RTAS 2018

Analytical Enhancements and
Practical Insights for
MPCP with Self-Suspensions

Pratyush Patel, ll[joo Baek, Hyoseung Kim*, Raj Rajkumar

X e UNIVERSITY OF CALIFORNIA

Carnegie Mellon RIVERSIDE

High Computational Demand of

Safety-Critical Systems

1Al o - | -
Camen LIDAR - — v
L S am -
BE® Sense
Repeat
[. } [Path } [Brake J
Perception : | .
Sensors > Planning Contro - Actuators

Deadline Deadline Deadline
33 ms 66 ms 100 ms

Computing System

Y L(_)n_g SECUE e _ } Need Computational Accelerators*'
v' Difficult to meet deadlines

* GP-GPUs (General-Purpose GPUSs)
2126 t Digital Signal Processor (DSP)

RTAS 2018

Problems with Hardware Accelerators

 They do not support preemption
o Due to high context switching overhead*"

« They handle multiple resource requests in any order
o Concurrent execution on GPU may result in unpredictable delays

3 identical CUDA kernels on NVIDIA GTX 1070
v 97% slowdown on two kernels
v Unpredictable which kernel gets delayed

 They do not respect task priorities or scheduling policies
o May result in unbounded priority inversion

* |. Tanasicet al. Enabling preemptive multiprogramming on GPUs. In International Symposium on Computer Architecture (ISCA), 2014.
T Some recent GPU architectures support preemption - NVIDIA Volta Architecture https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/

3/26

https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/

RTAS 2018

Existing Solution: Synchronization-
Based Approaches™

Lock Critical Section Unlock
A -
(\

GPU

Benefits of synchronization-based approaches
v" Do not require any change in accelerator device drivers
. v’ Existing schedulability analyses can be directly re-used

J

* G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Syst., 48(1):34-74, 2012.

T G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol motivated by multi-GPU systems. Real-Time Syst., 49(2):140-170, 2013.
T G. Elliott et al. GPUSync: A framework for real-time GPU management. In IEEE Real-Time Systems Symposium (RTSS), 2013.

4/26

RTAS 2018

Limitations

Common assumption of most RT synch.
e Bu Sy Waiting protocols, e.g., MPCP*, FMLPT, OMLP%

o Critical sections are executed entirely on the CPU

Lock o CriticaIASection g Unlock

(\

GPU

* Analytical pessimism
o Traditional recursion-based analysis*
o Can lead to expensive over-provisioning

* R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), 1988.
T A. Block et al. A flexible real-time locking protocol for multiprocessors. In IEEE Embedded and Real-Time Comp. Systems and Apps., (RTCSA), 2007.
¥ B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time locking protocols. Design Automation for Embedded Systems, 2013

K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems
Symposium (RTSS), 2009. 5/96

RTAS 2018

Our Contributions

e Analytical enhancements for the Multiprocessor Priority
Ceiling Protocol (MPCP)

v" Tighter bounds for task response times
v Allow suspensions when executing critical sections

« Extensive schedulability experiments for a variety of task set
parameters

* Prototype implementation and evaluation on Nvidia TX2
running Linux

e Extensions can be used with multiple types of computational
accelerators, such as a digital signal processor (DSP) and
General-Purpose GPU (GP-GPU)

6/26

Outline

e Suspension-based MPCP
— System model
— Comparison with busy-waiting approach
— Task response time analysis

 Evaluation
e Conclusions

7126

RTAS 2018

Example of GPU Execution

Non-critical Non-critical Non-critical
section section section

\ .,.“CriticaIAsection”“ gy “ Critical section” g3
[Y \

A
(\

CPU
N 5
GPU
\ % J N v)
GPU GPU
execution execution

1 Task arrival i GPU request I CcPU execution [GPU execution [l Misc. operation

8/26

RTAS 2018

System Model

« Sporadic tasks with constrained deadlines
o Task; := (C;, G;, T;, ;)
e C; : Sum of the WCET?* of all non-critical sections
e (; : Sum of the WCET™ of all critical sections
e T; : Period (Deadline = Period)
e 1; . Maximum number of critical sections
e (; ; - Maximum number of suspensions ' a8 i

in the j" critical section cPU - —
i1 .« — e m :
o Critical segment G; ; := (G;, G; ; - qq'qq .

e Each hardware accelerator is modeled as a distinct shared
resource

o Use partitioned fixed-priority preemptive scheduling

“Critical section” “Critical section”

* Worst-Case Execution Time (WCET) 9/26

RTAS 2018

Example under Busy-Waiting MPCP

Response tjme oft, : 9

" T _ R
CPU Global priority ceilinq . .
Core -+ o}
1 | (1)
Tm B z
L >
(5lobal priority ceiling
CPU
Core { L S
2 Global pridri
GPU Time

0 1 2 3 4 5 6 7 8 9 10 11 12

1 Task arrival [CPU execution [l GPU execution [7] Blocked segment [Preempted segment
i GPU request B Busy wait B Misc. operation

10/26

RTAS 2018

Example under Suspension-based MPCP

Response time of 7, : 6 + overhead
A
[\

~Tp _ _ Suspend l:-
CPU ' ' ' ' t '

Prlorlty boostlng

Core -
1 | oy (1]
T IJ Suspend II
.Priority; boosting 1
[1] o
CPU :
Core { T : Suspend
2 Priorify boosting
GPU Time
0 1 2 3 4 5 6 7 8 9 10 11 12

1 Task arrival [CPU execution [l GPU execution [7] Blocked segment] Preempted segment
} GPU request [Self-Suspension [l Misc. operation [l Self-suspension overhead

11/26

RTAS 2018

Task Response Time Analysis

 Worst-Case Response Time (W;)* i=task number

Self-suspension by
higher-priority tasks’

£

W + W, — Cy,
Win+1:Ci+Gi+Bi+ z [l Th 'Ch

Blocking delay | Th e hpp(T i)

/ Preemption delay by
Our contribution Higher-priority tasks

* N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8(5):284—-292, 1993.

T J.-J. Chen et al. Many suspensions, many problems: A review of self-suspending tasks in real-time systems. Technical Report 854, Department of
Computer Science, TU Dortmund, 2016. 12/26

Total Blocking Time Analysis

For each analyzed task,
 Request-driven (RD) Approach*

o Consider the sum of the worst-case blocking times for each lock-
acquisition request issued by the analyzed task

e Job-driven (JD) Approach

o Consider the maximum number of lock-acquisition requests issued by
other tasks during the execution of the analyzed task

 Hybrid Approach

o0 Upper-bound the maximum lock-acquisition requests possible in RD
analysis by using JD analysis — obtain the best of both approaches

o Different from RTAS'14" which simply takes the minimum of RD and JD for
the blocking delay

* K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems

Symposium (RTSS), 2009.
T H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory interference delay in COTS-based multi-core systems. In IEEE

Real-Time Technology and Applications Symposium (RTAS), 2014. 13/26

Request-driven*

Blocking Time Analysis

nl G'_] G'.Z Tl CPU T1’s period

L L
|

1 1) 102 1 1 T3’s period
1000 . GPU execution

1 100 - 2 /) Blocked segment
1 Job arrival

2 1 1 |(1106| 3

v

v

7al

Time >

For each request made by T3, its blocking time is given by
B3 =B3, + B3, =102+102=204

* K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task scheduling, allocation and synchronization on multiprocessors. In IEEE Real-Time Systems
Symposium (RTSS), 2009. 14/26

RTAS 2018

Job-driven
Blocking Time Analysis
Task C; Gi n; Gi. ; Gi. P Ti CPU i T,’s period
1 | 1] 2] 1| - [102] 1 i T3's period
Tl 1000 . GPU execution
1,'2 1 100 1 100 - 0 2 Blocked segment
1 Job arrival
T3 |1000| 2 2 ﬁ ; 1 ﬁ1106 is

N
Ll

N
Ll

#T3

Time - .
Request-Driven

B3 =204

The max requests (= jobs) made by other tasks
#ofreq.by T1=12 #ofreq.by Tp=1 33 = 12x1 + 1x100 = 112J

15/26

Hybrid
Blocking Time Analysis

Task G.,| G,| T; |CPU i Tq’s period
T 1 i 102 1 | T3’s period
1 1000 . GPU execution
1,'2 100 - 0 2 Blocked segment
1 Job arrival
T3 1 1 [(1106| 3
T1 E >
|
|
To i >
|
m) T3 : : : >
Time -
Both each req. made by T3 and max req. made by other tasks W

BS = 33,1 + BB,Z = (4x1) + (1x100) = 104 Job-Driven Request-Driven

B; =112 B3 =204

16/26

Outline

 Evaluation
— Case Study
— Schedulability Experiment

e Conclusions

17/26

RTAS 2018

Case Study

* Motivated by the software system of CMU’s self-driving car*

o Lane-Change Detector

GPU Execution GPU Execution
Read ~ Color | Feature

»

Image Conversion | Extraction

Classification

v

o Workzone DetectorT

GPU Execution
Read Pre- ~ Blob

Image processing | Detection

v

- Classification

o Matrix Calculation

GPU Execution :
Arithmetic | Matrix _| Arithmetic 1% |
» > | |

Calculation Calculation Calculation

*J. Wei et al. Towards a viable autonomous driving research platform. In IEEE Intelligent Vehicles Symposium (1V), 2013.

T J. Lee et al. Kernel-based traffic sign tracking to improve highway workzone recognition for reliable autonomous driving. In IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2013. 18/26

RTAS 2018

Experimental Setup

e NVIDIATX?2
v" 6 CPU Cores
v' 1 GPU (256 Cores, Pascal Arch.)

CPU core 1 CPU core 2

Lane Change Detector Workzone Detector

s A

\Two Matrix Calculations/ \ One Matrix Calculation /

Task priorities are assigned based on the rate-monotonic policy

19/26

RTAS 2018

1 B) 7eem 1

Figure 1
Flgure 1

Lane Change Detector - Busy-wait

N ¥} [¥7)
Q v [=]

response time (ms)

(=
w

Deadline : 33 ms

0.4 0.6 0.8
iteration

YD Dme

frame_guide counts : 83
app_name : mat

of iteration : 6

2z of matrix call : @
Inttlal delay : 5 sec

mat got initial time : 1522611589247978857

Suspension-based vs. Busy-waiting

MPCP

140 -

m Suspension-based MPCP
m Busy-waiting MPCP

120 -

100

Worst-Case Response Time
(ms)
AN » (0]
o o o

N
o

o

LaneChange Workzone Matrix Cal. 1 Matrix Cal. 2 Matrix Cal. 3

v Performs better in practice, especially for lower-priority tasks
v" Allows other tasks to use the CPU while a task is using the GPU

21/26

RTAS 2018

Effect of Suspension Overhead

Test result w.r.t. the number of co-scheduled tasks w/ small GPU segments

50

g -x-Workzone (Busy-wait) -=Workzone (Self-suspension)
= 45 : .
@ -e-Lane Change (Busy-wait) -#-| ane Change (Self-suspension)

40
S <
& =35 e — — = ox ﬁK
X £30
&
c 25 =
O i —=
o
= 15

0 1 2 3 4)
[~200 ps x] Number of co-scheduled Matrix calculation tasks per core

\

The overhead of self-suspension implementation negatively affects
task response times when the tasks have small GPU segments

22/26

Schedulability Experiments

e Purpose: To explore the impact of the different approaches on task
schedulability

[MPCP — Our Analysis J
e 10,000 randomly-generated tasksets FMLP+ — LP-based Analysis*
Parameters Values
Number of CPUs (m) 4
Number of shared resources (Q) [1, 3]
Number of tasks per CPU [3, 6]
Percentage of tasks with critical sections [10, 40] %
Task period and deadline (T; = D;) [30, 500] ms
Utilization per CPU [40, 60] %
Ratio of crit. Sec. len. To non-crit. Sec. len. (G;/ C;) [10, 30] %
Number of critical sections per task (1;) [1, 3]
Number of suspensions in a critical section (g; ;) [1, 2]

* The Schedulability Test Collection and Toolkit (SchedCAT).

23/26 http://github.com/brandenburg/schedcat

Schedulability w.r.t. the

Percentage of GPU-using Tasks

— 100 —— Period range
= [30, 500] ms
v 80

I =

R

4 60 —+—QOriginal

i’

%: 40 —— Request

(o Job

S 20 —=—Hybrid ==

O

S —*—FMLP+ T

W 0 ! '

0 10 20 30 40 50 60 70 30 90 100

Percentage of tasks with critical sections

[Hybrid MPCP outperforms both the original MPCP and LP-based FMLP+ }

24/26

RTAS 2018

Schedulable tasksets {%])

Schedulability w.r.t. the

Percentage of GPU-using Tasks

100 — —

Period range
[300, 500] ms

(0]
o

60 —+—Qriginal

40 —— Request
Job
20 —s—Hybrid
~#—FMLP+ <mm
0

0 10 20 30 40 50 60 70 30 90 100

Percentage of tasks with critical sections

Neither hybrid MPCP nor LP-based FMLP+ dominates the other

Hybrid MPCP analysis is over 100x faster than LP-based FMLP+

25/26

RTAS 2018

Conclusions

e Suspension-based MPCP

v' Motivated by the limitations of the busy-waiting synchronization-based
approach

v Implementation on a real-world embedded platform

v" Significant improvement over the busy-waiting approach

v' Very competitive with and often outperforms LP-based FMLP+

v' 100x better runtime performance compared to LP-based analysis

e Future directions

v A detailed study of the suspension overhead trade-offs on modern
platforms with accelerators

v' Comparison with other synchronization protocols

26/26

RTAS 2018

Thank You

Analytical Enhancements and
Practical Insights for
MPCP with Self-Suspensions

Pratyush Patel”, lljoo Baek™, Hyoseung KimT, Raj Rajkumar™

ibaek@andrew.cmu.edu

* Carnegie Mellon University
T University of California, Riverside

mailto:ibaek@andrew.cmu.edu

RTAS 2018

BACKUP SLIDES

RTAS 2018

Self-Suspension Implementation

CPU
@ Lock .. m
Increase Priority*«--_-:‘_‘;;_l:
Request GPU
Wait GPU response s
Wake up ...
Request GPU - o i
Wait GPU response -~ |||
Wake up - []%
@' Unlock - -5
Decrease Priority

Copy Data

GPU Execution

Callback 1

Copy Data

Callback 2

29/26

 Global Lock &=
v' POSIX pthread _mutex()
v" Shared memory

* Priority Ceiling
v sched_setscheduler()

* CPU Suspension
v' POSIX pthread cond()

* GPU Execution
v' Asynchronous functions
ex) cudaMemcpyAsync()
v Stream and Callback

RTAS 2018

Experimental Setup

e NVIDIATX?2 —
- 4 ARM Cortex-A9 at 2GHz
- 2 Denver at 2GHz
- 1 GPU (256 Cores, Pascal Arch.) (6]
- Ubuntu 16.04
C; G; T, =D; | CPU Test
LC 13.5 3.19 39.5 1 DB ©
WZ | 29.48 | 4.04 50 2 @®@@® | General Use Case
AM1 | 11.05 5.12 100 1) @
AM2 8.81 9.38 165 1 @ GPU Overload
AM3 | 3297 | 10.88 300 2)
AMA4 1.15 2.7 120 1 @ ((Sg)\/erhead Test
AM5 1.15 0.7 120 1 ®

* All times are in milliseconds (ms)
30/26

RTAS 2018

Suspension

e CPU-side overhead

v’ Suspension
v' Context Switching

e GPU-side overhead

v' Asynchronous Calls
v Callback functions

Overhead

Lock—| r Unlock

| Busly-waitl
GPU req. .

CPU

GPU

Lockor) (@) .
CPU ~ Suspend 1
GPU req.
GPU i

| ~200ps |

=» the busy-wait approach is better

[GPU access time < the suspension overhead }

31/26

RTAS 2018

Self-Suspension Implementation

* Global Lock
CPU GPU v" Shared memory
v' pthread_mutex()
B Increase Priority .
- LOCk“"‘--~::E‘;‘gt,, | R Suspension
Request GPU Copy Data v a POSIX conditional variable

Wait GPU response -~
* CUDA-related
GPU Execution v" Asynchronous CUDA functions
ex) cudaMemcpyAsync()

s v Stream and Callback
Wake up ----.. | Callback 1

Request GPU -------- ; T—_‘ﬁ

\ 4

Priority Ceiling
\

* Priority Ceiling

i Copy Data
Walt GPU response v sched_setscheduler()
Wake up ------------ L Callback 2 new_pri =
[] highest_pri + (cur_pri — lowest_pri) + 1
@' Unlock ---------- -5
 Decrease Priority Ex)
Task 1: 80 (cpu)

Task 2: 54 (gpu) ->85 =80+ (54 -50) + 1
Task 3: 53 (gpu) ->84 =80+ (53-50) +1
Task 4: 52 (gpu) ->83 =80+ (52-50) +1
Task 6: 50 (gpu) ->81 =80+ (50-50) +1

32/26

Task Response Time with Suspension

 Worst-Case Response Time (W;)
— Time span between a request and the end of the request

WMt =C, + G; + B; [+ z

Blocking Delay |The hpp(T;)

W + Wy, — Cy, o
T, n

/ Preemption Delay by
T | % . Higher priority task
CPU
Core 7 o e v
e O77) sees IR
- GPU req. 1
cPu [- ! d W; < Deadline (D;)

Core 4 T, I Suspend I
2 L GPU rgq. } ‘ = Schedulable
GPU

f Task arrival [CPU execution [l GPU execution 7] Blocked segment = Preempted segment
33/30

RTAS 2018

Schedulability Experiments

e Purpose: To explore the impact of the different approaches on task
schedulability

e Schedulability: How many taskets are schedulable?

(Ci, Gi, Dy, Ty, my)

Taskset 1 = {%1, Ty «oo Tyt

100%-1

Schedulability (%)

Taskset n = {t{, Ty T,}

0%

v

Parameter Variation
% of GPU-using Tasks
% of CPU Utilization

34/30

Blocking Definition

o Atask t; is said to be blocked
v If a local task t; with a lower base priority is scheduled while of t; is pending.
v If any task 1 has locked the resource that T; is waiting for.

Corel Tq

Blocking (1) Blocking (2) Blocking (1)
[[Blocking (2)

Core2 12

Corel T3

\— Higher-Priority Task preemption

RTAS 2018

Blocking Definition

 Direct Blocking (DB) Coel T;

— isincurred when any task 7, has locked the 4_’.
resource that t; is waiting for.

e Prioritized Blocking (PB)

Corel T; %
— is incurred when lower-priority tasks |
executing with priority ceilings preempt the

_ o1 T — NN
CPU execution of T; o !

* Indirect Blocking (IB)

— Isincurred when a task t, accessing a

resource with a higher priority ceiling core1 T~ DBFI
preempts the execution of t;, which is - '
holding the resource that T; is waiting for. corez Y

core2 Tx H I

36/26

RTAS 2018

Task Response Time with Suspension

 Worst-case response time under partition fixed-priority scheduling

iy

W;=C; + G; + B; + Z I;(t}) Ii(tp) =a;p - Ey |

e Worst-case CPU
Th e hpp(T;) o
\ J execution time of T;

Worst-case execution
time of t;
Upper bound on the Worst-case preemption _ Wi + Wh - Eh
maximum time due to higher Aih = T
synchronization-based priority tasks on the - h
blocking same CPU Back-to-back execution

_‘ effect

Maximum instances of
Ty, released during the
execution of T;

37/26

RTAS 2018

Blocking Analysis

 Direct Blocking (DB)

— isincurred when any task 1, has locked the

resource that t; is waiting for. Corel T

core2 Tk

v" Request-Driven (RD) Approach

Critical sections Worst-case response time of

B = B&r er job of t; k™h critical section of T Bijn Hn
t LJ per) t TpERhP(T;) 0<ksnp
0<jST]i} | |
[dr
dr _ B + W, — E
B/} = max (Hp) + Z Bijn - Hnk Biin=|-~ h_Th
TlElp(Tl) T Eh (‘[) l!]! Th
/\R(Ti'j)=R(Tl'k) hENP(T
\ } /\R(‘Ei'j)=R(‘Eh’k)
f L J
| Maximum instances of Ty, released
Maximum blocking from | during the blocking duration ij
lower priority tasks Maximum blocking from

higher priority tasks

38/26

RTAS 2018

Blocking Analysis

« Direct Blocking (DB)

— isincurred when any task t; has locked the

resource that t; is waiting for. Corel T
core2 Tk
v' Job-Driven (JD) Approach . R(t,.) = RCED)

. . max(H -
Maximum number of times T; OZ ezZ;)0<Z (Huie) z z @i Hpk
=N; T Ti s . .
accesses resource R, JENETEPiT M Thehp(Ti) 0<ksnp iff. R(thx) = R(T)

=

dj W, +W, — E
B = Z i - Max (Hie) + Z i Hp g Wiy = |— Th :
r €R(Y) AN thehp(Ty) L h
/\R(‘El'k)—‘r
/\R(‘Eh,k)ER(Ti)
\ J \ J
Maximum direct blocking Direct blocking caused by Maximum instances of
caused by lower-priority each higher-priority task T, released during the
tasks critical section that uses execution of t;
= analogous to the RD the requested resource
approach

39/26

RTAS 2018

Blocking Analysis

 Direct Blocking (DB)

— isincurred when any task t; has locked the
resource that t; is waiting for.

v" Hybrid Approach

W, + Wh E, B + Wy, — Ep,
Ain = ,BL] h = T
1) Maximum direct higher-priority blocking h
dmh __
B; - lh Hp, i lh_mln Qi ﬁl]h
ThEhP(Tl) O<]<‘r]l
AR(th,k)=R(t;) AR (T)ER(Ty)
Maximum cumulative
Worst i ¢ number of interfering Maximum instances of Maximum instances of T,
orst-case response time o i i

o po requests by T, to the T releaset_ll during the relea_lsed durlng the
k™ critical section of t, h execution of ; blocking duration B2
resources accessed by t L

critical sections of T;

40/26

RTAS 2018

Blocking Analysis

 Direct Blocking (DB)

— isincurred when any task t; has locked the

resource that t; is waiting for. Corel T

core2 Tk

v" Hybrid Approach |

The k" longest critical
pdm _ pdml 4 pdmh section that access resource
! ! t R;and belong to Ip(t;)

Maximum number of times t;
accesses resource R;

2) Maximum direct lower-priority blocking

mt = - W; + D, — E,
BT = Z Z WijkLijoe | Wiy = min (“i,j_ z Wije lgi,Xi,j,k) 0i1 = [l T

0<j<g 0<ks|Q \—I—/ (S o0<t<k (-

Qij = {Hix|t € lp(t) AR(tyy) =7} ‘

(_X_) Maximum number of release
! of a lower-priority T; during
Maximum number of times A set contains the worst-case execution the execution of t;
that the k™ longest critical times of all the critical sections that
section can block t; access resource R;and belong to Ip(t;)

41/26

RTAS 2018

Blocking Analysis: Example

Task C G n; Gy G, Gi3 T
T, 20 10 2 5 5 - 100
T, 10 30 3 10 10 10 400
T3 10 25 3 10 10 5 200

IR AR ART A T AR A TR AR TR AT AR A AN AT

1 1
Ty | | | | | | | i | | i | | | |
| i | | | | | | | | | | | | |
1 1
{oyumut] B N 1 1 O | N N AN S | W I I S SN | B 2 W
| | | | | | | | | | | | | | |
1 1 1 1 1 1 1 1 1 1 1 1 ! !
ORI H (I I W nrm gy o
: : : | | | | : : : : | | . .
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 I21.300 IZI.400

Q21 = {H;x|t € Ip(x) AR(Ty) = 1} = 20,10,5

P3,1,1 = min <ﬂ2,1 - z Yzt »92,3) =min(3,1) = 3

Ly11=20 Lp1,=10 Lpq3= 5 0<t<1
0,5 =1 Yy 12 = min (le,1 - z Y21t 623 | =min(0,1) =0
| 0<t<2

42/26

RTAS 2018

Nvidia TX2

Nvidia TX2

NVIDIA
Jetson TX1

RTAS 2018

NVIDIA
Jetson TX2

CPU ARM Cortex-A57 (quad-core) @ 1.73GHz |ARM Cortex-A57 (quad-core) @ 2GHz +
NVIDIA Denver2 (dual-core) @ 2GHz

GPU 256-core Maxwell @ 998MHz 256-core Pascal @ 1300MHz

Memory 4GB 64-bit LPDDR4 @ 1600MHz | 25.6 |8GB 128-bit LPDDR4 @ 1866Mhz | 59.7
GB/s GB/s

Storage 16GB eMMC 5.1 32GB eMMC 5.1

Encoder* 4Kp30, (2x) 1080p60 4Kp60, (3x) 4Kp30, (8x) 1080p30

Decoder* 4Kp60, (4x) 1080p60 (2x) 4Kp60

Camerat 12 lanes MIPI CSI-2 | 1.5 Gb/s per lane | |12 lanes MIPI CSI-2 | 2.5 Gb/sec per lane
1400 megapixels/sec ISP | 1400 megapixels/sec ISP

Display 2x HDMI 2.0/ DP 1.2 / eDP 1.2 | 2x MIPI DSI

Wireless 802.11a/b/g/n/ac 2x2 867Mbps | 802.11a/b/g/n/ac 2x2 867Mbps |
Bluetooth 4.0 Bluetooth 4.1

Ethernet 10/100/1000 BASE-T Ethernet

USB USB 3.0 + USB 2.0

PCle Gen2|1x4+1x1 Gen 2 | 1x4 + 1x1 or 2x1 + 1x2

CAN Not supported Dual CAN bus controller

Misc I/O UART, SPI, I12C, I12S, GPIOs

Socket 400-pin Samtec board-to-board connector, 50x87mm

Thermals? -25°C to 80°C

Powertt 10w 7.5W

Price $299 at 1K units $399 at 1K units

44/26

Nvidia TX2

[Denver CPU 0]| Denver CPU 1 / Pascal GPU \\\ﬁ
L1 | L1-D Li-1 | L1-D | " h
128KB | 64KB 128KB | 64KB SMO SM 1
™ T ™ i i - _IIIIIIIIIIIII_ _IIIIIIIIIIIII_
Denver CPU shared L2 cache [0 128 cores [51 128 cores 3
2MB JOATTTITTTTTTTTT
[A57 CPU 0 AS7 CPU 3] ‘ Copy Engine |
L1 | LD | ***| L1414 | 11D
48KB | 32KB 48KB | 32KB || GPU L2 cache /
o 512 KB /
AST CPU shared L2 cache /’/
2 MB
Memory Controller \
DRAM' DRAM DRAM DRAM DRAM
Bank 0 Bank 1 Bank 2 LR Bank n-1 Bank n

'DRAM bank count and size depend on device package

« SMis limited to 2,048 per SM.

« Shared memory usage is limited to 64KB per SM and 48KB per block.
 the total number of threads each block can use is limited to 1,024.

« Each thread can use up to 255 registers

* Ablock can use up to 32,768 registers (regardless of its thread count).
« Additionally, there is a limit of 65,536 registers in total on each SM.

45/26

	Analytical Enhancements and Practical Insights for�MPCP with Self-Suspensions
	High Computational Demand of Safety-Critical Systems
	Problems with Hardware Accelerators
	Existing Solution: Synchronization-Based Approaches*†‡
	Limitations
	Our Contributions
	Outline
	Example of GPU Execution
	System Model
	Example under Busy-Waiting MPCP
	Example under Suspension-based MPCP
	Slide Number 12
	Total Blocking Time Analysis
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Outline
	Case Study
	Experimental Setup
	DEMO
	Suspension-based vs. Busy-waiting MPCP
	Effect of Suspension Overhead
	Schedulability Experiments
	Schedulability w.r.t. the Percentage of GPU-using Tasks
	Schedulability w.r.t. the Percentage of GPU-using Tasks
	Conclusions
	Thank You
	BACKUP SLIDES
	Self-Suspension Implementation
	Experimental Setup
	Suspension Overhead
	Self-Suspension Implementation
	Slide Number 33
	Schedulability Experiments
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Blocking Analysis
	Blocking Analysis
	Blocking Analysis
	Blocking Analysis
	Blocking Analysis: Example
	Nvidia TX2
	Nvidia TX2
	Nvidia TX2

