
Analytical Enhancements and Practical Insights for
MPCP with Self-Suspensions

Pratyush Patel1, Iljoo Baek1, Hyoseung Kim2, Ragunathan (Raj) Rajkumar1
1Carnegie Mellon University, 2University of California, Riverside

Abstract—Hardware accelerators such as GP-GPUs and DSPs
are being increasingly used in computationally-intensive real-
time and multimedia systems. System efficiency is often increased
when CPU tasks suspend while using these devices. In this paper,
we extend the existing Multiprocessor Priority Ceiling Protocol
(MPCP) schedulability analysis in this particular context. We
present three methods to improve the traditional MPCP analysis
that reduces pessimism in analyzing blocking times. Two of these
methods, the request-driven and the job-driven approaches, are
motivated by prior work and are adapted to MPCP. The third
combines these two approaches in a novel way to consistently
outperform either on its own. We note that our underlying
observations are general, and that such methods can also be
used for analyzing other real-time synchronization protocols.

Experimental results indicate that our analytical improvements
result in a significantly higher schedulability compared to the
traditional recursion-based analysis, even when self-suspensions
are not considered. Our approach is also competitive with
and often outperforms the linear-programming-based FMLP+
analysis, while having a considerably lower runtime complexity.
We further substantiate the practical feasibility of suspension-
based MPCP and examine its benefits over the busy-waiting ap-
proach by presenting a case-study on an NVIDIA TX2 embedded
platform using real-world vision applications.

I. INTRODUCTION

Task synchronization and communication are key aspects of
building complex systems as they enable components to safely
share logical and physical resources. Conventional methods
for synchronization, such as using mutex locks or binary
semaphores, may lead to unbounded priority inversion [36,
38]. In order to overcome this problem, several real-time
synchronization protocols have been proposed in the literature
which reduce and bound the blocking time [11, 16, 17, 23, 35].

Synchronization protocols for uniprocessors, such as the
Priority Inheritance Protocol (PIP), Priority Ceiling Protocol
(PCP) [38] and Stack Resource Policy (SRP) [8], have been
well-studied in prior work and their schedulability analyses
are considered reasonably accurate in practice. However, when
it comes to multiprocessor synchronization protocols such
as the Multiprocessor Priority Ceiling Protocol (MPCP) and
the Distributed Priority Ceiling Protocol (DPCP), traditional
recursion-based analysis [29] has been shown to be quite
pessimistic [13, 45]. Hence, practically schedulable tasksets
under a given scheduling algorithm may be deemed to be
unschedulable. Due to the increasing demand for computa-
tional capacity in addition to efficient resource sharing (e.g., in
self-driving vehicles [28, 41]), multiprocessor synchronization
protocols are of significant practical interest. However, the

aforementioned analytical pessimism can lead to expensive
over-provisioning. This has motivated the development of
tighter analytical methods, such as the recent work on a
Linear Programming (LP) approach to analyze the FIFO
Multiprocessor Locking Protocol (FMLP+) [14]. This LP-
based approach can also be applied to MPCP, DPCP and other
synchronization protocols [13, 46]. Our work extends this line
of research by significantly reducing the pessimism of the
traditional recursion-based analysis, and our insights can also
be incorporated into LP-based approaches to further improve
their schedulability. In particular, we focus on the traditional
recursion-based analysis due to its lower computational re-
quirements. Such an approach, coupled with our analytical
enhancements, can easily be adopted to runtime admission
control and adaptation, which are integral parts of systems
operating in changing environments.

Furthermore, we observe that there are two important as-
pects to task suspension when dealing with real-time synchro-
nization protocols. The first is that of suspending immediately
after a resource request, if the resource lock is already
held by another task. This aspect has been well-studied in
the literature [12, 13, 14, 16, 29], which broadly classifies
schedulability analyses into “spinlock-based” and “semaphore-
based” approaches. Spinlock-based approaches assume that a
task requesting access to a resource busy-waits on the CPU
until it obtains resource access, thereby disallowing other tasks
to execute in the meantime. On the contrary, semaphore-
based approaches allow requesting tasks to suspend if the
requested resource is in use, thereby letting other tasks utilize
the CPU. Although it may be intuitive to expect semaphore-
based approaches to always yield better schedulability, both
approaches are often considered in practice. This is because
spinlock-based approaches do not face significant analytical
pessimism and may sometimes outperform semaphore-based
analyses, especially for small critical sections [12, 16, 29]. The
improvements we propose in this paper are applicable to both
these approaches.

The second aspect to task suspension is that of suspending
within critical sections. Most existing synchronization pro-
tocols assume that tasks may not suspend during critical-
section execution, which may seem reasonable, because crit-
ical sections that modify only a few shared variables are
expected to be short in practice. However, synchronization
protocols have recently been demonstrated to be effective in
accessing shared external resources (such as GPUs and DSPs),

which may require much longer critical sections [20, 22].
In such cases, busy-waiting for the entire critical-section
duration significantly compromises CPU utilization [26, 27].
To avoid this problem, it is becoming useful in practice to
extend synchronization protocols to allow suspensions within
critical sections while the resource is being used. We empha-
size that system support for such suspensions already exists.
For example, as we explore in Section IV-B, modern GPU
hardware and drivers already allow a task to suspend while
the GPU is executing its request. Recent work has briefly
explored how such self-suspensions may be incorporated into
the analysis of FMLP+ [14] and also to certain k-exclusion
protocols [44], but, to the best of our knowledge, there is no
prior evaluation regarding the schedulability characteristics of
suspension-based synchronization protocols and their efficacy
in practice.1 In particular, no such analysis and experiments
exist for MPCP in prior work.

In this paper, we generalize MPCP to the aforementioned
use-case of suspending within critical sections and examine its
practical feasibility. MPCP is a well-studied synchronization
protocol and is known to offer comparable performance to
other synchronization protocols under partitioned schedul-
ing [13, 37]. We are further motivated to consider MPCP
in this paper because it complements the widely-used fixed-
priority scheduling approach.

The remainder of this paper is organized as follows. Sec-
tion II describes our system model and reviews basic defini-
tions and notations. Section III presents three improved block-
ing analyses for MPCP that also allow self-suspensions within
critical sections. Section IV-A contains extensive schedula-
bility experiments comparing our approach with the existing
recursion-based analysis for MPCP, demonstrating the benefits
of our approach. Section IV-A also compares the traditional
MPCP analyses against the LP-based analysis for partitioned
FMLP+, with and without self-suspending critical sections.
Section IV-B evaluates the practical feasibility of our approach
on the NVIDIA TX2 board, using the GPU as an example of a
shared heterogeneous resource. Section V reviews prior related
work. Section VI concludes the paper.

II. SYSTEM MODEL

We consider a taskset Γ = {τ1, . . . , τn} consisting of n
sporadic tasks (subscript denotes the task index). This taskset
executes on a multiprocessor platform that consists of m
identical CPUs P1, . . . , Pm. Each task may use any of g
serially-reusable shared resources (such as shared memory,
heterogeneous accelerators, etc.), whose access is arbitrated by
mutually-exclusive locks, denoted by R1, . . . , Rg respectively.
A task must acquire a lock in order to use the corresponding
resource. A task executing on the CPU without holding any
locks is said to be in a non-critical section. A task is said to
be in a critical section if it is holding a lock. While executing
a critical section, a task may be scheduled on the CPU or

1In this paper, we refer to “suspension-based” synchronization protocols as
those which allow suspensions within critical sections, and to “busy-waiting”
protocols as those which do not.

it may be suspended. All critical sections are assumed to be
non-nested.

For each task τi, Ci denotes the cumulative worst-case
execution time of all non-critical sections, Ti denotes the
minimum inter-arrival time of each job and Di denotes the
relative deadline. We assume constrained deadlines for all
tasks, i.e., Di ≤ Ti. Each task has a maximum of ηi critical
sections per job, and uses Rk for a maximum of ηi,k times in
any single job (ηi =

∑
1≤k≤g ηi,k). Gi,j denotes the worst-

case execution time of the jth critical section of τi, and
consists of two components: (i) Gmi,j , which denotes the worst-
case execution time of the critical section on the CPU, and
(ii) Gei,j , which denotes the worst-case suspension time of that
critical section (for instance, while executing on the shared
resource). Note that, Gi,j ≤ Gmi,j + Gei,j , as Gmi,j and Gei,j
may not occur on the same control path. The total critical-
section execution time for a task is given by Gi =

∑ηi
j=1Gi,j .

Correspondingly, Gmi =
∑ηi
j=1G

m
i,j and Gei =

∑ηi
j=1G

e
i,j .

The maximum number of suspensions in the jth critical
section of τi is given by ζi,j . We use Ei to denote the worst-
case CPU execution time of task τi, where Ei = Ci +Gmi .
R(τi) denotes the complete set of locks accessed by τi, and

similarly, R(τi,j) denotes the lock protecting the jth critical
section of task τi. We define the total utilization of the task as
Ui = (Ci+Gi)/Ti. For simplicity, we do not consider release
jitters in this paper.

We assume preemptive, partitioned fixed-priority schedul-
ing, where each task τi is associated with a unique base
priority πi. τj has a higher base priority than τi if πj > πi.
P (τi) denotes the set of tasks allocated on the same CPU as
τi. We use hp(τi) (resp. lp(τi)) to denote the set of all tasks
which have a priority higher (resp. lower) than τi. Similarly,
we use hpp(τi) (resp. lpp(τi)) to denote the set of higher (resp.
lower)-priority tasks allocated on the same CPU as τi.

Multiprocessor Priority Ceiling Protocol. Throughout this
paper, we assume that locks are governed using MPCP, which
was originally proposed for partitioned fixed-priority schedul-
ing for shared-memory multiprocessors [34, 36]. In particular,
we consider semaphore-based MPCP. Under this protocol, a
task requesting access to a lock held by a different task is
suspended and inserted into a priority queue corresponding
to that lock. During this time, other ready tasks may use
the CPU. When the lock is released, the task at the head of
the priority queue is woken up, granted lock access, and is
immediately elevated to a ceiling priority. The ceiling priority
of the jth critical section of task τi accessing lock Rk, is given
by πi,j = Πk + ΠB , where ΠB is a priority level greater than
the base priority of any task in the system and Πk is the highest
base priority of any task that uses Rk. When τi releases a lock,
it is returned to its corresponding base priority πi.

III. SUSPENSION-BASED SCHEDULABILITY ANALYSIS

Taskset schedulability is typically determined by using
response-time analysis, which deems a taskset schedulable if
each task’s worst-case response time (WCRT) is no greater

than its deadline. Under synchronization protocols, response-
time analysis requires an upper bound on the protocol-imposed
blocking duration for each task. In this section, we discuss
three types of blocking analyses that help determine taskset
schedulability. Prior work has shown that the WCRT Wi of
a task τi under fixed-priority scheduling can be obtained by
solving the following recurrence equation [7, 29]:

Wi = Ci +Gi +Bi +
∑

τh∈hpp(τi)

Ii,h, (1)

where, Bi denotes the upper bound on the maximum
synchronization-based blocking delay faced by τi and Ii,h
denotes the worst-case interference (preemption time) incurred
by τi due to the execution of task τh on the same CPU. A
taskset is considered schedulable iff ∀τi,Wi ≤ Di.

A. Higher-Priority Task Preemptions
A task τi can be preempted by all higher-priority tasks

executing on the same CPU as τi which increases its WCRT.

Def. 1. For each higher-priority task τh, αi,h is defined as an
upper bound on the number of instances of τh released during
the execution of a single job of τi. αi,h is given by

αi,h =

⌈
Wi +Wh − Eh

Th

⌉
. (2)

Eq. 2 takes into account the jitter incurred due to self-
suspensions (Wh−Eh), as it affects the worst-case start time
of the job. A detailed proof can be found in prior work on
self-suspension analysis [10]. We incorporate the maximum
preemption delay from each higher-priority task by using

Ii,h = αi,h · Eh, (3)

because, by definition, τh executes for a maximum of Eh on
the CPU per job release.

B. Blocking Definition
A task τi is said to be blocked if a local task τj with a

lower base priority is scheduled while τi is pending (because
τj executes at its ceiling priority when granted lock access),
or if any task τk has locked the resource that τi is waiting
for. We define blocking time Bi as the maximum amount
of time that any job of τi is blocked. Note that, due to the
inclusion of self-suspensions with critical sections, we do not
explicitly distinguish between local blocking (caused due to
priority inversions) and remote blocking (caused due to lock-
acquisition delays) as done in prior work [29, 45]. Under
suspension-based approaches, a lower-priority task τl may
acquire a resource and suspend, which a higher priority task
τh (on the same CPU as τl), may have to wait for, if it makes
a request for the same resource after τl’s suspension. Such
cases do not arise in the traditional busy-waiting approach.
Whenever critical sections are known to not suspend, we can
revert to the original separation of local and remote blocking
to obtain higher schedulability.

The blocking term can be decomposed into three
types: (i) direct blocking, which is incurred when any task τj

Task Ci Gi ηi Gi,1 Gi,2 Ti = Di CPU

τ1 1 1 1 1 - 102 1
τ2 1 100 1 100 - 10000 2
τ3 1000 2 2 1 1 1106 3

TABLE I: Example taskset parameters.

is using τi’s requested resource, (ii) indirect blocking, which
is incurred when a task τx accessing a resource with a higher-
priority ceiling preempts the execution of τj , which is holding
the resource that τi is waiting for, and (iii) prioritized blocking,
which is incurred when lower-priority tasks executing with
priority ceilings preempt the CPU execution of τi.2

C. Blocking Analysis Intuition

We begin by making a few observations regarding the block-
ing term and later capture this intuition in our analysis. Let us
consider an example taskset with parameters given in Table I.
We assume that each task is allocated to a separate CPU and
that they all access a single lock R1 for all their critical
sections. We also assume that no task has self-suspending
critical sections.

We now consider the response time for task τ3. First, as each
task has exclusive access to its own CPU, prioritized blocking
and the interference from higher-priority tasks (corresponding
to the last term of Eq. 1), is disregarded for all tasks including
τ3. Secondly, because all tasks share a single resource, there
is no indirect blocking delay. Therefore, τ3 only incurs direct
blocking from τ1 and τ2.

We now describe two methods to evaluate this direct
blocking delay. We then make observations to combine the
benefits from both methods to introduce a new method which
results in a tighter bound on the blocking term. Our first
method uses a request-driven approach, which is analogous
to the blocking analysis presented by Lakshmanan et al. [29].
The request-driven approach individually considers the worst-
case blocking delay from all tasks for each resource request
made by τ3. Because τ3 makes two resource requests in a
single job, its request-driven blocking delay, Bdr3 , is given by
Bdr3,1+Bdr3,2, where Bdr3,1 and Bdr3,2 correspond to the worst-case
direct blocking caused by higher-priority task requests during
the first and second resource requests by τ3, respectively.
Each resource request of τ3 may be delayed by up to two
requests of τ1 and one request of τ2 in the worst case. This
is because τ1 may issue a second resource request while τ2
executes its critical section. Therefore, Bdr3,1 = Bdr3,2 = 102,
and Bdr3 = 204.

Our second method uses a job-driven approach to evaluate
the worst-case blocking term, and takes into account the
maximum number of resource requests made by each higher-
priority task during the entire execution time of a single job

2Prioritized blocking has sometimes been referred to as “preemption
blocking” in prior work. We avoid using “preemption blocking” in this paper
as it could be confused with the usual higher-priority task preemptions.

of τ3. Because no more requests can be made by higher-
priority tasks within τ3’s execution duration, this approach also
results in a safe blocking bound. The job-driven approach is
inspired by the memory-interference bounding [25] and server-
based GPU arbitration [27] analyses. It takes into account
the entire execution time of a job of τi to find its worst-
case direct blocking delay. The total number of higher-priority
resource requests during the execution of a job of τ3 can be
captured by a ceiling term similar to traditional response-
time analysis (wherein the total number of higher-priority
job releases are taken into account, as described in Eq. 7).
Such an analysis amounts to 12 requests from τ1 and a single
request from τ2, resulting in a total job-driven blocking delay
of Bdj3 = (12× 1) + (1× 100) = 112.

Although the job-driven approach results in a tighter block-
ing bound than the request-driven approach for the considered
taskset, we posit that both these approaches can be unneces-
sarily pessimistic.3 A third approach is possible which bounds
the worst-case blocking delay of each request of τ3, while
simultaneously bounding the maximum possible requests that
can be issued by each higher-priority task. This effectively
combines the benefits offered by the request-driven and the
job-driven approaches. Under this hybrid approach, we capture
the maximum blocking using Bdm3 . We observe that due to the
large period of τ2, the maximum number of resource requests
it can issue during a single job of τ3 can only be 1. On the other
hand, while τ1 can issue a maximum of 12 requests during
the execution of τ3, each request of τ3 can only be delayed by
up to two such requests. This makes the total blocking delay
Bdm3 = (2 × 2 × 1) + (1 × 100) = 104, which is lower than
both the request-driven and the job-driven approaches.

Key Observations. On the one hand, the request-driven
approach can result in a pessimistic blocking delay as ηi
increases because the worst-case blocking is unnecessarily
taken into account for each request of τi. On the other hand,
the job-driven analysis can result in a pessimistic bound as Ci
(and correspondingly Wi) increases, because it considers that
resource requests can block τi even when τi is not attempting
to use a resource. Therefore, the hybrid approach can yield a
tighter bound by carefully combining the best of both worlds.
It is worth noting that the hybrid approach that we propose in
this paper differs from the prior attempts [25, 27] that simply
take the minimum of the request-driven and the job-driven
approaches, i.e., Bdm3 < min(Bdr3 , Bdj3). We formalize these
observations in our subsequent blocking analyses for MPCP.

D. Direct Blocking

The direct blocking for a task τi captures its total waiting
duration before lock access is granted, across all its lock-
acquisition requests. We analyze it as follows.

Request-Driven Approach. This approach is similar to the
blocking analysis proposed by Lakshmanan et al. [29]. How-
ever, we modify the original blocking term by incorporating

3Note that, neither the request-driven approach nor the job-driven approach
dominates the other in general, as shown in Section IV-A.

the suspension-based analysis proposed by Chen et al. [18] to
obtain a tighter bound. The maximum direct-blocking delay a
task can incur under this approach is calculated by summing
the blocking delay for individual lock-acquisition requests,
treated separately. This means that, each time a job of task
τi issues a request to obtain any lock it may be blocked by
other tasks that use the same lock. The worst-case blocking
for each lock-acquisition request is summed up, resulting in
the total direct blocking under this approach. Therefore,

Bdri =
∑

0<j≤ηi

Bdri,j . (4)

Lemma 1. Under the request-driven approach, the worst-case
direct blocking for the jth lock-acquisition request of τi is
upper-bounded by

Bdri,j = max
τl∈lp(τi)

∧R(τi,j)=R(τl,k)

(Hl,k) +
∑

τh∈hp(τi)
∧R(τi,j)=R(τh,k)

βi,j,h ·Hh,k,

(5)

where, Hx,k is the worst-case response time of the kth critical
section of τx (discussed in Section III-E4) and βi,j,h is an
upper bound on the number of activations of τh during the
blocking duration Bdri,j (similar to αi,h in Eq. 2). βi, j, h is
given by

βi,j,h =

⌈
Bdri,j +Wh − Eh

Th

⌉
. (6)

Proof. When τi makes its lock-acquisition request, it may have
to wait for at most one lower-priority task that is already
holding the lock and for higher-priority tasks that are already
queued to access the lock. In addition, while these requests
are serviced, higher-priority tasks on different CPUs or on
the same CPU (assuming self-suspending critical sections),
may issue additional locking requests which will be serviced
first.5 The first term in Eq. 5 captures the maximum blocking
caused by such a critical section of a lower-priority task.
The critical section with the highest response time is used
to reflect the worst case. The second term in Eq. 5 captures
the maximum blocking delay caused by critical sections of
higher-priority tasks. Eq. 6 accounts for deferred execution
when upper-bounding the number of higher-priority task re-
quests, which represents the same blocking delay as derived
in prior work [10, 18, 23]. Since both these factors can occur
independently, the upper bound on direct blocking under the
request-driven approach is given by the sum of these two
terms. �

Job-Driven Approach. The job-driven approach captures job-
level characteristics (rather than per request) by bounding the
maximum possible interference during the entire execution of
any job of τi. The key intuition is that this can be bounded

4Hx,k is analogous to W ′
i,k in Eq. (2) by Lakshmanan et al. [29].

5If critical sections were assumed to not suspend, the second term of Eq. 5
would only involve remote higher-priority task requests.

by considering the maximum number of releases (and hence
lock-acquisition requests) of each higher-priority task before
the completion of τi.

Lemma 2. Under the job-driven approach, the worst-case
direct blocking incurred by τi is given by

Bdji =
∑

r∈R(τi)

ηi,r · max
τl∈lp(τi)
∧R(τl,k)=r

(Hl,k) +
∑

τh∈hp(τi)
∧R(τh,k)∈R(τi)

αi,h ·Hh,k.

(7)

Proof. The maximum direct blocking caused by lower-priority
tasks is captured by the first term of Eq. 7 across each of the
ηi,r lock-acquisition requests of τi (analogous to the request-
driven approach). In addition, during the execution of a job
of τi, each higher-priority τh can be released for a maximum
of αi,h times (from Def. 1). Each higher-priority task release
implies that all its critical sections that use the same resources
as τi can block τi in the worst case. This is captured in the
second term. Since both these factors can occur independently,
the upper bound on the direct blocking delay under the job-
driven approach is given by the sum of these two terms. �

Hybrid Approach. The hybrid approach combines the benefits
of both the request-driven and the job-driven approaches
to result in a tighter blocking bound. We consider the di-
rect blocking delay from higher-priority (Bdmhi) and lower-
priority (Bdmli) tasks separately, i.e., Bdmi = Bdmli +Bdmhi .

Lemma 3. Under the hybrid approach, the worst-case direct
blocking due to higher-priority tasks is given by

Bdmhi =
∑

τh∈hp(τi)
∧R(τh,k)∈R(τi)

δi,h ·Hh,k,
(8)

where, δi,h upper-bounds the cumulative number of requests
by τh to the locks accessed by critical sections of τi. δi,h is
given by

δi,h = min

αi,h, ∑
0<j≤ηi

∧R(τi,j)∈R(τh)

βi,j,h

 . (9)

Proof. For each higher-priority task τh, the maximum number
of times its critical sections can block τi is safely upper-
bounded by αi,h under the job-driven approach (Lemma 2).
Alternatively, it is also safely upper-bounded under the
request-driven approach in which the jth lock-acquisition
request of τi incurs direct blocking due to a maximum of
βi,j,h activations of τh if also τh accesses the same lock. As
both of these safe upper bounds, their minimum represented
by δi,h is also safe. Therefore, Eq. 8 is obtained by summing
this term across all the higher-priority task critical sections
that access the same locks as τi, as the direct blocking due to
other critical sections is zero. �

Next, to characterize the direct blocking due to lower-
priority tasks, we define the following terms.

Def. 2. θi,l is defined as an upper bound on the number of
instances of a lower-priority task τl that may be active during
the execution of τi, and is given by

θi,l =

⌈
Wi +Dl − El

Tl

⌉
. (10)

Unlike Eq. 2, we use Dl rather than Wl in the ceiling
term. This is because we begin calculating WCRTs starting
from the highest-priority task under schedulability analysis,
and therefore we cannot know the WCRT (Wl) of any of the
lower-priority tasks while analyzing τi [18].

Def. 3. Qi,j is defined as the set of worst-case response times
of critical sections that access lock Rj and belong to tasks
that have a lower priority than τi. Hence, Qi,j = {Hl,x|τl ∈
lp(τi) ∧R(τl,x) = j}.

We use Li,j,k to denote the kth longest critical section in
Qi,j and Xi,j,k to denote the task index corresponding to Li,j,k
(recall that tasks are indexed from 1 to n).6

Lemma 4. Under the hybrid approach, the worst-case direct
blocking due to lower-priority tasks is given by

Bdmli =
∑

Rj∈R(τi)

∑
0<k≤|Qi,j |

ψi,j,k · Li,j,k, (11)

where, ψi,j,k upper-bounds the maximum number of times that
Li,j,k can block τi. ψi,j,k is given by

ψi,j,k = min

(
ηi,j −

∑
0<t<k

ψi,j,t, θi,Xi,j,k

)
. (12)

Proof. The maximum direct blocking delay caused by lower-
priority tasks for a single lock-acquisition request of τi to
lock Rj is equal to the longest WCRT of any of their critical
sections that access Rj . However, τi only locks Rj for up to
ηi,j times in a single job. This forms an upper bound on the
number of times this critical section can block τi. In addition,
because the lower-priority task corresponding to the longest
critical section is activated up to θi,Xi,j,1

times during the
execution of τi (by definition, Li,j,1 is the critical section with
the longest WCRT, and Xi,j,1 is its task index), this too forms
an upper bound on the number of times this critical section
can block τi.

Now, two possibilities arise: (i) If ηi,j ≤ θi,Xi,j,1
, then no

other lower-priority task’s critical section that accesses Rj
can block τi because this critical section can block each of
τi’s requests in the worst case, or (ii) If ηi,j > θi,Xi,j,1

, it
is possible for other lower-priority task critical sections that
access Rj to block τi, assuming such critical sections exist.
At this point, the 2nd longest critical section among lower-
priority tasks, i.e. Li,j,2, may block the remaining locking
requests of τi to Rj for up to ηi,j−θi,Xi,j,1

times (according to
request-driven analysis) or up to θi,Xi,j,2

times (according to
job-driven analysis). The minimum term is taken to represent
the tighter bound. This approach is safe because, at each step,

6Ties can be broken arbitrarily, but consistently.

the longest possible critical section is taken into account to
reflect the worst case. Eq. 12 captures this aspect for the kth

longest critical section.
The two possibilities described above may arise again, and

the same reasoning can be applied. The analysis is complete
for lock Rj when the sum total of requests amounts to ηi,j ,
or if there are no more lower-priority task critical sections
that can cause further blocking. Generalizing across all such
critical sections in the set Qi,j yields the inner summation in
Eq. 11. Finally, because Rj may represent any lock, the total
lower-priority blocking is given by summing this term across
all locks accessed by τi. �

E. Indirect Blocking

As defined in Section III-B, indirect blocking is caused
when a task τx executing its critical section preempts the
critical section execution of a task τj , that task τi is waiting
for. This occurs when the ceiling priority of the corresponding
resource of τx is greater than the ceiling priority of the
resource accessed by τj and τi. We capture indirect blocking
on each critical section instance of τj and incorporate it into
our analysis through its impact on direct blocking.

Lemma 5. The worst-case indirect blocking incurred upon a
single instance of the pth critical section of τj is given by

Birj,p = (ζj,p + 1)

 ∑
τq∈P (τj)
∧πq,k>πj,p

max(Gmq,k)

 . (13)

Proof. Before τj begins executing the pth critical section (but
right after it is granted lock access), in the worst case, it may
be blocked by all the tasks that execute on the same CPU
as τj with a higher critical-section priority than πj,p (second
factor of Eq. 13). Gmq,k is used instead of Gq,k because it is the
upper bound on the CPU execution time of that critical section,
which can cause such blocking. As captured in Eq. 13, each
time the critical section suspends, the same requests may be re-
issued by the other tasks up to a maximum of ζj,p times. Note
that, requests from other tasks that access the same resource as
R(τj,p) are implicitly not considered under indirect blocking,
because it is only caused by critical sections executing at a
higher ceiling priority.

�

We use the indirect blocking per critical section from
Eq. 13 to obtain the worst-case response time of that critical
section(Hj,x). The worst-case response time of the xth critical
section of task τj is given by

Hj,x = Gj,x +Birj,x. (14)

Hence, each time τi is directly blocked by the xth critical
section of τj , τi incurs an indirect blocking delay of Biri,x,
which is implicitly captured in the direct blocking analysis
discussed in Section III-D.

F. Prioritized Blocking
Prioritized blocking captures the maximum time that non-

critical sections of τi may be preempted by lower-priority tasks
executing on the same CPU as τi. This occurs because, under
MPCP, when the priority of a lock-holding lower-priority job is
boosted, it effectively executes its critical section with a higher
priority than τi’s base priority. We analyze the prioritized
blocking delay as follows.
Request-Driven Approach. The request-driven approach for
prioritized blocking follows the analysis by Lakshmanan et
al. [29], but we modify it to reflect critical-section suspensions.

Lemma 6. Under the request-driven approach, the worst-case
prioritized blocking is given by

Bpri = (ηi + 1)

 ∑
τl∈lpp(τi)

max(Gml,k)

 . (15)

Proof. A non-critical section of τi can be blocked by any
single critical section of each local lower-priority task due to
the latter executing at ceiling priority. In the worst case, this
is the longest CPU critical section of each local lower-priority
task, as captured in the summation term of Eq. 15. However,
such interference may occur at most (ηi+1) times in the worst
case, because τi has (ηi + 1) non-critical sections. �

Job-Driven Approach. The job-driven approach for priori-
tized blocking takes into account the maximum number of
activations of each lower-priority task during the execution
of any job of τi. This approach can be quite pessimistic if
several lower-priority resource-using tasks are scheduled on
the same CPU, but can provide benefits over the request-driven
approach for fewer low-priority tasks.

Lemma 7. Under the job-driven approach, the worst-case
prioritized blocking is given by

Bpji =
∑

τl∈lpp(τi)

θi,l ·Gml . (16)

Proof. A local lower-priority task τl can block τi’s non-critical
sections for a maximum of Gml per activation, and from Def. 2,
there can be a maximum of θi,l such activations. Eq. 16
captures this effect across all local lower-priority tasks. �

Hybrid Approach. To incorporate benefits from both the
request-driven and the job-driven approaches, we upper-bound
the lower-priority task activations by θi,l (job-driven aspect)
and limit it by the maximum number of times such interference
can occur across each non-critical segment of τi, i.e. (ηi + 1)
times (request-driven aspect).

Lemma 8. Under the hybrid approach, the worst-case prior-
itized blocking is given by

Bpmi =
∑

τl∈lpp(τi)

∑
0<k≤ηl

φi,l,k · Sl,k, (17)

where, Sl,k denotes the kth longest CPU critical section of τl
(i.e., sorted by decreasing Gml,x) and φi,l,k is an upper bound

on the number of times Sl,k can preempt τi. φi,l,k is given by

φi,l,k = min

(
ηi + 1−

∑
0<t<k

φi,l,t, θi,l

)
. (18)

Proof. A single critical section of a local lower-priority task τl
can block τi up to a maximum of (ηi + 1) times. In the worst
case, this is the longest such critical section (Sl,1). However,
the same critical section can be released at most θi,l times
during the execution of τi due to as many activations of τl in
this duration. A similar line of reasoning as in Lemma 4 can
be followed, which again results in two cases: (i) If (ηi+1) ≤
θi,l, then no other (smaller) critical sections from τl can cause
greater blocking and the obtained minimum is safe, or (ii) if
(ηi+1) > θi,l, the second longest critical section (i.e. Sl,2) can
cause additional blocking. This process terminates when the
number of the critical section activations accounted for adds
up to (ηi + 1), or if all critical sections from τl have already
been accounted for up to θi,l times. This is finally summed
over all local lower-priority tasks in Eq. 17. �

G. Putting It All Together

We summarize the conclusion of the above sections in the
following theorem.

Theorem 1. Under the request-driven approach, the worst-
case blocking time Bi of a task τi that accesses shared locks
protected by MPCP is upper-bounded by Bdri + Bpri ; under
the job-driven approach by Bdji +Bpji ; and under the hybrid
approach by Bdmi +Bpmi .

Proof. By Lemmas 1 to 8 and the above discussion. Note
that indirect blocking is already accounted for under the direct
blocking terms for all the approaches. �

The Bi obtained from Theorem 1 can be substituted in
Eqs. 1 and 3 to obtain the WCRT of τi under suspension-based
MPCP. Because the blocking analyses under the job-driven and
the hybrid approaches depend on Wi, and because Wi is non-
decreasing, it can be substituted back into the corresponding
blocking analyses from the left-hand side of Eq. 1, until both
sides converge (or until Wi exceeds Di, at which point the
taskset is unschedulable). As previously noted, we evaluate
response times in decreasing order of task priority.

We briefly note how our enhancements may also benefit the
LP-based analysis for MPCP [13]. First, our blocking model
can be used to extend the LP-based approach to incorporate
a notion of self-suspensions within critical sections. Secondly,
we can introduce job-driven constraints per critical section for
direct, indirect and prioritized blocking, by upper-bounding
the number of locking requests before the completion of the
analyzed job (given by Eqs. 2 and 10, respectively). Such
constraints are not exactly captured by the existing LP-based
approaches [13, 14], and our findings could further improve
their schedulability.

Parameters Values
Number of CPUs (m) 4
Number of shared resources (g) [1, 3]
Number of tasks per CPU [3, 6]
Percentage of tasks with critical sections [10, 40]%
Task period and deadline (Ti = Di) [30, 500]ms
Utilization per CPU [40, 60]%
Ratio of crit. sec. len. to non-crit. sec. len. (Gi/Ci) [10, 30]%
Number of critical sections per task (ηi) [1, 3]
Ratio of CPU-using operations in Gi,j (Gmi,j/Gi,j) [10, 30]%
Number of suspensions in a critical section (ζi,j) [1, 2]

TABLE II: Base parameters for taskset generation.

IV. EVALUATION

We first perform schedulability experiments to evaluate our
proposed suspension-based MPCP analyses and compare them
with prior work. We then present a case study of suspension-
based MPCP on the NVIDIA TX2 and compare it with the
busy-waiting MPCP approach. Note that we use semaphore-
based protocols throughout this section (i.e., tasks suspend if
the requested lock is already held by another task).

A. Schedulability Experiments

We contrast the proposed request-driven, job-driven and
hybrid approaches for suspension-based MPCP with the tradi-
tional busy-waiting MPCP analysis [29] (henceforth referred
to as “original analysis”). To understand the schedulability
and performance characteristics of these traditional approaches
compared to LP-based approaches, we also evaluate the LP-
based analyses for the busy-waiting and suspension-based
FMLP+ under partitioned scheduling [13, 14], denoted by
FMLP-BW and FMLP-SS, respectively.

We use SchedCAT [5] in conjunction with the GNU
Linear Programming Kit (GLPK) to evaluate the LP-based
approaches. As the suspension-based analysis for FMLP+
was neither evaluated nor implemented in prior work, we
implement it in SchedCAT by modifying Constraint 11 and
incorporating Constraint 21 from the extended version of the
original paper [13]. We also modify SchedCAT to make use of
Eqs. 1, 2 and 3 for suspension-based response time analysis.

Taskset Generation. For each experimental setting, we eval-
uate 10, 000 randomly-generated tasksets based on the pa-
rameters given in Table II. Our base taskset parameters are
inspired from prior work [13, 26, 29], but are modified in some
experiments to match specific use cases such as the popular
single-GPU use case in embedded platforms [24, 26, 27]. To
generate each taskset, the number of CPUs, the utilization
per CPU, the number of tasks per CPU and the number
of resources (each arbitrated by a unique lock) are first
determined by selecting these parameters uniformly at random
based on Table II. Next, by using these parameters, individual
task utilizations are allocated according to the well-studied
UUniFast algorithm [9]. Task period Ti with a minimum
granularity of 1 microsecond is chosen at random from the
given task period range, and we consider implicit deadlines
throughout our experiments (Di = Ti). Among all generated

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Percentage of tasks with critical sections

Original

Request

Job

Hybrid

FMLP-BW

FMLP-SS

Fig. 1: Schedulability w.r.t. the percentage of tasks having
critical sections. All critical sections access a single resource
and suspend for their entire execution duration.

tasks, a certain number of tasks are designated to access crit-
ical sections based on the aforementioned taskset parameters.
If the task τi does not access any lock (or, has no critical
sections), then Ci is set to (Ui · Ti) and Gi is set to zero.
Otherwise, Gi is selected such that Gi/Ci is consistent with
Table II and (Ci+Gi) = (Ui ·Ti). A random ηi is then chosen
from the range provided in Table II, and Gi is split into ηi
randomly-sized pieces to obtain Gi,j . These critical sections
are assigned a random resource from the generated resource
pool and are then instantiated with appropriate Gmi,j , G

e
i,j , and

ζi,j assuming that Gi,j = Gmi,j + Gei,j . In the case of busy-
waiting experiments or for analyses that enforce busy-waiting,
Gmi is set equal to Gi and Gei is set to zero. Finally, tasks are
assigned priorities according to the rate-monotonic policy [31],
with ties broken arbitrarily.

Results and Observations. We perform schedulability anal-
yses using the aforementioned approaches on a variety of
workloads and capture the percentage of schedulable tasksets
in each experimental setting.

Figure 1 depicts the percentage of schedulable tasksets as
the percentage of tasks sharing a single resource increases.
Such a scenario may occur when several tasks access a single
shared accelerator (such as a GPU), which reflects the majority
of the available embedded platforms today [2, 4]. To capture
the benefit of incorporating self-suspensions into suspension-
based analyses, we assume that tasks suspend for their entire
critical sections as soon as they acquire the corresponding
locks. As seen in this figure, the request-driven, the job-
driven and the hybrid approaches significantly outperform the
original busy-waiting approach by as much as 55.7%, 59.4%
and 76.2% respectively. In particular, the hybrid approach
can result in substantially higher schedulability than even the
request-driven or the job-driven approaches as it combines
benefits from both. Our hybrid approach also outperforms both
versions of the LP-based FMLP+. Although FMLP-SS incor-
porates self-suspensions within critical sections, it does not
seem to effectively capture their benefit, as it only provides a
marginal improvement over FMLP-BW. This suggests that the
LP-based approaches could benefit by incorporating insights
from our paper. For clearer presentation, we omit results from
FMLP-BW in the subsequent figures.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Percentage of tasks with critical sections

Original

Request

Job

Hybrid

FMLP-SS

Fig. 2: Schedulability w.r.t. the percentage of tasks having
critical sections. All critical sections access a single resource
and busy-wait for their entire execution duration.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100
Sc

h
ed

u
la

b
le

 t
as

ks
et

s
(%

)

Percentage of tasks with critical sections

Original

Request

Job

Hybrid

FMLP-SS

Fig. 3: Schedulability w.r.t. the percentage of tasks having
critical sections. All tasks access a single resource. Tasks have
a shorter period range of [300, 500]ms.

Our proposed analyses yield schedulability benefit due to
self-suspensions within critical sections. To assess our analyses
when such benefit is minimized, in Figure 2, we assume
that all critical sections do not suspend. All other parameters
remain the same as in Figure 1. All our analysis methods
continue to outperform the original MPCP approach, and
the hybrid approach outperforms the LP-based FMLP+. Such
improvements to busy-waiting schedulability further indicate
the effectiveness of the improvements proposed in this paper.

Prior work has shown MPCP to be less effective compared
to the FIFO-based synchronization protocols when the ratio
of the longest deadline and the shortest deadline among tasks
is small [13]. While this intuitively makes sense, we postulate
that our improvements could enable MPCP (and other priority-
based protocols [23, 35]) to have better schedulability than
before, under similar conditions. We test this hypothesis by
evaluating tasks with shorter period ranges ([300, 500]ms),
as shown in Figure 3. As expected, FMLP+ performs much
better in this condition, and all the MPCP analyses show
lower schedulability than in Figure 1. However, although the
original and the request-driven analyses (on which prior MPCP
analyses are based [29, 35]) decline quickly in performance,
this is not the case with the job-driven and the hybrid ap-
proaches. This is because fewer resource requests can actually
be made during the execution of each task when there is not a
significant difference between task deadlines, and this is aptly
captured by incorporating job-level characteristics.

0

20

40

60

80

100

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Utilization per CPU

Original

Request

Job

Hybrid

FMLP-SS

Fig. 4: Schedulability w.r.t. the taskset utilization per CPU.

0

20

40

60

80

100

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Ratio of critical section length to non-critical section length

Original Request Job

Hybrid FMLP-SS

Fig. 5: Schedulability w.r.t. the critical section size (Gi/Ci).

Next, we examine schedulability with increasing utilization
per CPU, shown in Figure 4. Here, although the original busy-
waiting schedulability begins to quickly decline at a utilization
of 35% per CPU, the hybrid analysis continues to show near-
perfect schedulability up to a utilization of 55% per CPU.
This indicates that suspension-based analyses can allow system
resources to be much better utilized. Neither the hybrid nor
the LP-based FMLP+ dominates the other in this experiment.
FMLP+ performs better than the hybrid approach when the
per-CPU utilization ranges from 70% to 85%, and ties with
or underperforms the hybrid approach in other cases.

We vary the critical section length, the number of CPUs
and the number of tasks per CPU in Figures 5, 6 and 7,
respectively. Here, we notice that, while the original MPCP
analysis continues to underperform, the request-driven analysis
generally outperforms the job-driven analysis unlike in Fig-
ures 1, 2, 3, and 8. This indicates that the request-driven and
the job-driven approaches can have orthogonal benefits based

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Number of CPUs

Original

Request

Job

Hybrid

FMLP-SS

Fig. 6: Schedulability w.r.t. the number of CPUs.

0

20

40

60

80

100

2 4 6 8 10 12 14 16 18 20

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Number of tasks per CPU

Original

Request

Job

Hybrid

FMLP-SS

Fig. 7: Schedulability w.r.t. the number of tasks per CPU. Note
that the utilization per CPU remains unchanged.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Number of critical sections per task

Original

Request

Job

Hybrid

FMLP-SS

Fig. 8: Schedulability w.r.t. the number of critical sections per
task.

on taskset parameters, but the hybrid approach, by design,
consistently outperforms both. Figures 6 and 8 show that the
hybrid approach performs better than FMLP-SS when the
system has a high number of CPUs and tasks per CPU, respec-
tively. Again, this supports the possibility that our approach
captures suspension-based benefits effectively and can be quite
promising for arbitrating access to resources that are typically
contended for by many requesters, such as GPUs. We expect
suspension-based MPCP to similarly be competitive in terms
of schedulability with the recent server-based approach [26].

Figures 9 and 10 examine the effects of the length of
suspensions and the number of suspensions within each crit-
ical section, respectively. To amplify their effects, a system
with long critical sections (i.e., Gi/Ci = [150, 200]%) is

0

20

40

60

80

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Ratio of critical section time on CPU to total critical section time

Original Request Job Hybrid FMLP-SS

Fig. 9: Schedulability w.r.t. the suspension time in critical
sections (Gm/Gi). Longer critical sections are evaluated by
setting Gi/Ci = [150, 200]%.

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

Sc
h

ed
u

la
b

le
 t

as
ks

et
s

(%
)

Number of suspensions per critical section

Original Request Job Hybrid FMLP-SS

Fig. 10: Schedulability w.r.t. the number of suspensions per
critical section. Longer critical sections are evaluated by
setting Gi/Ci = [150, 200]%.

assumed. We see no discernible effect on the original busy-
waiting MPCP analysis as its critical sections continue to busy
wait regardless of any change in those parameters. However,
such changes are detrimental to the suspension-based MPCP
analyses because they result in increasing preemption as the
duration of suspension reduces or increasing indirect blocking
delay as the number of suspensions per critical section in-
creases, as explained in Section III-E. Figure 9 shows that the
hybrid approach begins to underperform FMLP-SS when the
ratio of CPU-execution time to the total critical section time
is 0.3, indicating that it may better fit use cases with longer
suspension durations. We expect that such cases are likely with
computationally-intensive tasks that use shared accelerators.

Interestingly, in Figure 10, while the schedulability offered
by our analyses steadily decreases, FMLP-SS is largely unaf-
fected by the number of suspensions within critical sections.
We believe that if our analytical enhancements are incorpo-
rated into such LP-based analyses [13, 14], the detrimental
effects due to the number of critical section suspensions can
be significantly reduced. This is because LP-based approaches
can impose a tighter bound on indirect blocking by using
job-driven constraints, which is difficult to express under
traditional analysis. Furthermore, we expect such cases rarely
arise in practice—for example, a GPU-using critical section
typically suspends only twice or thrice as shown in Sec-
tion IV-B: once to copy data, and once to execute commands
on the GPU.

Summary. Our proposed analyses provide significant im-
provements in schedulability for several taskset configurations.
All three of our analyses dominate the existing analysis for
MPCP, even when critical sections are assumed to busy-
wait. Furthermore, the hybrid approach is competitive with
and often outperforms the LP-based FMLP+ when: (i) the
percentage of tasks with critical sections is high, (ii) the ratio
of the longest to the shortest task deadlines is large, (iii) the
number of critical sections per task is high, or (iv) the critical
sections spend less time busy-waiting. There are some cases
where the LP-based FMLP+ analysis performs significantly
better than our approach when: (i) the ratio of the longest to
the shortest task deadlines is small, (ii) the critical sections
are longer and spend more time busy-waiting, or (iii) the

Process “matrix_cal_sum 0 1..

Thread 2541359104

Runtime API

[0] GP10B

Context 1 (CUDA)

MemCpy (HtoD)

MemCpy (DtoH)

Compute

cudaDeviceSynchronize cudaMem…

Memcpy…

MatCalculate(float*, float*, float*, int)

Busy-Wait

Kernel Execution

Busy-Wait

Memory Copy

Process “matrix_cal_sum 0 1..

Thread 1717612534

Runtime API

[0] GP10B

Context 1 (CUDA)

MemCpy (HtoD)

MemCpy (DtoH)

Compute

Suspension

Kernel Execution

Suspension

Memory Copy

MatCalculate(float*, float*, float*, int)

Memcpy…

(a) Busy-waiting MPCP

Process “matrix_cal_sum 0 1..

Thread 2541359104

Runtime API

[0] GP10B

Context 1 (CUDA)

MemCpy (HtoD)

MemCpy (DtoH)

Compute

cudaDeviceSynchronize cudaMem…

Memcpy…

MatCalculate(float*, float*, float*, int)

Busy-Wait

Kernel Execution

Busy-Wait

Memory Copy

Process “matrix_cal_sum 0 1..

Thread 1717612534

Runtime API

[0] GP10B

Context 1 (CUDA)

MemCpy (HtoD)

MemCpy (DtoH)

Compute

Suspension

Kernel Execution

Suspension

Memory Copy

MatCalculate(float*, float*, float*, int)

Memcpy…

(b) Suspension-based MPCP

Fig. 11: GPU execution timeline captured using nvprof [3].

number of suspensions in critical sections is large.7 However,
such a benefit comes at a much higher computational cost
of up to 100× to 200× longer analysis time compared to our
hybrid approach on a server-class machine (with 32 GB RAM,
running Intel Xeon E5-1620 at 3.50 GHz). This difference in
computational overheads further increases with an increase in
the number of analyzed tasks. We expect these performance
issues to be prohibitively expensive for runtime admission
control in adaptive and dynamic embedded real-time systems.
Our recursion-based hybrid approach is highly practicable with
its competitive performance and much more efficient runtime
than LP-based analysis.

B. Case Study

Motivated by recent work that uses real-time synchroniza-
tion for predictable GPU arbitration [20, 22, 26, 27], we
examine the practical feasibility and efficacy of suspension-
based MPCP and compare it with the busy-waiting approach
in arbitrating access to a shared GPU on the NVIDIA TX2
embedded platform [2].
Hardware and Implementation. The TX2 is equipped with
a quad-core 2.0-GHz ARMv8 A57 processor, a dual-core
2.0-GHz ARMv8 Denver processor, and an integrated Pascal
GPU. We limit our experiments to two CPU cores of the
A57 processor used in conjunction with the GPU. We run
Ubuntu 16.04 with Linux kernel v4.4.15-tegra and use CUDA
8.0 for GPU programming [33]. We also configure each CPU
to run at its maximum frequency of 2 GHz and disable all
extraneous GPU-using tasks (such as lightDM) in order to
avoid unnecessary GPU interference.

We use a pthread_mutex to implement semaphore-
based MPCP. We suspend a task if the lock that it requests

7We note that the comparison search space has multiple features (such as
the number of tasks, task parameters, number and type of critical sections,
”short” vs ”large” critical sections, etc.) and observe that further study may
be required to clearly establish boundaries between configurations where one
approach outperforms the other. However, we emphasize that neither approach
dominates the other in general.

is already held by another task. To ensure priority-based task
wakeup, suspended tasks are enqueued in priority queues and
the highest-priority task is woken up when the held mutex
is released. The mutex is managed via shared memory to
make it accessible to all tasks. Once a task enters its critical
section, the GPU execution is carried out by using one of
two modes, as shown in Figure 11: (i) busy-waiting mode,
which is the default CUDA setting that uses synchronous API
calls and busy waits using cudaDeviceSynchronize(),
and (ii) suspension-based mode, which is implemented using
asynchronous CUDA functions. For the latter, GPU calls
make use of streams and callbacks [1], and the GPU-using
tasks use a POSIX conditional variable to suspend on the
CPU. The callbacks are executed after all GPU operations
enqueued in the stream have been completed. These callbacks
are responsible for waking up the suspended CPU tasks. For
both approaches, memory transfers between the GPU and the
CPU are performed using pinned memory to minimize CPU
involvement [19]. This results in extremely quick memory
transfers between the GPU and the CPU. Hence, we configure
our applications to suspend only during GPU execution and
not during memory transfers.8

Tasks and Scheduling. Our tasks are motivated by the soft-
ware system of the self-driving car developed at CMU [41].
Among various algorithmic tasks of the car, we chose two
GPU-accelerated vision applications, namely the work-zone
detector (WZ) [30] and the lane-change detector (LC), that
periodically process images collected from a mono camera.9

Arithmetic/matrix calculation tasks (AM1, . . . , AM5) with
varying parameters are also used to represent a subset of the
other data-parallel tasks of the car. Unique task priorities are
assigned based on the rate-monotonic policy [31]. Each task is
pinned to a specific CPU, as described in Table III. Each task
is also structured to run in either busy-wait mode or suspension
mode during its critical section. Task releases are performed
at absolute times using the POSIX clock_nanosleep()
call and they are scheduled with real-time priority under the
SCHED_FIFO policy. The response time of each task across
each period is collected over a total duration of 30 seconds
under each experimental setting.

Experiments. We conduct three experiments in our case study.
In Expt. 1©, we execute the taskset {LC, WZ, AM1, AM2, AM3}
with busy-waiting and suspension-based MPCP and compare
the observed WCRT of each task in Figure 12. In Expts. 2©
and 3©, we execute LC and WZ with a varying number of
instances of AM4 and AM5, respectively. This is captured in
Figures 13 and 14.

Observation 1. Suspension-based MPCP can offer signifi-
cantly lower response-times than the busy-waiting approach
in practice, especially for lower-priority tasks. This is because
suspension-based MPCP allows other tasks to use the CPU

8Note that, for longer memory transfers (potentially without pinned mem-
ory), suspension is still possible by using asynchronous memory copy calls.

9We configure LC and WZ to use locally stored images in our experiments.

0

20

40

60

80

100

120

140

LC WZ AM1 AM2 AM3

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Suspension-based MPCP

Busy-waiting MPCP

Fig. 12: WCRT comparison between suspension-based MPCP
and busy-waiting MPCP.

15

20

25

30

35

40

45

50

0 1 2 3 4 5

R
es

p
o

n
se

 t
im

e
(m

s)
Number of co-scheduled tasks per core

WZ (Busy-wait) WZ (Self-suspension)

LC (Busy-wait) LC (Self-suspension)

Fig. 13: WCRT w.r.t. the number of co-scheduled AM4 tasks.

during critical section execution. Figures 12 and 13 support
this observation.
Observation 2. None of the deadlines are missed in Expt 1©,
either in the busy-waiting, or in the suspension-based cases.
However, the original, the request-driven and the job-driven
analyses all (pessimistically) indicate that the taskset is un-
schedulable. Only the hybrid blocking analysis confirms that
the taskset is indeed schedulable. This shows the practical
importance of using tighter schedulability analysis.
Observation 3. The overhead of GPU-related self-suspensions
negatively affects the response times under the suspension-
based approaches. This effect is particularly noticeable in
Figure 14, where the co-scheduled AM5 tasks have small GPU
segments. Such overhead is incurred due to GPU callbacks,
performing task suspensions and then waking up the sus-
pended task. Such overheads are completely avoided in busy-
waiting approaches. We measured this overhead and found that

15

20

25

30

35

40

45

0 1 2 3 4 5

R
es

p
o

n
se

 t
im

e
(m

s)

Number of co-scheduled tasks per core

WZ (Busy-wait) WZ (Self-suspension)

LC (Busy-wait) LC (Self-suspension)

Fig. 14: WCRT w.r.t. the number of co-scheduled AM5 tasks.

Task Ci Gi ηi Gei,1 Gmi,1 ζi,1 Gei,2 Gmi,2 ζi,2 Ti = Di CPU Used In Experiment

LC 13.5 3.19 2 0 0.64 0 0.45 2.10 1 39.5 1 1©, 2©, 3©
WZ 29.48 4.04 1 1.72 2.32 1 - - - 50 2 1©, 2©, 3©
AM1 11.05 5.12 1 4.89 0.23 1 - - - 100 1 1©
AM2 8.81 9.38 1 9.17 0.21 1 - - - 165 1 1©
AM3 32.97 10.88 1 10.52 0.36 1 - - - 300 2 1©
AM4 1.15 2.70 1 2.10 0.60 1 - - - 120 1 & 2 2©
AM5 1.15 0.70 1 0.15 0.55 1 - - - 120 1 & 2 3©

TABLE III: Tasks used in the case study. All times are in milliseconds (ms).

it is approximately 200µs per critical section on the NVIDIA
TX2, which exceeds AM5’s suspension duration. Furthermore,
we observe that the disadvantage due to suspension-based
overhead is easily overcome for tasks with longer GPU seg-
ments, such as with AM4 in Figure 13. Therefore, based on the
critical section length and on the suspension-based overhead
for a specific platform, it may be best to allow some critical
sections to suspend and let the others (typically the smaller
ones) busy wait.

V. OTHER RELATED WORK

A significant body of related work on synchronization
protocols and blocking analysis has already been covered
in Sections I and III. We briefly discuss the other relevant
approaches in this section.

In the past, synchronization protocols have been proposed
and evaluated for partitioned, global and clustered scheduling,
and their asymptotic optimality has been characterized and
proven [12, 14, 16, 46]. We note that, although the MPCP
analysis is not asymptotically optimal, it has been shown to
offer competitive performance under fixed-priority partitioned
scheduling [13, 37]. In addition, an alternate analytical method
has also been recently proposed to improve MPCP schedula-
bility, which takes into account the best-case execution time
(BCET) of tasks to obtain tighter blocking bounds [45]. How-
ever, this approach requires estimation of BCETs and does
not allow suspensions within critical sections. Prior research
has also shown how fine-grained nested critical sections may
be supported [39]. In future work, we plan to explore how a
unified analysis can incorporate nested critical sections with
BCET-aware suspension-based MPCP analysis.

With regard to multi-resource systems, various k-exclusion
locking protocols have been proposed, which can arbitrate
access to pools of identical resources (i.e., GPUs). Although
most prior k-exclusions approaches make use of suspension-
oblivious analyses [15, 21, 40], recent work has extended
them to include semaphore-based analyses [43, 44], and to
allow tasks to request multiple resource replicas [32]. The key
advantage of such protocols is that they eliminate the need to
statically assign real-time tasks to individual GPUs, and in a
way, act like global schedulers. In contrast, we target the use of
a single synchronization protocol to arbitrate access to various
types of accelerators and shared resources partitioned among
tasks, without necessitating a pool of similar resources. More-
over, we believe that incorporating suspensions within critical

sections and taking into account job-level characteristics into
schedulability analyses of k-exclusion protocols could provide
further benefits.

Finally, self-suspension behavior of tasks has also been ex-
tensively studied in the context of real-time systems, which has
led to corrections in existing semaphore-based synchronization
analyses [6, 10, 18, 42]. Such studies are partly also motivated
by the fact that I/O devices can suspend while being accessed.
Our extensions to MPCP are based on their research findings.

VI. CONCLUDING REMARKS

In this paper, we presented new analyses to capture the
effects of self-suspensions within critical sections when CPU
tasks need to access shared hardware accelerators like GPUs
and DSPs. In particular, we adapted two analytical methods,
namely the request-driven and the job-driven approaches, to
perform suspension-based blocking analysis. We additionally
proposed a novel hybrid approach that derives insights from
the prior approaches and offers better schedulability than
both. Our analytical approaches significantly outperform the
traditional busy-waiting analysis in terms of schedulability for
a very wide range of practical test parameters. Our hybrid
approach is very competitive with and often outperforms the
LP-based FMLP+ analysis, while being faster by two orders of
magnitude in performing schedulability analysis. Such lower
runtime complexity is particularly appealing to practical real-
time embedded systems where runtime admission control is
required. We have also demonstrated that suspension-based
MPCP can be implemented on a real platform with notable
benefits compared to busy-waiting.

As a next step, it would be interesting to perform a detailed
study of the suspension overhead on modern platforms with
various accelerators. This might enable automatic decisions for
choosing critical section behavior, i.e., to busy wait or to sus-
pend. Suspension-based analysis also encourages exploration
of new partitioning schemes geared towards efficient shared
resource utilization. Finally, the original MPCP analysis has
been compared extensively with several other synchronization
protocols in the past (e.g., in [16, 23, 26]). Thus, equipped with
enhanced analytical methods, such results should be revisited
in the future.

ACKNOWLEDGEMENT

We would like to thank General Motors R&D.

REFERENCES

[1] CUDA stream management and callbacks. http://docs.nvidia.com/cuda/
cuda-runtime-api/group CUDART STREAM.html.

[2] NVIDIA Jetson TX1/TX2 Embedded Platforms. http://www.nvidia.com/
object/embedded-systems-dev-kits-modules.html.

[3] NVIDIA Visual Profiler User’s Guide. http://docs.nvidia.com/cuda/
profiler-users-guide/index.html.

[4] NXP i.MX6 Processors. http://www.nxp.com.
[5] The Schedulability Test Collection and Toolkit (SchedCAT). http:

//github.com/brandenburg/schedcat.
[6] N. Audsley and K. Bletsas. Realistic analysis of limited parallel

software/hardware implementations. In IEEE Real-Time Technology and
Applications Symposium (RTAS), 2004.

[7] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Ap-
plying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[8] T. Baker. Stack-based scheduling of realtime processes. Real-Time
Systems, 3(1):67–99, 1991.

[9] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1):129–154, 2005.

[10] K. Bletsas, N. Audsley, W.-H. Huang, J.-J. Chen, and G. Nelissen.
Errata for three papers (2004-05) on fixed-priority scheduling with self-
suspensions. Technical Report CISTER-TR-150713, CISTER, 2015.

[11] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In IEEE Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2007.

[12] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-time
Operating Systems. PhD thesis, Chapel Hill, NC, USA, 2011.

[13] B. Brandenburg. Improved analysis and evaluation of real-time
semaphore protocols for P-FP scheduling. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013.

[14] B. Brandenburg. The FMLP+: An asymptotically optimal real-time lock-
ing protocol for suspension-aware analysis. In Euromicro Conference
on Real-Time Systems (ECRTS), 2014.

[15] B. Brandenburg and J. Anderson. Real-time resource-sharing under
clustered scheduling: mutex, reader-writer, and k-exclusion locks. In
ACM International Conference on Embedded Software (EMSOFT),
2011.

[16] B. Brandenburg and J. Anderson. The OMLP family of optimal
multiprocessor real-time locking protocols. Design Automation for
Embedded Systems, 17(2):277–342, 2013.

[17] A. Burns and A. Wellings. A schedulability compatible multiprocessor
resource sharing protocol – MrsP. In Euromicro Conference on Real-
Time Systems (ECRTS), 2013.

[18] J.-J. Chen et al. Many suspensions, many problems: A review of
self-suspending tasks in real-time systems. Technical Report 854,
Department of Computer Science, TU Dortmund, 2016.

[19] S. Cook. CUDA Programming: A Developer’s Guide to Parallel Com-
puting with GPUs. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 2013.

[20] G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor
systems with GPUs. Real-Time Systems, 48(1):34–74, 2012.

[21] G. Elliott and J. Anderson. An optimal k-exclusion real-time lock-
ing protocol motivated by multi-GPU systems. Real-Time Systems,
49(2):140–170, 2013.

[22] G. Elliott, B. Ward, and J. Anderson. GPUSync: A framework for real-
time GPU management. In IEEE Real-Time Systems Symposium (RTSS),
2013.

[23] W.-H. Huang, M. Yang, and J.-J. Chen. Resource-oriented partitioned
scheduling in multiprocessor systems: How to partition and how to
share? In Real-Time Systems Symposium (RTSS), 2016.

[24] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:
GPU scheduling for real-time multi-tasking environments. In USENIX
Annual Technical Conference, 2011.

[25] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajku-
mar. Bounding memory interference delay in COTS-based multi-core
systems. In IEEE Real-Time Technology and Applications Symposium
(RTAS), 2014.

[26] H. Kim, P. Patel, S. Wang, and R. Rajkumar. A server-based approach
for predictable GPU access control. In IEEE Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2017.

[27] H. Kim, P. Patel, S. Wang, and R. Rajkumar. A server-based approach

for predictable GPU access with improved analysis. arXiv pre-print,
https://arxiv.org/abs/1709.06613, 2017.

[28] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar. Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-driving
car. In International Conference on Cyber-Physical Systems (ICCPS),
2013.

[29] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task
scheduling, allocation and synchronization on multiprocessors. In IEEE
Real-Time Systems Symposium (RTSS), 2009.

[30] J. Lee, Y.-W. Seo, W. Zhang, and D. Wettergreen. Kernel-based traffic
sign tracking to improve highway workzone recognition for reliable
autonomous driving. In IEEE International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 2013.

[31] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,
1973.

[32] C. Nemitz, K. Yang, M. Yang, P. Ekberg, and J. Anderson. Multiproces-
sor real-time locking protocols for replicated resources. In Euromicro
Conference on Real-Time Systems (ECRTS), 2016.

[33] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. ACM Queue, 6(2):40–53, 2008.

[34] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. In IEEE International Conference on Distributed
Computing Systems (ICDCS), 1990.

[35] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inher-
itance Approach. Kluwer Academic Publishers, Norwell, MA, USA,
1991.

[36] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for multiprocessors. In IEEE Real-Time Systems Symposium
(RTSS), 1988.

[37] J. Ras and A. Cheng. An evaluation of the dynamic and static
multiprocessor priority ceiling protocol and the multiprocessor stack
resource policy in an SMP system. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2009.

[38] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on
Computers, 39(9):1175–1185, 1990.

[39] B. Ward and J. Anderson. Supporting nested locking in multiprocessor
real-time systems. In Euromicro Conference on Real-Time Systems
(ECRTS), 2012.

[40] B. Ward, G. Elliott, and J. Anderson. Replica-request priority donation:
A real-time progress mechanism for global locking protocols. In
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2012.

[41] J. Wei, J. Snider, J. Kim, J. Dolan, R. Rajkumar, and B. Litkouhi.
Towards a viable autonomous driving research platform. In IEEE
Intelligent Vehicles Symposium (IV), 2013.

[42] M. Yang, J.-J. Chen, and W.-H. Huang. A misconception in blocking
time analyses under multiprocessor synchronization protocols. Real-
Time Systems, 53(2):187–195, 2017.

[43] M. Yang, H. Lei, Y. Liao, and Z.-W. Chen. Partitioned k-exclusion
real-time locking protocol motivated by multicore multi-GPU systems.
Journal of Electronic Science and Technology, 14(3):193–198, 2016.

[44] M. Yang, H. Lei, Y. Liao, and F. Rabee. PK-OMLP: An OMLP
based k-exclusion real-time locking protocol for multi-GPU sharing
under partitioned scheduling. In IEEE International Conference on
Dependable, Autonomic and Secure Computing (DASC), 2013.

[45] M. Yang, H. Lei, Y. Liao, and F. Rabee. Improved blocking time analysis
and evaluation for the multiprocessor priority ceiling protocol. Journal
of Computer Science and Technology, 29(6):1003–1013, 2014.

[46] M. Yang, A. Wieder, and B. Brandenburg. Global real-time semaphore
protocols: A survey, unified analysis, and comparison. In IEEE Real-
Time Systems Symposium (RTSS), 2015.

http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://www.nxp.com
http://github.com/brandenburg/schedcat
http://github.com/brandenburg/schedcat
https://arxiv.org/abs/1709.06613

