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Why Multi-Core Processors? 

• Processor development trend 

– Increasing overall performance by integrating multiple cores 

 

• Embedded systems: Actively adopting multi-core CPUs 

 

 

 

 

 

• Automotive:  

– Freescale i.MX6 4-core CPU 

– NVIDIA Tegra K1 platform 

 

• Avionics and defense: 

– Rugged Intel i7 single board 

computers 

– Freescale P4080 8-core CPU 
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Multi-Core Memory System 
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An upper bound on the memory interference delay is needed  

to check task schedulability 
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Impact of Memory Interference (1/2) 

• Task execution times with memory attacker tasks 

– Intel i7 4-core processor   +  DDR3-1333 SDRAM 8GB 

Core 1 Core 2 Core 3  

Cache Cache Cache 

Core 4  

Cache 

DDR3 SDRAM 

PARSEC 

benchmark 

task 
Memory 

attacker 
Memory 

attacker 
Memory 

attacker 

* S/W cache partitioning is used 
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• 1 attacker   Max 5.5x increase 

• 2 attackers  Max 8.4x increase 

• 3 attackers  Max 12x increase 

 

Impact of Memory Interference (2/2) 
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Issues with Memory Models 

• Q1. Can we assume that each memory request takes  

a constant service time? 

– The memory access time varies considerably depending on the 

requested address and the rank/bank/bus states 
 

• Q2. Can we assume memory requests are serviced in 

either Round-Robin or FIFO order? 

– Memory requests arriving early may be serviced later than ones 

arriving later in today’s COTS memory systems 

No. 

No. 

An over-simplified memory model may produce pessimistic or 

optimistic estimates on the memory interference delay 
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Our Approach 

• Explicitly considers the timing characteristics of major 

DRAM resources 

– Rank/bank/bus timing constraints (JEDEC standard) 

– Request re-ordering effect 
 

• Bounding memory interference delay for a task 

– Combines request-driven and job-driven approaches 

 

 
 

• Software DRAM bank partitioning awareness 

– Analyzes the effect of dedicated and shared DRAM banks 

Task’s own memory requests Interfering memory requests  

during the job execution 
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Outline 

• Introduction 
 

• Details on DRAM Systems 

– DRAM organization 

– Memory controller and scheduling policy 

– DRAM bank partitioning 
 

• Bounding Memory Interference Delay 
 

• Evaluation 
 

• Conclusion 
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DRAM Organization 
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Memory Controller 
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• FR-FCFS: First-Ready, First-Come First-Serve 

– Goal: maximize DRAM throughput  Maximize row buffer hit rate 

Memory Scheduling Policy 

Bank 1 
Scheduler 

Bank 2 
Scheduler 

Bank n 
Scheduler ... 

Channel Scheduler 

Memory access interference occurs at both bank and channel schedulers 

• Intra-bank interference at bank scheduler 

• Inter-bank interference at channel scheduler 

1. Bank scheduler 

• Considers bank timing constraints 

• Prioritizes row-hit requests 

• In case of tie, prioritizes older requests 

2. Channel scheduler 

• Considers channel timing constraints 

• Prioritizes older requests 
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DRAM Bank Partitioning 

• Prevents intra-bank interference by dedicating different 

DRAM banks to each core 

– Can be supported in the OS kernel 
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Outline 

• Introduction 
 

• Details on DRAM Systems 
 

• Bounding Memory Interference Delay 

– System Model 

– Request-Driven Bounding 

– Job-Driven Bounding 

– Schedulability Analysis 
 

• Evaluation 
 

• Conclusion 
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System Model 

• Task 𝜏𝑖: 𝐶𝑖 , 𝑇𝑖 , 𝐷𝑖 , 𝐻𝑖  

– 𝐶𝑖: Worst-case execution time (WCET) of any job of task 𝜏𝑖,  

     when it executes in isolation 

– 𝑇𝑖: Period 

– 𝐷𝑖: Relative deadline 

– 𝐻𝑖: Maximum DRAM requests generated by any job of 𝜏𝑖 

• No assumptions on the memory access pattern (i.e., access rate) 

• Partitioned fixed-priority preemptive task scheduling 

• DDR SDRAM main memory system 

– Software DRAM bank partitioning is used 

• No cache interference  
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Bounding Memory Interference Delay 

1. Request-Driven 

Bounding 

2. Job-Driven 

Bounding 

Response-Time Based 

Schedulability Analysis  
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Request-Driven (RD) Approach 

• Focuses on          # of memory requests generated by task itself (𝐻𝑖) 

                                 Maximum delay imposed on each request  

 

 

 

 

 

 

 

 

 

 

• Total interference delay = 𝐻𝑖 × (per−request interference delay) 

 

• Bounded by using DRAM and CPU core params 

• Not by using task params of other tasks  

Per-request 

interference 

delay 

• Intra-bank interference delay 

– Bank-level timing constraints  

– Re-ordering effect (consecutive row-hits) 

– Zero, if 𝜏𝑖 does not share bank partitions  

with tasks on other cores 

• Inter-bank interference delay 

– Channel-level timing constraints  
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Job-Driven (JD) Approach 

• Focuses on the  # of interfering memory requests generated 

by other tasks running in parallel 

Does not use the # of own memory requests from a task 

 

• Total interference delay for task 𝜏𝑖 

– Captures # of interfering memory requests during a time interval 𝑡 

– Assumes that all these interfering memory requests are processed 

ahead of any request of task 𝜏𝑖 

– Combines intra-bank and inter-bank interference 
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• Memory interference delay cannot exceed any results from 

the RD and JD approaches 

– We take the smaller result from the two approaches  

 

• Extended response-time test 

Response-Time Test 

Classical iterative response-time test 

Request-Driven (RD) 

Approach 

Job-Driven (JD) 

Approach 
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Outline 

• Introduction 
 

• Details on DRAM Systems 
 

• Bounding Memory Interference Delay 
 

• Evaluation 
 

• Conclusion 
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Experimental Setup 

• Target system 

– Linux/RK 
 

– Intel i7-2600 quad-core processor 

– DDR3-1333 SDRAM (single channel configuration) 

• Workload: PARSEC benchmarks 

• Methodology 

– Compare the observed and predicted response times in the 

presence of memory interference 

– Core 1: Each PARSEC benchmark 

– Core 2, 3 and 4: Tasks generating interfering memory requests 

 

 

Severe and non-severe memory interference 

(modified versions of the stream benchmark) 

Cache partitioning: to avoid cache interference 

Bank partitioning: to test both private and shared banks  
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• Shared DRAM Bank 

Severe Memory Interference (1 of 2) 
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• Private DRAM Bank 

Severe Memory Interference (2 of 2) 
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• Private DRAM Bank 

Non-severe Memory Interference 
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Our analysis bounds memory interference delay with low pessimism  

under both high and low memory contentions 
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Conclusions 

• Analysis for bounding memory interference 

– Based on a realistic memory model 

• JEDEC DDR3 SDRAM standard 

• FR-FCFS policy of the memory controller 

• Shared and private DRAM banks  

– Combination of the request-driven and job-driven approaches 

• Reduces pessimism in analysis (8% under severe interference) 

• Advantages 

– Does not require any modifications to hardware components or 

application software 

– Readily applicable to COTS-based multicore real-time systems 

• Future work 

– Pre-fetcher, multi-channel memory systems 
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