

[36] O. Sahin and A. K. Coskun. Providing sustainable performance in ther-
mally constrained mobile devices. In 2016 14th ACM/IEEE Symposium
on Embedded Systems For Real-time Multimedia (ESTIMedia), pages
1–6, Oct 2016.

[37] L. Schor, I. Bacivarov, H. Yang, and L. Thiele. Worst-case temperature
guarantees for real-time applications on multi-core systems. In 2012
IEEE 18th Real Time and Embedded Technology and Applications
Symposium, pages 87–96, April 2012.

[38] L. Sha, J. Lehoczky, and R. Rajkumar. Solutions for some practical
problems in prioritized preemptive scheduling. In IEEE Real-Time
Systems Symposium. IEEE Computer Society Press, 1986.

[39] G. Singla, G. Kaur, A. K. Unver, and U. Y. Ogras. Predictive dynamic
thermal and power management for heterogeneous mobile platforms. In
2015 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 960–965, March 2015.

[40] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan. Temperature-aware microarchitecture: Modeling and
implementation. ACM Trans. Archit. Code Optim., 1(1):94–125, Mar.
2004.

[41] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-
real-time systems. Real-Time Systems, 1(1):27–60, 1989.

[42] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of
technology scaling on lifetime reliability. In Dependable Systems and
Networks, 2004 International Conference on, pages 177–186. IEEE,
2004.

[43] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments. IEEE Transactions on Computers, 44(1):73–91, 1995.

[44] R. Viswanath, V. Wakharkar, A. Watwe, V. Lebonheur, et al. Thermal
performance challenges from silicon to systems. 2000.

[45] S. Wang, Y. Ahn, and R. Bettati. Schedulability analysis in hard real-time
systems under thermal constraints. Real-Time Systems, 46(2):160–188,
2010.

[46] S. Wang and R. Bettati. Delay analysis in temperature-constrained
hard real-time systems with general task arrivals. In 2006 27th IEEE
International Real-Time Systems Symposium (RTSS’06), pages 323–334,
Dec 2006.

[47] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang. System-
level reliability modeling for mpsocs. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, pages 297–306. ACM, 2010.

[48] K. G. S. Youngmoon Lee, Hoonsung Chwa and S. Wang. Thermal-aware
resource management for embedded real-time systems. In Embedded
Software (EMSOFT), 2018 International Conference on. IEEE, 2018.

[49] H. Zhou, G. Tong, and C. Liu. Gpes: A preemptive execution system
for gpgpu computing. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2015 IEEE, pages 87–97. IEEE, 2015.

