
Rapid Hardware/Software Design Space Exploration
for Efficient Intermittent Systems

Youngbin Kim
yb.kim@etri.re.kr

Electronics and Telecommunications Research Institute
Daejeon, Republic of Korea

Hyoseung Kim
hyoseung@ucr.edu

University of California Riverside
Riverside, CA, USA

ABSTRACT
Intermittent computing enables the functioning of computing sys-
tems under unstable power conditions. Designing such systems
poses significant challenges due to the vast design space, including
hardware and software parameters along with harvested energy
availability. In this paper, we propose an analytical framework to
predict an application’s execution time in intermittently powered
systems, enabling rapid design space exploration. Our framework
accounts for previously unexplored factors such as the effect of
Equivalent Series Resistance (ESR) in capacitors and the choice of
checkpoint strategies. With only one-time profiling, it estimates
timings of different checkpoint techniques under various design
configurations, with an average error of 4.7% under stable power
and 10.4% under intermittent power. Furthermore, our evaluation
reveals that neglecting checkpoint strategy in design can result in
a 3.08x average slowdown compared to optimal setups.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems.

KEYWORDS
Intermittent Computing, Modeling, Design Space Exploration.

ACM Reference Format:
Youngbin Kim and Hyoseung Kim. 2024. Rapid Hardware/Software Design
Space Exploration for Efficient Intermittent Systems. In Proceedings of the
ACM/IEEE International Symposium on Low Power Electronics and Design
(ISLPED ’24), August 5–7, 2024, Newport Beach, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3665314.3670799

1 INTRODUCTION
Advances in energy harvesting have enabled “battery-less” em-
bedded systems, addressing challenges of batteries such as short
lifetime and environmental impacts [10]. These systems require
mechanisms to make forward progress amid frequent power fail-
ures since environmental power sources are often inadequate for
sustained continuous computing [18]. Intermittent computing ad-
dresses these challenges by utilizing Non-Volatile Memory (NVM)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0688-2/24/08
https://doi.org/10.1145/3665314.3670799

to regularly save the system states (checkpoint). Upon power restora-
tion, the system can resume its execution from the saved context
(recovery), rather than restarting from the program’s initial state.

Designing intermittent systems is often an optimization problem
to find the best design configurations that meet specific require-
ments such as throughput or latency [7]. This search for optimal
setups significantly impacts the cost and form factor of the resulting
system. However, evaluating a wide range of configurations on real
hardware is impractical due to the vast design space [5], which in-
cludes various factors such as capacitor size, core frequency, input
power and harvesting efficiency. As a result, several modeling-based
techniques have been proposed to evaluate the impact of different
design configurations on application timings during early design
stages, without relying on the actual hardware [5, 7, 20, 21].

In the meantime, recent studies have identified additional design
aspects that significantly influence performance, but are often over-
looked in the existing models. One example is the Equivalent Series
Resistance (ESR) of capacitors, which acts as an inherent internal
resistance. As demonstrated by a prior study [19], disregarding ESR
can result in inefficient energy utilization or even failure of the
system. It is also critical to include ESR when designing timing
models, since ESR introduces extra voltage drops of the capacitor.
This leads to more frequent power failures of the system, which in
turn, significantly impact program execution time (Sec. 4.3.1).

Checkpoint techniques (CTs) are another important factor that
is underexplored in the existing works. Various CTs, including
static [12–14, 18] and Just-In-Time (JIT) checkpointing [11, 15, 16],
have been proposed to minimize the cost of intermittent executions.
As we will show, the choice of CT can heavily affect the application
performance, by an order of magnitude or more (Sec. 4.3.1). This
huge variation implies that analytical models should be able to
explore different CTs to achieve truly optimal configuration. Un-
fortunately, existing works rely on profiling information from the
checkpoint-equipped binaries, confining their timing models to the
specific CT that is used for the profiling [5, 7, 20, 21]. To efficiently
incorporate CT as a design parameter, overheads of CTs should
be modeled based on the CT-neutral profiling information. This
approach also eliminates the need for actual implementations of
various CTs at design stages, easing the burden of system designers.

In this paper, we propose an analytical model to estimate the
end-to-end execution time of intermittent applications in various
configurations, enabling rapid early-stage design space exploration
(DSE) of intermittent systems. Our model offers timing estimations
for various CTs and different ESRs, based on just one-time profiling
of the unmodified original program. Our validation shows that
the proposed model achieves high accuracy in timing estimates,
with an average error of 4.7% under stable power and 10.4% under

https://orcid.org/0000-0001-7746-5429
https://orcid.org/0000-0002-8553-732X
https://doi.org/10.1145/3665314.3670799
https://doi.org/10.1145/3665314.3670799


ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA Youngbin Kim and Hyoseung Kim

ESR 
Effect

𝑉!𝑑

𝑉"𝑑

Usable
energy

(a) Voltage trace of capacitor.

Vh

Buck
Converter

Board

V1

Resr

Vop

I1

I2

(b)Modeling ESR as a series resistor.

Figure 1: Modeling the voltage drop caused by ESR effect.

intermittent power, which is comparable to the results of existing
work that relies on more detailed profiling. In addition, our results
highlight that limiting the design space to a single CT can result in
3.08x average slowdown. In our DSE case studies, our model rapidly
identifies optimal design configurations from a pool of over 20k
options based on given requirements, within merely a few seconds.

2 BACKGROUND AND RELATEDWORK
Intermittent Systems. An intermittent system typically consists
of a power management subsystem and a computing subsystem.
The power management subsystem includes an energy storage
component, usually a small capacitor, where the harvested energy
is stored. Once the capacitor voltage reaches a power-on threshold
𝑉ℎ , it supplies stable voltage power to the computing system. When
the capacitor voltage hits a power-off threshold𝑉𝑙 , the power supply
stops. This power cycle can be short (e.g., less than a second), leading
to frequent power failures in the computing subsystem.

The computing subsystem consists of an NVM and a low-power
microcontroller (MCU). To maintain progress under power fail-
ures, it regularly backs-up volatile system states (i.e., registers, TCB,
and SRAM data) to NVMs. Such backup, known as checkpointing,
involves a large number of power-intensive NVM accesses. Conse-
quently, several checkpoint strategies have been studied to support
forward progress with minimal overhead.
Equivalent Series Resistance (ESR). ESR has been an unexplored
parameter in intermittent systems until the recent study [19]. ESR
acts as a capacitor’s internal resistance, leading to a voltage drop
(IR drop) when current is drawn from the capacitor. Fig. 1a shows a
capacitor voltage trace obtained from ourmeasurement. The voltage
drops instantly at the time of power-on and is recovered when the
MCU stops drawing the current (depicted in red). As a result, the
system may use only a portion of energy in the capacitor (from 𝑉ℎ
to 𝑉𝑙 + 𝑑 rather than 𝑉𝑙 ), leading to more frequent power-offs of
the system than expected. This is particularly relevant in systems
utilizing supercapacitors, which typically exhibit high ESR [19].
Checkpoint Techniques (CTs). JIT checkpointing [11, 15, 16] is
a widely adopted strategy designed to perform checkpoint only
once per power cycle, right before the power failure. To keep the
checkpoint data size small and consistent, it utilizes NVM as the
main memory, avoiding the entire need for checkpointing the mem-
ory. The checkpoint is initiated by an external power monitor that
sends an interrupt when the capacitor voltage reaches 𝑉𝑙 . Upon
receiving the interrupt, the system instantly executes checkpoint
and is turned off to preserve memory consistency.

Table 1: Configurable system design parameters.

Symbols Descriptions Examples

C capacitance of the capacitor 47mF
𝑅𝑐𝑎𝑝 ESR of capacitor 22Ω
𝑃𝑖 input power in W 20mW
𝑉ℎ capacitor voltage to turn on the system 5V
𝑉𝑙 capacitor voltage to turn off the system 3.5V
𝑓 core frequency 10Mhz

𝑉𝑜𝑝 operating voltage 3.3V
𝜂ℎ𝑎𝑟𝑣 energy harvester charge efficiency 0.93 [23]
𝜂𝑏𝑢𝑐𝑘 buck converter efficiency 0.89 [23]

Static checkpointing [12–14, 18] inserts checkpoint instructions
directly in the program binary (e.g., at the start of loop iterations [12,
18]), typically with compiler assistance. To prevent excessive check-
point executions, static checkpointing usually includes a mecha-
nism to control their execution frequency. Two notable approaches
are: voltage-ignorant (VI) and voltage-aware (VA). VI employs a
counter that increments at each checkpoint trigger, and performs
a checkpoint only when this counter reaches a user-configurable
threshold. After the checkpoint execution, the counter is reset, en-
suring that only a certain ratio 𝜆𝑣𝑖 of checkpoints are executed.
VA manages the checkpoint execution frequency with an aid of
external voltage monitor [18], as in JIT. In VA, each checkpoint
trigger involves checking the capacitor voltage, and checkpoint is
performed if the voltage is below a predefined threshold 𝑉𝑡𝑟𝑖𝑔 .
Related Work. Several modeling-based approaches have been de-
veloped to address the challenges of DSE in intermittent systems.
EH Model [20, 21] proposed an energy model that predicts how
much of the energy is spent on forward progress. PES [7] proposed
a model to estimate the throughput of IoT applications with config-
urable sampling and communication frequencies. ETAP [5] intro-
duced an approach to predict the energy and timing of a program
from compiler analysis. However, they rely on detailed profiling
data, which are often hard to collect (e.g., energy per each instruc-
tion [5], program phase [7], or backup [20, 21]). Furthermore, their
abilities to explore various CTs are limited, as they require profil-
ing data from the checkpoint-equipped binary. Also, none of these
models consider the impact of ESR, thereby confining their utility
to low-ESR systems. Our work addresses these limitations.

3 OUR APPROACH
3.1 Overview
3.1.1 Design Goal. The output of our model is an end-to-end la-
tency of a program, including execution time and capacitor recharge
time, under a given design configuration. We model a system that
has a capacitor with a capacitance of C and an ESR of 𝑅𝑒𝑠𝑟 , and col-
lects 𝑃𝑖 watt of power1. The system is turned on when the capacitor
voltage becomes 𝑉ℎ and is turned off at 𝑉𝑙 . These are configurable
design parameters, and the entire list can be found in Table 1.

Since the timing of an intermittent system is heavily affected by
available power, our model comprises two interrelated components:
a timing model and a power model. The timing model predicts the

1We employ a single input parameter to represent average power as in [7, 20, 21] and
leave the modeling for dynamic power profiles as a future work. Sec. 5.2 demonstrates
that it does not limit our ability to assess various power requirements during DSE.



Rapid Hardware/Software Design Space Exploration for Efficient Intermittent Systems ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA

Table 2: Architecture-dependent parameters.

Symbols Descriptions Examples

𝐶𝑥 , 𝑥 ∈ Γ Cycle for instruction class 𝑥 ∈ Γ {1, 3, 5, 2, 2} [1]
𝐶𝑛𝑙 Cycle for load from NVM 2 [4, 22]
𝐶𝑛𝑠 Cycle for store to NVM 3 [4, 22]
𝑁𝑟𝑒𝑔 The number of registers (in words) 42 [1]
𝑆𝑡𝑐𝑏 size of TCB (bytes) 88 [6]
𝐵𝑛𝑣𝑚 NVM access bit-width (bytes) 2 [22]
𝐼𝑛 avg current when not accessing NVM 25.01mA

𝐼𝑛𝑣𝑚 avg current when accessing NVM 31.93mA

Table 3: Application-dependent parameters.

Symbols Descriptions

𝑁𝑥 , 𝑥 ∈ Γ Instruction count of each instruction class 𝑥 ∈ Γ
𝑁𝑙𝑜𝑜𝑝 total number of loop iterations
𝑆𝑤𝑠 the average working set size in bytes

total latency when the number of system power-offs, denoted as 𝜈 ,
is given (Sec. 3.2.2). The power model estimates 𝜈 , considering both
power consumption and execution time of the program (Sec. 3.2.3).
As these two models are coupled, we employ an iterative method
to find 𝜈 that satisfies the both equations (Sec. 3.2.4).

Another goal of our design is to provide the ability to evaluate
various CTs from one-time profiling of the original program, i.e., no
need to implement any CT for DSE. To achieve this, we structure
our model into two parts: The base model, which covers checkpoint-
neutral aspects and serves as a template for individual checkpoint
models (Sec. 3.2); and the checkpoint-wise model, which extends the
base model by providing modelings specific to each CT (Sec. 3.3). In
this work, we showcase the extensibility of our model by presenting
models for three representative CTs: JIT, VI, and VA.

3.1.2 Parameters and Notations. To account for varying latencies
between instructions, we classify the instructions into five classes:

Γ = {𝑛, 𝑐, 𝑙𝑟𝑜, 𝑙𝑟𝑤, 𝑠} (1)

where 𝑐 is control, 𝑙𝑟𝑜 is load from the read-only section (e.g.,
.rodata), 𝑙𝑟𝑤 is load from read-write section (e.g., .data), 𝑠 is
store and 𝑛 is instructions not in the specified classes.

Architecture-dependent parameters are specific to the execution
environment, such as the Instruction Set Architecture (ISA) and
the underlying operating system (OS), not to the running program.
Table 2 shows the list of these parameters. Apart from the cycles
per each instruction class (i.e., 𝐶𝑥∈Γ), cycles for NVM access are
modeled separately (i.e.,𝐶𝑛𝑙 and𝐶𝑛𝑠 ). We also parameterize the bit-
width of NVM access (𝐵𝑛𝑣𝑚) to reflect constraints on NVM access
width. Most parameters are directly obtainable from manuals or
datasheets, as denoted in Table 2. We only measured 𝐼𝑛 and 𝐼𝑛𝑣𝑚
for our custom board used in evaluation. Depending on the target
hardware, these values can also be obtained without measurements.

Table 3 shows application-dependent parameters, which are ob-
tained through profiling. These include the number of instructions
per class (i.e., 𝑁𝑥∈Γ ), the total number of loop iterations 𝑁𝑙𝑜𝑜𝑝 , and
the average working set size 𝑆𝑤𝑠 (e.g. the size of stack and global
data). Note that these parameters are from the original program,
not modified one for checkpoint support, and can be easily obtained
from simulation or measurement.

3.2 Base Model
3.2.1 Modeling ESR. ESR can be modeled as a resistor in series
with the capacitor. Fig. 1b illustrates a circuit diagram of the load
side of the system, at the moment of power-on. 𝑉ℎ is the internal
voltage of the capacitor and𝑉1 is the voltage after the ESR effect that
the system actually uses. To estimate the voltage drop 𝑑 = 𝑉ℎ −𝑉1
due to ESR, we leverage the fact that power remains constant before
and after the buck converter.

𝑉1 · 𝐼1 · 𝜂𝑏𝑢𝑐𝑘 = 𝑉𝑜𝑝 · 𝐼2 (2)

Also, 𝑉1 can be represented with 𝑉ℎ and IR drop from 𝑅𝑒𝑠𝑟 .

𝑉1 = 𝑉ℎ − 𝐼1 · 𝑅𝑒𝑠𝑟 = 𝑉ℎ −
𝑉𝑜𝑝 · 𝐼2 · 𝑅𝑒𝑠𝑟
𝜂𝑏𝑢𝑐𝑘 ·𝑉1

(3)

The solution of this quadratic equation of 𝑉1 can be calculated as:

𝑉1 =
1
2
· ©­«𝑉ℎ ±

√︄
𝑉 2
ℎ
−

4 · 𝐼2 ·𝑉𝑜𝑝 · 𝑅𝑒𝑠𝑟
𝜂𝑏𝑢𝑐𝑘

ª®¬ (4)

We select 𝑉1 that satisfies 𝑉𝑙 < 𝑉1 < 𝑉ℎ . This simplified model sig-
nificantly contributes to the accuracy of the timingmodel: reduction
of validation error from 44.3% to 10.4% (Sec. 4.3.1).

3.2.2 Base Timing Model. The base timing model addresses the
timing aspects that are not related to the individual CTs. The end-
to-end execution time 𝑇 ∗

𝑡𝑜𝑡 for given the number of power-offs 𝜈
consists of four components:

𝑇 ∗
𝑡𝑜𝑡 (𝜈) = 𝑇𝑜𝑟𝑖𝑔 +𝑇 ∗

𝑐𝑘𝑝𝑡
(𝜈) +𝑇 ∗

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝜈) +𝑇𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 (𝜈) (5)

𝑇𝑜𝑟𝑖𝑔 is for time executing the original program, 𝑇 ∗
𝑐𝑘𝑝𝑡

(𝜈) is for
overhead from checkpoints, 𝑇 ∗

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝜈) denotes the time taken
due to recovery and𝑇𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 (𝜈) is the time spent for recharge. The
∗ indicates that the term is dependent on the CTs, and should be
extended by individual checkpoint models.

𝑇𝑜𝑟𝑖𝑔 can be modeled as a linear combination of 𝑁𝑥 and 𝐶𝑥 ,
and a constant initialization cost 𝑇𝑖𝑛𝑖𝑡 , given that the MCUs used
in most intermittent systems in the literature follow an in-order
architecture, e.g., TIMSP430 or ARMCortexM0/M4.We use 𝜏 = 1/𝑓
to denote the latency per cycle.

𝑇𝑜𝑟𝑖𝑔 = 𝑇𝑖𝑛𝑖𝑡 + 𝜏 ·
∑
𝑥∈Γ 𝑁𝑥 ·𝐶𝑥 (6)

The overhead of checkpoint consists of three components.

𝑇 ∗
𝑐𝑘𝑝𝑡

(𝜈) = 𝑂∗
𝑠𝑡𝑎 + 𝜈 · (𝑂∗

𝑑𝑦𝑛
+𝑂∗

𝑟𝑏
) (7)

𝑂∗
𝑠𝑡𝑎 denotes the static overhead, which is independent to 𝜈 . 𝑂∗

𝑑𝑦𝑛

represents the dynamic overhead that increases proportionally with
𝜈 and 𝑂∗

𝑟𝑏
accounts for the rollback cost, which is the lost progress

that executed after the last checkpoint so that cannot be recovered.
𝑇 ∗
𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 is proportional to 𝜈 , system initialization cost and the

checkpoint-wise recovery overhead 𝑂∗
𝑟𝑒𝑐𝑣 .

𝑇 ∗
𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (𝜈) = 𝜈 · (𝑇𝑖𝑛𝑖𝑡 +𝑂∗

𝑟𝑒𝑐𝑣) (8)

When 𝜈 > 0, the system experiences power-offs and requires
capacitor recharges. We denote the average current consumption
of the system as 𝐼 , which is approximated as 𝑟 · 𝐼𝑛𝑣𝑚 + (1 − 𝑟 ) · 𝐼𝑛 ,
given that 𝑟 is a ratio of time consumed in NVM accesses over
the total program execution. We use 𝑑𝐼 to denote the voltage drop
due to ESR when the current consumption of the board is 𝐼 , which



ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA Youngbin Kim and Hyoseung Kim

can be computed from Equation 4 (i.e., 𝑑𝐼 = 𝑉ℎ − 𝑉1 with 𝐼2 = 𝐼 ).
Also, 𝐸 (𝑉𝑎,𝑉𝑏 ) = 1

2C{𝑉
2
𝑎 −𝑉 2

𝑏
} denotes the energy that capacitor

holds between the voltage 𝑉𝑎 and 𝑉𝑏 . Then, the time necessary to
replenish the energy consumed can be modeled as:

𝑇𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 (𝜈) = 𝜈 · 𝐸 (𝑉ℎ,𝑉𝑙 + 𝑑𝐼 )/(𝑃𝑖 · 𝜂ℎ𝑎𝑟𝑣) (9)

3.2.3 Power Model. Power model estimates 𝜈 by modeling the
power cycle duration 𝑇𝑝𝑐 , which represents the continuous execu-
tion time without power failure. As the capacitor is charged con-
currently with the system execution, we account for the recharging
current and model the effective current consumption 𝐼𝑑𝑟𝑎𝑖𝑛 .

𝐼𝑑𝑟𝑎𝑖𝑛 = 𝐼 − (𝑃𝑖 · 𝜂ℎ𝑎𝑟𝑣 · 𝜂𝑏𝑢𝑐𝑘 )/𝑉𝑜𝑝 (10)

Then,𝑇𝑝𝑐 can be derived by dividing the usable energy of the system
by its effective power consumption.

𝑇𝑝𝑐 =
𝜂𝑏𝑢𝑐𝑘 · 𝐸 (𝑉ℎ,𝑉𝑙 + 𝑑𝐼 )

𝐼𝑑𝑟𝑎𝑖𝑛 ·𝑉𝑜𝑝
(11)

The number of poweroffs 𝜈 is then calculated as the total time
required for the computation divided by 𝑇𝑝𝑐 .

𝜈 =

⌊
𝑇𝑡𝑜𝑡 (𝜈) −𝑇𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 (𝜈)

𝑇𝑝𝑐

⌋
(12)

3.2.4 Finding 𝜈 . To solve Equation 12, we employ fixed-point iter-
ation [3], an iterative method for finding roots of equation. If we
denote the equation as 𝑓 (𝜈), the sequence {𝜈𝑛} converges to the
solution given that 𝜈𝑛 = 𝑓 (𝜈𝑛−1) and 𝜈0 is a random initial value.
We use 𝜈0=0 and compute 𝜈𝑛 until it converges. Since 𝜈 is an integer,
the exact solution can be found with a small number of iterations.

3.3 Checkpoint-Wise Models
Thanks to our base model, timing estimation of individual CT re-
quires modeling of only four terms:𝑂∗

𝑠𝑡𝑎 ,𝑂
∗
𝑑𝑦𝑛

,𝑂∗
𝑟𝑏

and𝑂∗
𝑟𝑒𝑐𝑣 . We

highlight the extensibility of our model by providing modelings for
three different checkpoint styles.

3.3.1 JIT (Just-In-Time) Checkpointing (JIT). In JIT, accesses to
SRAMs in original program turn to NVM accesses. As a result, static
overhead can be modeled as follow. We denote the required number
of NVM accesses for an word access as 𝑄𝑛𝑣𝑚 = (word size)/𝐵𝑛𝑣𝑚 .

𝑂
𝑗𝑖𝑡
𝑠𝑡𝑎 = 𝜏 · {𝑁𝑙𝑟𝑤 · (𝐶𝑛𝑙 −𝐶𝑙 ) + 𝑁𝑠 · (𝐶𝑛𝑠 −𝐶𝑠 )} ·𝑄𝑛𝑣𝑚 (13)

Before poweroff, only the registers and TCB are checkpointed,
as other program data is stored in NVM. 𝑆𝑡𝑐𝑏/𝐵𝑛𝑣𝑚 represents the
required number of NVM accesses to checkpoint TCB.

𝑂
𝑗𝑖𝑡

𝑑𝑦𝑛
= 𝜏 · {𝑁𝑟𝑒𝑔 ·𝑄𝑛𝑣𝑚 ·𝐶𝑛𝑠 +

𝑆𝑡𝑐𝑏

𝐵𝑛𝑣𝑚
· (𝐶𝑛𝑠 +𝐶𝑙 )} (14)

Since the system instantly stops after checkpointing, no rollback
overhead exists; thus 𝑂 𝑗𝑖𝑡

𝑟𝑏
= 0. Recovery is a reverse of checkpoint-

ing in JIT, i.e., copying back the registers and TCB from NVM.

𝑂
𝑗𝑖𝑡
𝑟𝑒𝑐𝑣 = 𝜏 · {𝑁𝑟𝑒𝑔 ·𝑄𝑛𝑣𝑚 ·𝐶𝑛𝑙 +

𝑆𝑡𝑐𝑏

𝐵𝑛𝑣𝑚
· (𝐶𝑛𝑙 +𝐶𝑠 )} (15)

3.3.2 Voltage-Ignorant Static Checkpointing (VI). The static over-
head of VI is modeled as follows, given that𝐶𝑣𝑖

𝑐 is a cost for checking
counter and checkpoint instructions are inserted at loop headers.

𝑂𝑣𝑖
𝑠𝑡𝑎 = 𝜏 · {𝐶𝑣𝑖

𝑐 · 𝑁𝑙𝑜𝑜𝑝 + 𝜆𝑣𝑖 · 𝑁𝑙𝑜𝑜𝑝 (𝑂𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔 +𝑂𝑐𝑜𝑝𝑦)} (16)

The term 𝜆𝑣𝑖 ·𝑁𝑙𝑜𝑜𝑝 represents the number of checkpoint executions.
Each checkpoint execution incurs overhead of system call setup
(𝑂𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔) and data copy to NVM (𝑂𝑐𝑜𝑝𝑦 ). Wemodeled𝑂𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔 =

𝑁𝑟𝑒𝑔 · (𝐶𝑠 +𝐶𝑙 ), accounting for costs of register saving and recovery.
The cost of copying the registers, memory and TCB is modeled as:

𝑂𝑐𝑜𝑝𝑦 = 𝑁 · (𝐶𝑙 +𝐶𝑛𝑠 ), where 𝑁 = 𝑁𝑟𝑒𝑔 ·𝑄𝑛𝑣𝑚 + 𝑆𝑤𝑠 + 𝑆𝑡𝑐𝑏

𝐵𝑛𝑣𝑚
(17)

VI has no additional checkpoint cost proportional to 𝜈 ; thus𝑂𝑣𝑖
𝑑𝑦𝑛

=

0. We estimate the loss from rollback as half of the average interval
between checkpoints. This can be modeled as:

𝑂𝑣𝑖
𝑟𝑏

= 𝜏 ·𝑇 𝑣𝑖
𝑡𝑜𝑡 (0)/(2 · 𝜆𝑣𝑖 · 𝑁𝑙𝑜𝑜𝑝 ) (18)

The cost of recovery is a reverse of 𝑂𝑐𝑜𝑝𝑦 ; 𝑂𝑣𝑖
𝑟𝑒𝑐𝑣 = 𝑁 · (𝐶𝑠 +𝐶𝑛𝑙 ).

3.3.3 Voltage-Aware Static Checkpointing (VA). Since VA and VI are
in the same checkpoint style, they have the same model except for
two parameters: the voltage checking cost 𝐶𝑣𝑎

𝑐 , which substitutes
𝐶𝑣𝑖
𝑐 , and execution rate 𝜆𝑣𝑎 which is used instead of 𝜆𝑣𝑖 . We describe

the modeling of 𝜆𝑣𝑎 and omit redundant model descriptions.
VA consists of two phases in terms of power consumption. In

execution phase, where the voltage is higher than𝑉𝑡𝑟𝑖𝑔 , system does
not access NVM and consumes current of 𝐼 . On the other hand,
in checkpoint phase where the voltage is below 𝑉𝑡𝑟𝑖𝑔 , heavy NVM
accesses happen as all checkpoint instructions are executed. This
results in rapid increase in the current draw up to approximately
𝐼𝑛𝑣𝑚 , leading to further voltage drop due to ESR. As a result, when
the system enters the checkpoint phase, the power-off threshold
arises to 𝑉 ′

𝑙
= 𝑉𝑙 + 𝑑𝐼𝑛𝑣𝑚 . We model 𝜆𝑣𝑎 as a ratio of the time spent

in checkpoint phase (𝑇1) to the total execution time (𝑇1 +𝑇2), where
𝑇2 is time consumed in execution phase. The internal capacitor
voltage when system observes 𝑉𝑡𝑟𝑖𝑔 is denoted as 𝑉 ′

𝑡 = 𝑉𝑡𝑟𝑖𝑔 + 𝑑𝐼 .

𝜆𝑣𝑎 =
𝑇1

𝑇1 +𝑇2
, where 𝑇1 =

𝐸 (𝑉 ′
𝑡 ,𝑉

′
𝑙
)

𝑉𝑜𝑝 · 𝐼𝑛𝑣𝑚
and 𝑇2 =

𝐸 (𝑉ℎ,𝑉 ′
𝑡 )

𝑉𝑜𝑝 · 𝐼
(19)

4 VALIDATION
4.1 Setup
We measure the execution time of four benchmarks (basicmath,
fft, crc and sha) from MiBench [8] by running them under var-
ious environments and compare these against the predicted time
by our work. Application-dependent parameters (Table 3) are ob-
tained using the gem5 [2] simulator. Unless stated otherwise, the
example values in Table 1 and 2 are used for the modeling. We
implemented the three CTs (JIT, VI and VA) considered in Sec. 3.3
on FreeRTOS [6], a widely used real-time OS. The measurements
are done on a custom-built board based on Arm Cortex-M4 core
(STM32L496 [22]) equipped with 1MB FRAM. TI BQ25570 [23] is
used to manage the capacitor charge and the power regulation.



Rapid Hardware/Software Design Space Exploration for Efficient Intermittent Systems ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA

0
10
20
30
40
50

orig jit vi va orig jit vi va orig jit vi va orig jit vi va

basicmath fft crc sha

T
im

e 
(s

) measured modeled

Figure 2: Validation results under stable power at 𝑓 = 10Mhz.

20
40
60
80

100

Ti
m

e 
(s

)

basicmath

25
50
75

100
fft

10 15 20 25 30 35
Input Current (mA)

0
50

100
150
200

Ti
m

e 
(s

)

crc

10 15 20 25 30 35
Input Current (mA)

30
60
90

120
sha

jit_measured
jit_modeled

vi_measured
vi_modeled

va_measured
va_modeled

Figure 3: Measured and modeled execution time of bench-
marks under various input currents (C = 47mF, 𝑓 = 10Mhz).

4.2 Accuracy of Timing Model
First, we evaluate the timing model under stable power (𝜈 = 0), in
order to exclude the effect of the power model. Fig 2 shows the mea-
sured and modeled timings of the original program at 𝑓 =10, with
different CTs. We observe an average error of 3.3% in the original
program and of 4.7% across the CTs, for the two core frequencies.

The observed error in our model comes from several design
choices. For example, we use single latency for each instruction
class in Γ to simplify profiling, despite the actual latency varying
with execution context [1]. Also, static checkpointing modifies the
code during compilation, potentially affecting register pressure
and the subsequent compiler optimizations. Such impact is hard
to predict as our design avoids profiling binaries other than the
original program. Given these complexities, error under 5% offers a
good tradeoff between accuracy and practicability, and the timing
model provides a consistent base for estimating end-to-end timing.

4.3 Accuracy under Intermittent Power
4.3.1 Validation Results. To evaluate accuracy of model in unstable
power, we measured the timing of each CT at configurations of
C = {47, 104} and 𝑓 = {10, 50}, under input currents ranging from
10 to 35mA at 2.6V. To account for variability in measurements, 5
samples are measured and the average values are used.

Fig. 3 shows the detailed results for one configuration (C = 47mF
and 𝑓 = 10Mhz). Different colors in the figure denote different CTs.
Solid lines represent the measured timings, while dotted lines depict
the model’s estimations. It shows several interesting observations.
For instance, one can observe a significant variance in the efficiency
of CTs, depending on the benchmarks (more discussions on Sec. 5.1).
In terms of validation error, the figure shows that the error is dis-
tributed fairly even across different input currents, suggesting that
our model effectively estimates the timing without high variance.

0
15
30
45
60

10Mhz 50Mhz 10Mhz 50Mhz

47mF 104mF

Er
ro

r 
(%

) jit vi va no ESR

Figure 4: Average validation errors of various configurations.

Fig. 4 illustrates the average validation errors for all configu-
rations. The line graph represents the average error of each con-
figuration when ESR is not modeled. The figure shows that with
ESR modeling, our model successfully estimates the timings under
various configurations, with an average of 10.4% error and no case
exceeding 15%. In contrast, the error increases to an average of 44.3%
when ESR is not considered. This clearly reveals the importance of
ESR effects in predicting behaviors of intermittent systems.

4.3.2 Source of Error. Beyond the design aspects of the model
(Sec. 4.2), some other factors also influence model’s accuracy. First,
there exists inherent variability in the measured times since the
real execution involves non-deterministic physical behaviors [9].
Indeed, we observe 6.54% of the average variance in execution times
measured under unstable powers, while measurements in stable
power shows much more consistent value of 0.04%.

Secondly, since 𝜈 is an integer, a small prediction error in the
number of power-offs can be amplified in 𝑇𝑡𝑜𝑡 . For example, con-
sider a scenario that the model predicts the number of power-offs as
2.01 while the actual value is 1.99. This 1% error results in different
𝜈 values, i.e., ⌊2.01⌋ = 2 and ⌊1.99⌋ = 1, adding one more recharge
cycle and associated checkpoint overhead, leading to greater errors
especially when 𝜈 is small. Given the variability in the real systems,
such errors are inevitable even if the model is highly accurate.

4.3.3 Comparison to Existing Works. Directly comparing our work
with previous studies is not trivial due to a difference in method-
ology. While our work estimates the timing of CT-induced over-
heads, existing studies may directly obtain such information from
checkpoint-equipped binaries. Despite this, our work presents an ac-
curacy comparable to these priorworks (e.g., 1.5∼10.8% for ETAP [5],
1.6∼10.4% for PES [7], and 1.6∼7.0% for EH model [20, 21]) while
requiring the most minimal profiling information (Sec. 2). More-
over, our design allows exploring impacts of different CTs, which
is demonstrated to significantly affect the performance (Fig. 3),
providing deeper insights when designing intermittent systems.

5 EVALUATION
5.1 Sensitivity of Checkpoint Techniques
In this evaluation, we assess the sensitivity of CTs for design config-
urations. Fig. 5a shows the modeled execution times of each CT, in
64 different design configurations, for each benchmark. The result
clearly shows that efficiency of CT is dependent on both the design
and the running program. For instance, VA outperforms the other
CTs in fft but is the least efficient in crc. In sha, JIT and VI exhibit
the least overhead depending on the hardware configurations.

Fig. 5b compares normalized execution times in the same settings
when a single CT is uniformly applied, against scenarios where the
optimal strategy is chosen for each case. The line graph represents
the ratio of each CT being the best choice across all configurations.



ISLPED ’24, August 5–7, 2024, Newport Beach, CA, USA Youngbin Kim and Hyoseung Kim

0 25 50
Configurations (#)

0
20
40
60
80

100

Ti
m

e 
(s

)

basicmath

0 25 50
Configurations (#)

0
20
40
60
80

100
fft

0 25 50
Configurations (#)

0
20
40
60
80

100
crc

0 25 50
Configurations (#)

0
20
40
60
80

100
sha

jit
vi
va

(a) Modeled execution time of benchmarks under different configurations.

0

20

40

60

80

100

0

1

2

3

4

5

6

jit vi va optimal

Normalized
time

Best
strategy (%)

(b) Disadvantages of using sin-
gle checkpoint technique.

Figure 5: Evaluation of the checkpoint efficiency for different benchmarks.

Table 4: Pareto-optimal design configurations under two ex-
ample requirements, R1 and R2.

𝑓 𝑃𝑖 (mW) C (mF) 𝑅𝑐𝑎𝑝 Ckpt 𝑇𝑡𝑜𝑡 𝑇𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 𝑇𝑝𝑐

R1: benchmark = sha, 𝑇𝑡𝑜𝑡 +𝑇𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 < 30

50 13 20 20 vi 22.09 6.49 0.73
10 31 40 15 jit 25.13 4.39 1.53

R2: benchmark = fft, 𝑃𝑖 < 39,𝑇𝑝𝑐 > 2.5,𝑇𝑡𝑜𝑡 < 60

50 13 50 10 va 25.39 21.85 2.51
10 33 90 20 va 59.61 21.25 5.71
10 36 30 15 va 50.16 4.48 2.59

The result shows that applying a single CT for all design configura-
tions leads to considerable overhead, with an average of 3.08x. Fur-
thermore, we observe that no single CT consistently outperforms
others in all scenarios. Even the most frequently optimal strategy,
VA, emerges as the best choice in only 39.8% of the configurations.
These results strongly support the importance of considering CTs
as a critical factor in design of intermittent systems.

5.2 Design Space Exploration Case Study
In this evaluation, we show that our model efficiently solves one of
the challenges motivating this work: rapidly finding the optimal de-
sign points, including CTs, under specific requirements. To this end,
we evaluate 22,464 design points under two example requirements.
In the first case (R1), user wants to run sha and needs the worst-
case response time, which is modeled as 𝑇𝑡𝑜𝑡 +𝑇𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 , to be less
than 30s. The second case (R2) requires fft to execute continuously
for at least for 2.5s (𝑇𝑝𝑐 > 2.5) within total execution time of 60s
(𝑇𝑡𝑜𝑡 < 60), under limited input power (𝑃𝑖 < 39mW) resembling an
outdoor environment with a 12.9cm2 solar panel [17].

Table 4 shows some Pareto-optimal design points found from
the exploration (5 out of 14 shown). The suggested points cover all
different options of the parameters, such as various input powers or
capacitor sizes, while meeting the requirements. Depending on the
available hw/sw and design objectives, designers can choose from
a wide range of distinct options, including different CTs. Another
practical advantage of the model lies in its lightweight nature. For
this evaluation, it only takes 8.3 secs for the entire search. This
indeed helps designers easily experiment with different options and
requirements, which is highly desired in early-stage of DSE.

6 CONCLUSION
In this work, we present an analytical model to estimate the timings
of an application in various design options of intermittent systems.

Along with the common hardware parameters, our model incorpo-
rates previously unexplored parameters, such as ESR and various
CTs. Our validation shows an average error of only 10.4% in unsta-
ble power environments, without actual implementation of the CTs.
Evaluation results indicate that the CT should be considered as a
critical design factor, as ignoring it may result in a 3.08x overhead
in execution time. Also, we demonstrate the practicability of our
model by showing rapid DSE results for various scenarios covering
more than 20k design points in just a few seconds.

ACKNOWLEDGEMENT
This work was supported by IITP grant funded by the Korea gov-
ernment (MSIT) (No.2021-0-00360).

REFERENCES
[1] Arm 2021. Armv7-M Architecture Reference Manual. Arm.
[2] Nathan Binkert et al. 2011. The gem5 simulator. ACM SIGARCH computer

architecture news 39, 2 (2011), 1–7.
[3] Richard L Burden. 2011. Numerical analysis. Brooks/Cole Cengage Learning.
[4] Cypress Semiconductor 2019. FM22L16. Cypress Semiconductor.
[5] Ferhat Erata et al. 2023. ETAP: Energy-aware timing analysis of intermittent

programs. ACM TECS 22, 2 (2023), 1–31.
[6] FreeRTOS. 2023. FreeRTOS. https://freertos.org/
[7] Fatemeh Ghasemi et al. 2023. PES: An Energy and Throughput Model for Energy

Harvesting IoT Systems. In ISPASS. IEEE, 13–23.
[8] Matthew R Guthaus et al. 2001. MiBench: A free, commercially representative

embedded benchmark suite. In WWC-4. IEEE, 3–14.
[9] Josiah Hester et al. 2024. Ekho: Realistic and Repeatable Experimentation for

Tiny Energy-Harvesting Sensors. In SenSys. ACM, 330–331.
[10] Josiah Hester and Jacob Sorber. 2017. The future of sensing is batteryless, inter-

mittent, and awesome. In SenSys. 1–6.
[11] Hrishikesh Jayakumar et al. 2014. QuickRecall: A low overhead HW/SW approach

for enabling computations across power cycles in transiently powered computers.
In VLSID. IEEE, 330–335.

[12] Youngbin Kim et al. 2023. Liveness-Aware Checkpointing of Arrays for Efficient
Intermittent Computing. In DATE. IEEE, 1–6.

[13] Vito Kortbeek et al. 2020. Time-sensitive intermittent computing meets legacy
software. In ASPLOS. 85–99.

[14] Kiwan Maeng and Brandon Lucia. 2018. Adaptive dynamic checkpointing for
safe efficient intermittent computing. In OSDI. 129–144.

[15] Kiwan Maeng and Brandon Lucia. 2019. Supporting peripherals in intermittent
systems with just-in-time checkpoints. In PLDI. 1101–1116.

[16] Kiwan Maeng and Brandon Lucia. 2020. Adaptive low-overhead scheduling for
periodic and reactive intermittent execution. In PLDI. 1005–1021.

[17] Powerfilm. 2024. Products. https://www.powerfilmsolar.com/products.
[18] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: System support

for long-running computation on RFID-scale devices. In ASPLOS. 159–170.
[19] Emily Ruppel et al. 2022. An architectural charge management interface for

energy-harvesting systems. In MICRO. IEEE, 318–335.
[20] Joshua San Miguel et al. 2017. The EH model: Analytical exploration of energy-

harvesting architectures. IEEE Computer Architecture Letters 17, 1 (2017), 76–79.
[21] Joshua San Miguel et al. 2018. The EH model: Early design space exploration of

intermittent processor architectures. In MICRO. IEEE, 600–612.
[22] ST Microelctronics 2021. RM0351 Reference Manual. ST Microelctronics.
[23] Texas Instruments 2019. bq25570 nano power boost charger and buck converter for

energy harvester powered applications. Texas Instruments.

https://freertos.org/
https://www.powerfilmsolar.com/products

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Our Approach
	3.1 Overview
	3.2 Base Model
	3.3 Checkpoint-Wise Models

	4 Validation
	4.1 Setup
	4.2 Accuracy of Timing Model
	4.3 Accuracy under Intermittent Power

	5 Evaluation
	5.1 Sensitivity of Checkpoint Techniques
	5.2 Design Space Exploration Case Study

	6 Conclusion
	References

