
RETOS: Resilient, Expandable, and Threaded Operating
System for Wireless Sensor Networks

Hojung Cha, Sukwon Choi, Inuk Jung, Hyoseung Kim, Hyojeong Shin,
Jaehyun Yoo, Chanmin Yoon
Department of Computer Science

Yonsei University
Seoul 120-749, Korea

{hjcha,sukwon,inukj,hskim,hjshin,jhyoo,cmyoon}@cs.yonsei.ac.kr

ABSTRACT
This paper presents the design principles, implementation, and
evaluation of the RETOS operating system which is specifically
developed for micro sensor nodes. RETOS has four distinct
objectives, which are to provide (1) a multithreaded programming
interface, (2) system resiliency, (3) kernel extensibility with
dynamic reconfiguration, and (4) WSN-oriented network
abstraction. RETOS is a multithreaded operating system, hence it
provides the commonly used thread model of programming
interface to developers. We have used various implementation
techniques to optimize the performance and resource usage of
multithreading. RETOS also provides software solutions to separate
kernel from user applications, and supports their robust execution on
MMU-less hardware. The RETOS kernel can be dynamically
reconfigured, via loadable kernel framework, so a application-
optimized and resource-efficient kernel is constructed. Finally, the
networking architecture in RETOS is designed with a layering
concept to provide WSN-specific network abstraction. RETOS
currently supports Atmel ATmega128, TI MSP430, and Chipcon
CC2430 family of microcontrollers. Several real-world WSN
applications are developed for RETOS and the overall evaluation of
the systems is described in the paper.

Categories and Subject Descriptors
D.4.7 [Operating systems]: Organization and Design

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Wireless Sensor Network, Operating Systems, Multithreading

1. INTRODUCTION
With the promise of wireless sensor network (WSN) applications in
the ubiquitous computing era, active research has recently been
conducted in a wide spectrum of devices, system software, and
applications. The technology advance in WSN is primarily

accelerated by the readily-available hardware platforms, as well as
core system software such as sensor node operating systems in
particular. From the early days, much effort has been given to
develop efficient and yet complete operating systems for micro
sensor nodes. For instance, TinyOS [1] has historically been used by
many practitioners in the field and even advocated as “the”
operating system for WSN. Other operating systems such as
SOS[2], Contiki[3], MANTIS[4], and t-kernel[5] have challenged
the success of TinyOS and provide incremental, or even alternative
solutions for many practical issues still being debated in the related
communities.

Writing an operating system for micro sensor platforms poses
several unprecedented problems. First, the OS implementation
should consider microcontrollers which typically provide very
limited processing power, memory and battery life-time. The event-
driven paradigm for sensor OS is especially favored for the
resource-constrained environment, and we have seen the
proliferation of TinyOS or SOS in this context. Second, the
application programming model should be seriously considered to
provide an easy and convenient programming interface to
application developers, without needing to be aware of underlying
operating system principles. The event-driven operating systems, for
example, enforce programmers to structure and program an
application as a state machine in terms of tasks and event handlers.
Understanding this concept is an easy task for experts, but
conventional programmers who are accustomed to a process model
of programming may find the concept hard to grasp. Third, a micro
sensor node usually does not have memory management unit
(MMU) hardware. The MMU-less hardware imposes severe
restrictions in implementing protected mode of OS operations. Any
malicious or erroneous application program can easily disrupt other
applications or even crash the kernel, because of the lack of memory
protection by hardware. To provide robustness at the OS level, an
effective mechanism should be devised, preferably by software.
Fourth, the limited memory of only a few kilobytes in a sensor node
necessitates the minimal implementation of sensor OS by reducing
kernel functionality However, a wide variety of sensor applications
are found in practice, and they may require different OS support,
depending on the nature of the application, which is sometimes
exclusive to the application. The sensor OS surely cannot provide
all the functionality required by many applications at one time. The
OS should therefore have a mechanism to reconfigure the kernel
appropriately upon the application’s request. Fifth, the networking
architecture in WSN is differentiated from traditional IP-based
networks in many ways. A typical sensor network application
requires data-centric [6], rather than address-based, networking
support, based on energy-efficient implementation of network and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’07, April 25-27, 2007, Cambridge, Massachusetts, U.S.A.
Copyright 2007 ACM 978-1-59593-638-7/07/0004...$5.00.

link layer protocols, over performance-constrained RF hardware.
The conventional layering architecture for an IP network, for
instance, is considered heavy-weight and unsuitable for WSN
applications. A sensor OS should therefore provide a specifically-
designed network abstraction to application programmer, and the
kernel should provide an optimal implementation.

In this paper, we describe a sensor network operating system,
RETOS, which has been developed to cover the various issues
discussed above. Knowing that there are already a few sensor OS,
some of which are mature and some which are still in the
development stage, we have had specific goals to develop yet
another OS for WSN. Our primary objective is to develop a robust,
reconfigurable, and resource-efficient multithreaded operating
system for off-the-shelf micro sensor nodes. The overall concept is
illustrated in Figure 1. Although the event-driven approach is
commonly adopted for sensor OS mainly due to its efficient
implementation in a resource-constrained hardware environment,
application developers manage the states of tasks and events
explicitly, via program split process. We believe that, in order for a
sensor network to become more popular in real world applications,
the programming model should be more user-friendly and perhaps
the well-understood multithreading approach could be an alternative
solution, as far as its efficient implementation is guaranteed. We
describe our solution for this issue. Another important fact regarding
most of the currently available sensor OS is that the robustness issue
on kernel and application use is barely considered in the
implementation, because of MMU-less hardware. We believe that a
sensor OS should guarantee a robust execution of both kernel and
application. RETOS provides a software solution for this issue.
Kernel optimization with adequate functionality is also an important
requirement of sensor OS. RETOS explicitly separates applications
from the kernel, hence an application is dynamically loaded into the
system, so does the kernel module. RETOS achieves the kernel
reconfigurability via a loadable module framework.

RETOS is fully functional as a kernel, and a set of real applications
has been developed to evaluate the system. RETOS is initially
implemented on the TI’s MSP430-based motes such as Tmote Sky
[7]. Presently the operating system supports ATmega128-based
MicaZ [8], and even the latest CC2430 [9] SoC processor from
Chipcon. As far as we are aware, RETOS is the first sensor OS
which runs on this variety of microcontrollers.

The next three sections discuss the key principles of RETOS and
their implementation techniques, from the viewpoint of system
resiliency, multithreading support, and kernel reconfigurability.
Section 5 and 6, then, describe the network abstraction provided by
RETOS, and the network monitoring effort accompanied by the
operating system, respectively. Some of the implementation issues
on various hardware are discussed in Section 7. Overall evaluation
of RETOS, rather than detailed analysis of the individual OS
component, is given in Section 8 with three real-world WSN
applications. We conclude the paper with related work and closing
comments in Section 9 and Section 10. Note that details on from
Section 2 to Section 6 are covered in our previous work. This paper
reorganizes and highlights the key concept of RETOS from the
overall system point of view.

Hardware (MCU control register, I2C, SPI, ADC, …)

Code (Flash Rom) Data (RAM)

Kernel area

User area

Event-boosting
Thread

Scheduler

Variable
Timer

Modules

Module Manager
Dependency checker

Common Libraries

Networking Support Layer
Logical link table (LLT)

Data delivery queue

MAC Protocol
Kernel Data

Single Kernel
Stack

Module Data

Thread Data & Stack

Dynamic Networking Layer
Protocol

C Protocol
E

Protocol
A

Protocol
B

Protocol
D

Static / Dynamic
Code Checking

Figure 1. RETOS architecture

2. SYSTEM RESILIENCY
The primary objective of a robust and resilient operating system is
to enable a sensor node to run efficiently, safe from errant
applications without extra hardware support. The kernel should be
able to detect harmful attempts by applications on system safety,
and terminate them appropriately. The microcontroller used for a
sensor node typically has a single address space due to the MMU-
less hardware, hence the kernel and applications exist in the same
address space. The operating system mechanism for error-free
wireless sensor networks should therefore operate with software
assistance.

RETOS ensures system resilience with two techniques: dual mode
operation and application code checking [10]. Dual mode operation
logically separates the kernel and the user execution area.
Application code checking evaluates the validity of compiled code
via static analysis, and run-time behavior of application code via
dynamic check.

2.1 Dual Mode Operation
In RETOS, dual mode operation is implemented by stack switching.
Applications in the user mode use the user stack, and the stack is
changed to the kernel stack upon system calls and interrupts
handling. Dual mode operation may incur memory overhead on
resource-constraint sensor nodes due to the per-thread kernel stack.
To save memory usage, RETOS maintains a single kernel stack in
the system. Thread switching is performed right before returning to
user mode, that is, the time when all work pushed on the
kernel stack is finished. Although the single kernel stack is unable to
preempt threads in the kernel mode, it enables memory efficient
implementation of dual mode operation.

Unlike dual mode operation on general-purpose operating systems,
RETOS should implement it without hardware supports, because
microcontrollers such as MSP430, ATmega128, and CC2430 do not
have a privileged mode of operation. Upon an invoked interrupt, the
microcontroller saves the status registers in the current stack and
calls the corresponding interrupt handler. The handler function
saves the current stack pointer in the TCB (Thread Control Block)
and switches to the kernel stack, if the system was in the user mode.
In the real implementation, some registers might be saved in the

user stack, due to stack switching, thereby leaving them modified by
other threads. RETOS stores the registers within the TCB and
restores them before returning to the user mode. The system call is
implemented by a function call, so the return address remains in the
user stack. RETOS also stores the return address in TCB and
validates it.

2.2 Application Code Checking
In order to compromise the lack of virtual memory functionality due
to the MMU-less microcontroller, RETOS provides a software
technique called application code checking which consists of static
and dynamic checks. Application code checking prevents user
applications from accessing memory outside of its legal boundary
and direct hardware manipulation. To achieve this goal, the
technique inspects the destination field of machine instructions. The
source field of instructions can also be examined to prevent the
application from reading kernel or other applications data. Static
code checking verifies direct or immediate addressing instructions,
pc-relative jumps and eint/dint during the compile time. Dynamic
code checking verifies the correct usage of indirect addressing
instructions in runtime. Dynamic checking is also required for the
ret instruction as the return address can be affected by buffer
overrun.

Figure 2 shows the sequence of constructing trusted application
code. Applications loaded on the system are allowed to store data
and to execute codes in their own resources. Every source code of
the application is compiled to assembly code; then checking code is
inserted to the place where dynamic code checking is required.
After dynamic code insertion, a binary image is created via
compiling and linking, and the static code checking is then
conducted on the binary. Application errors that are not detected at
the compile time are reported to the kernel. When the errors are
reported, the kernel informs users of the illegal instruction address
and safely terminates the program.

Figure 2. Generating trusted code

3. MULTITHREADING SYSTEM
In contrast to an event-driven operating system, multithreading
inherently provides high concurrency with preemption and blocking
I/Os characteristics of the underlying system. The application
programmers may concentrate on the semantics of the problem at
hand; not worrying about the optimal execution of their programs,
via explicit concurrency control, as in the event-driven
programming environment. Although the multithreading approach is
attractive in sensor application developments, its efficient
implementation is vital, especially in resource-constrained sensor
node environment. Multithreading requires a per-thread stack, and
context switching between them via scheduling principle. Hence,
memory usage, energy consumption, and scheduling efficiency
should be carefully considered to achieve optimal implementation.

Current thread-based sensor operating systems [3, 4] do not provide
specific solutions for this issue. This has motivated us to develop
multithreading techniques specifically designed for micro sensor
nodes

RETOS provides a few optimization techniques for the efficient
implementation of multithreading on sensor node [11]. To cover the
issues on memory resource, energy consumption, and thread
scheduling policy, RETOS implements single kernel stack and
stack-size analysis, variable timer, and event-boosting thread
scheduler, respectively.

3.1 Minimizing Memory Usage
To reduce the memory usage for the kernel, RETOS provides two
techniques: single kernel stack and stack-size analysis. Single kernel
stack reduces the size of thread stack requirement, and stack-size
analysis assigns an appropriate stack size to each thread
automatically.

Multithread systems require stack reservation for each thread. The
amount of the required stack of a thread is the sum of the resource
required by thread functions, system calls, interrupt handlers and
hardware context saving. RETOS implements single kernel stack
management for data memory efficiency. The mechanism separates
the thread stack into kernel and user stacks, and maintains a unitary
kernel stack to reduce the thread stack. In the single kernel stack
system, the kernel stack is shared among every thread. Controlled
access to the kernel stack is implemented in such a way that the
system does not arbitrarily interleave execution flow, including
thread preemption, while in the kernel mode. Thread switching
could be performed immediately prior to returning to user mode and
executing an idle function. With thread preemption, hardware
contexts are saved in each thread’s thread control block due to
kernel stack sharing.

With MMU-less hardware, application developers should estimate
accurate thread stack size to reduce the memory usage. A stack size
that is less than required by the thread causes stack overflow and
easily crashes a system. Assigning a large stack would cause
memory wastage. RETOS implements a stack-size analysis to
provide minimal and system-safe stack for each thread,
automatically. The analysis mechanism produces a control flow
graph of an application. A function label, start address and internal
stack usage are used as nodes in the graph, and branch instructions
are used as edges. The maximum possible thread stack size is then
calculated with a depth-first search. The operations are conducted
on a binary image which is the result of linking application and
system codes.

3.2 Reducing Energy Consumption with
Variable Timer
The multithreading model of computation generally creates energy
overhead due to timer management, context switching, and
scheduling operation. Context switching and scheduling are known
to be the source of major overhead in threaded systems. However,
the frequency of scheduling in the threaded system is lower than
that of passing messages between handlers in the event-driven
system [12], and the context saving and restoring overhead is only a
moderate issue in common sensor nodes [4].

In general-purpose threaded systems, the timer management relies
on a periodic timer interrupt. This continuously triggers the interrupt

handler regardless of the timer handler request, and increases energy
consumption of the sensor node which stays idle most of the time.
Also, the periodic timer interrupt restricts the time accuracy within
the timer interval. Instead of the periodic timer, the system may use
a variable-time tick rate by way of reprogramming the tick rate with
an upcoming timeout request. RETOS implements a variable timer
technique to minimize the energy consumption of the
multithreading system. The system timer manages timer requests
from threads and updates the remaining time quantum of currently
running threads. The variable timer reprograms the timer interrupt
interval to the earliest upcoming timeout among the time quantum
of currently running thread and the timer requests, such as the
sleep() system-call.

3.3 Event-aware Thread Scheduling
RETOS supports the POSIX 1003.1b real-time scheduling interface
to enable both programmers’ explicit priority assignment and
kernel’s dynamic priority management. Threads are scheduled by
three policies, SCHED_RR, SCHED_FIFO, and SCHED_OTHER
[13].

SCHED_OTHER, the default scheduling policy, is specifically
designed to satisfy threads used in sensor network applications with
fast response time. To meet the requirement, RETOS implements an
event-aware thread scheduling to increase the event response time
of threads. The scheduler directly boosts the priority of the thread
requesting to handle a specific event. Events in the sensor network
applications are defined as the expiration of the timer request, the
reception of a packet, and the completion of sensing. A thread issues
a blocking system-call to handle one of these events, and the kernel
enhances the thread’s priority according to the type of system-call.
When an event occurs, the priority-boosted thread will be able to
swiftly preempt other threads. The priority of the thread reduces
with the CPU time, hence other threads would have chances to be
scheduled.

4. LOADABLE KERNEL MODULE
Due to the limited resources of sensor node hardware, a sensor OS
can not provide all the functionality required by various types of
applications at one time. Hence, a modular approach is necessary in
designing the kernel. RETOS provides a mechanism to support the
diverse kernel functionality that is needed only by the application at
hand, enhancing kernel reconfigurability [14]. The self-
reconfiguration is achieved by selecting the appropriate kernel
components in the operating system without modifying the
application.

4.1 Module Relocation and Linking
RETOS unloads unnecessary kernel modules and only maintains
modules that are currently required by the applications. RETOS
supports dynamic application loading and each application may
require different modules. To maintain an optimized system, the
kernel should always keep a minimal configuration by removing
unused modules and acquiring newly-required modules, following
the changes in application running.

Module implementation requires dynamic memory relocation and
linking, which is not well supported by MMU-less hardware. To
support a variety of microcontrollers, RETOS relies on a memory
relocation mechanism, rather than a PIC (position independent
code) approach. The relocation mechanism compiles the source

code and extracts the relocation information of global variables and
functions. The RETOS kernel acquires the compiled module with
meta-information and performs code relocation. Figure 3 shows an
overview of the relocation mechanism. Compiled code is stored in a
RETOS file format which consists of a generic portion and a
hardware-dependant section. The microcontrollers that RETOS
currently supports have different addressing features, such as
relocation type and relative memory-accessing instructions. Hence,
we require hardware-specific information in this format to aid the
relocation process for the corresponding hardware. The kernel
replaces every accessible address from the code while looking up
the relocation information. Since the RETOS file format has a
flexible structure, any relocation mechanism in new hardware can
easily be supported.

Figure 3. RETOS relocation mechanism

4.2 Module Communication
RETOS maintains a function table that allows modules and
applications to access other module’s functions. The table manages
the function information of modules, such as function entry points,
ownership, parameters and return types, which are accessible by
other modules or applications. The module registers, un-registers
and accesses the functions through the table. The kernel and kernel
modules are dynamically linked at run time and work as a single
image. An application accesses the module’s function through a
system call which references the function table and invokes the
required functions. The invoked system call performs a mode switch
and validates the corresponding function. This provides protection
for the kernel and kernel modules from an application’s illegal
memory access.

5. NETWORKING ABSTRACTION
Existing networking protocols for WSN usually adopt a cross-
layering architecture; hence, an application developer sometimes
takes the responsibility of developing MAC and routing protocols.
This is caused by improper layering architecture in the conventional
system, especially a lack of distinct layers for developing network
protocols.

RETOS implements a layering architecture that provides a distinct
and independent programming environment to different class of
WSN developers: i.e., kernel developers, network developers, and
application developers [15]. Kernel developers take responsibility
for implementing core parts of operating systems so that the kernel
fully utilizes the hardware. Network developers implement various
networking algorithms, and using those networking algorithms
application developers program the required functions. To support

this abstraction the RETOS kernel provides an appropriate protocol
architecture which allows minimal modification to other layers and
maximum functionality of network modules.

5.1 Overview
The RETOS network architecture provides an easy programming
interface for application developers, and also enables an efficient
implementation of networking functionality on a resource
constrained hardware environment. The network stack consists of
both static and dynamic parts. The networking functionality in the
static kernel is to transmit data packets to neighbors and maintain
network connectivity via neighborhood management. The static part
is performance-critical, hence the implementation should be
optimized at the device driver level by the kernel developer. The
dynamic part of the kernel, which is normally implemented as
loadable modules, implements application-dependent networking
algorithms. Various kinds of routing or transport protocols can be
implemented as part of the dynamic kernel.

Figure 4 shows the layered architecture of the RETOS network
stack. The static kernel contains MLL and NSL. The bottom layer
MLL (MAC and Data Link Layer), which controls the network
devices, manages the physical connection and transmits data
packets. The NSL (Networking Support Layer) supports logical
connections, managing neighboring nodes and data transmission.
The DNL (Dynamic Network Layer), which belongs to the dynamic
part of the kernel, enables implementing network protocol
algorithms and provides user API for easy development. In the
RETOS network architecture, three classes of developers can
implement layer-specific programs, without interfering in others,
and the usage of modularization of the operating system becomes
maximized. In particular, the RETOS loadable kernel module makes
efficient network architecture possible. The following section
describes NSL and DNL in detail.

5.2 Network Support Layer (NSL) and
Dynamic Network Layer (DNL)
The NSL maintains the information of neighboring nodes and
provides an interface to the DNL. The NSL consists of the Logical
Link Table, Data Delivery Queue, and NSL API. The Table
Manager maintains the Logical Link Table which contains the
information of neighboring nodes, such as node ID, geographical
position, RSSI, LQI, battery level, packet delivery ratio, packet
delivery time and so on. The information collecting interval in the
NSL is set periodic by network protocol developers.

In the DNL, packet routing or transport algorithms are implemented
in the form of reconfigurable kernel modules. Various kinds of
existing protocols can be implemented in this layer as dynamic
modules. DNL modules implement core network algorithms, based
on the information of neighboring nodes, network status
information, and data transmission provided by the NSL API.

With the modularized protocols, the RETOS application developers
build diverse networking applications by just selecting an
appropriate protocol, without detailed knowledge on its
implementation. To further support network transparency, RETOS
provides a DNL API for application programmers, as listed below.

We have considered a variety of send operations in order to support
common communication patterns found in typical WSN
applications.

set_network(): select routing module
send_sink(): send to designated sink node
send_nbr(): broadcast only to neighbors
send_net(): broadcast to entire network
recv(): receive data

6. NETWORK MANAGEMENT TOOL
For any reasonable WSN programming environment, a certain form
of network management tool is necessary to provide the developer
with the current status of the overall network accurately and
efficiently. The developer should be informed about any significant
problems that need to be dealt with, such as reconfiguring the
network parameters or manually relocating nodes that are not able
to communicate with the network for some reason.

RETOS is accompanied by a network management system, called
RMTool [16], to support component wise network management and
monitoring of real sensor networks. RMTool assures a user of the
network’s functionality and gives the developer control over the
network while running user applications over it. From the
application developer’s point of view, RMTool can be used as an
overall view of the applications’ behavior in the network, while the
network health is concurrently monitored. RMTool is designed to
run concurrently with other sensor network applications. As the tool
should not require excessive resources over local applications,
RMTool has specifically been designed to consume minimal system
resources while providing a simple and robust mechanism.

7. RETOS IMPLEMENTATION
RETOS is initially implemented on the TI’s MSP430-based mote,
(Tmote Sky[7] and H-mote). The current version supports
ATmega128 (Crossbow’s MicaZ) and the CC2430 [9] SoC
processor from Chipcon. Figure 5 shows the H-mote family of
hardware developed in our laboratory.

D
yn

am
ic

N

et
w

or
ki

ng
 L

ay
er

A
pp

lic
at

io
ns

N
et

w
or

ki
ng

 S
up

po
rt

La

ye
r

M
A

C
 &

 D
at

a
Li

nk
 L

ay
er

N
et

w
or

k
P

ro
gr

am
m

er
A

pp
lic

at
io

ns

P
ro

gr
am

m
er

K
er

ne
l P

ro
gr

am
m

er

Figure 4. RETOS network architecture

(a) MSP430 H-mote (b) Sensor board (c) CC2430 H-mote

Figure 5. H-mote family of sensor nodes

One of the main objectives of RETOS is to support various types of
microcontrollers. The RETOS kernel should, therefore, provide the
same kernel operations on different hardware. To provide a portable
kernel structure across different platforms, we have separated the
architecture-independent part of the kernel from the hardware-
specific part. The functionality and policies of the kernel are
commonly defined in the architecture-independent part, whereas
their actual implementations are optimized in the hardware-specific
part depending on the individual hardware.

This section briefly explains some of the implementation issues we
came across during the course of RETOS porting on different
microcontrollers. The technical difficulties are mainly due to the
different memory layouts, code relocation, and power management
scheme of the target hardware. In particular, the memory layout and
relocation mechanism provided by microcontrollers are widely
different, hence we have designed an architecture-independent
executable file format for the RETOS application, with which the
actual code/data relocation is conducted in binary load stage. The
detailed relocation mechanism is implemented architecture-
dependent way. Figure 6 shows the overview of RETOS code
layout on various architectures. The power management mechanism
also varies with the microcontrollers. In RETOS, basic power
management is conducted in an architecture-independent part,
whereas the detailed power control is specifically carried out by the
underlying processor.

Table 1 shows the code size comparison of fully-equipped RETOS
kernel v1.0 and TinyOS v1.1.15, where various sensor drivers as
well as network module are included. The case of minimal
configuration of TinyOS without any sensor drivers or network
module is also given in the table for the reference.

7.1 TI MSP430
Different from the AVR or CC2430 memory layout, MSP430
enables the access to the entire flash area without memory bank or
page selection. Hence, the kernel code section is implemented as it
is in the RETOS code image layout, as illustrated in Figure 6. The
compiled kernel image is stored in the starting address of flash. The
remaining flash area is used for application loading or dynamic
kernel module. In the case of MSP430 F1611 which has 48KB of
flash memory, approximately 24KB of flash can be used by
application or run-time modules.

The relocation mechanism of MSP430 can optimally be
implemented by using a single-bit of information allocated for each
word. In MSP430, knowing the start addresses of code and data
sections, the relocation is made possible by checking the address
range of the operands in an instruction if it is a code or data. Any
instruction with the single-bit set is relocated. The bit-based
relocation mechanism in MSP430 has a storage overhead of 1/16 of
the code size.

MSP430 provides five levels of power operating modes: LPM0 to
LPM4. For idle running, RETOS runs in LPM1 which halts the
processor operation and the system clock. Also, depending on which
sensor uses the digitally-controlled oscillator, the processor runs in
LPM3 to further reduce the energy consumption.

Code Image Layout

Kernel Code

MSP430 F1611

0x4000

0xFFE0

Application

Kernel Module

CC2430

Kernel Code

AVR ATmega128

Applications
and

Kernel Modules

Kernel Code
(Except File
Manager)BOOTSZ=00

0x0000

Kernel Code

File Manager
(Boot Loader

Section)BOOTSZ=00
0xF000

Applications
and

Kernel Modules
Applications

and
Kernel Modules

BANK 0

BANK 1

BANK 2

BANK 3

Figure 6. RETOS code layout on various architecture

Table 1. Code size comparison

 MSP430 AVR CC2430
 ROM RAM ROM RAM ROM RAM

RETOS v1.0 20394 945 24252 1125 27321 724
TinyOS v1.1.15 20924 798 17160 792 N/A
TinyOS (Min.) 11286 311 9500 332 N/A

7.2 Atmel ATmega128
ATmega128 addresses the SRAM area and the 128KB of internal
flash separately. Also, the internal flash is divided into a boot flash
section and an application flash section. Any operation for data read
or write on internal flash should be executed in the boot flash
section starting from $0xf000, hence a part of the RETOS kernel
resides in the boot area while the rest is loaded into the application
flash area. The application loading on ATmega128 can be easily
implemented with the PIC approach, but the mechanism has a
limitation when addressing large amount of code, and more
importantly, many microcontrollers do not support this mechanism.
RETOS implements the address relocation mechanism, instead.
Since ATmega128 is an 8-bit microcontroller with a 16-bit
addressing mode, the relocation mechanism is complex, compared
to the case of MSP430. ATmega128 has 19 different types of
relocation, depending on the instruction type as well as the
addressing range of the operand. The relocation information field in
the executable file format in Figure 3 enables the relocation of
individual applications. For each relocating instruction, five bytes
are used for the field: two bytes for instruction offset, one byte for
relocation type, and another two bytes for address.

Six low-power modes are provided by ATmeg128. RETOS makes
use only of the “standby” mode when the processor becomes idle,
but more sophisticated power management is currently under
development.

7.3 Chipcon CC2430
CC2430 is the latest SoC microcontroller from Chipcon, which
integrates the 8051-based processor core running at 32MHz and the
IEEE 802.15.4-compatible RF module. Due to its small form factor
and high performance, CC2430 is considered a useful building
block for WSN hardware platforms. Out of 128Kbytes of flash

memory available in CC2430, only 55KB can be used for program
memory, where the bottom 32KB should be used for the boot and
kernel codes, and the remaining 23KB are used for application and
libraries. No relocation is required for the bottom 32KB, but the
upper 23KB needs extra operations, due to the different flash bank,
and the codes are mapped to XDATA space and the relocation is
conducted appropriately. The network performance of RETOS is
enhanced by using the RADIO DMA trigger, which enables
efficient and power-aware data processing by not waking up the
processor. The MAC timer provided by CC2430 also aids the
efficient execution of the CSMA/CA protocol.

CC2430 provides four levels of power operating mode: PM0 to
PM3. PM0 is a full-functioning mode, PM1 and PM2 the low-power
modes, and PM3 the lowest power mode without running the clock.
Based on the variable-timer operation, RETOS makes use of PM1
and PM2 modes aggressively, depending on the current hardware
usage on sensor I/O or network I/O. While operating in PM1 or
PM2 modes, the sleep timer, which runs on a 32.768KHz oscillator,
is used to support interrupt handling and to maintain the system
timer.

8. EVALUATION
Evaluating an operating system is not an easy task, and requires a
manifold and sophisticated methodology. Each OS component, as
well as their integrated operations, can be analyzed separately, or
evaluated comparatively with other operating systems. We have
previously evaluated the performance of RETOS [10,11,14,15,16],
along with various design issues, and interested readers may find the
quantitative results published in our earlier work useful. In this
paper, we evaluate RETOS from the perspective of overall system
operation, rather than individual component-wide characteristics,
while running some of the real-world WSN applications. We
demonstrate how the design principles of RETOS work with real
applications.

Three applications are used for the evaluation. First, a multiple-
object tracking system (MPT) is implemented with RETOS in an
indoor environment, based on ultrasonic sensor devices. MPT is a
good example of evaluating the efficiency of thread-based
programming. Second, we have implemented a large-scale node
localization mechanism using mobile acoustic sources (ASL), based
on inexpensive MICs, in RETOS. With this application, the
concurrency feature of RETOS is evaluated, together with the
usefulness of the network management tool. Finally, a distributed
acoustic source detection system (DSLS) is implemented with
RETOS. The system enables the evaluation of effectiveness of
RETOS modules and network architectures. Table 2 shows the code
size analysis of the RETOS applications running on MSP430,
compared to TinyOS.

8.1 Multiple Object Tracking
Ultrasound-based object tracking is a common indoor WSN
application, due to its low-cost ad high-accuracy advantages. In our
previous work [17], we developed an active tracking system for
multiple moving objects (MPT) in a TinyOS environment. Our
hardware platform is compatible to the Telos mote, but equipped
with an ultrasonic sensor module that detects 40KHz ultrasonic
pulses. With the availability of RETOS, we have ported MPT to the
same hardware. This section describes the implementation and
evaluation of the system.

MPT consists of mobile nodes and backbone nodes. The mobile
nodes periodically send synchronized radio signals and ultrasound
pulses. Upon receiving a radio signal, the backbone node measures
the arrival time difference between the radio signal and the
ultrasound pulse, calculates the distance, then sends it back to the
mobile node. With three pieces of distance information calculated
from backbone nodes, the mobile node estimates its location in the
2D plane coordinate by a trilateration algorithm. This process is
continued in every beaconing period of the mobile nodes, enabling
the tracking of mobile nodes. To solve multiple mobile nodes
transmitting the beacon signals in an overlapped fashion, an
adaptive beaconing algorithm is implemented, with which mobile
nodes overhear the beacon messages of other mobile nodes and
adaptively adjust their beaconing periods to avoid a simultaneous
ultrasound pulse.

Compared to the TinyOS implementation of MPT, a simple and
intuitive implementation was possible with RETOS. Figure 7, for
example, outlines the program structures, written in TinyOS and
RETOS, running on the MPT backbone node. The control flow is
straightforward, but the TinyOS implementation requires a careful
split of tasks and proper sequencing of the event handlers. With
RETOS, an application programmer can implement the code
sequentially in a single thread. A set of API functions for the sensor
device, provided by RETOS, also eases the implementation effort.

Apart from the programming convenience of RETOS, we now
discuss the efficiency of the threaded system. The MPT mobile
node executes trilateration after receiving distance information from
three beacon nodes. The trilateration is a CPU-bound job and takes
approximately 16ms on MSP430. Each beaconing should be
sufficiently separated by Twait, as the backbone node needs
processing time. Figure 8 compares the execution model of the
mobile node for TinyOS and RETOS. With TinyOS, the node
cannot handle events during the trilateration, nor overhear the
beacon messages from other mobile nodes. With RETOS, however,
a thread is created only for trilateration, hence the main thread can
concurrently handle the beacon messages. Our experiments show
that the MPT system running on MSP430-based motes with TinyOS
handles four mobile nodes at most with 300ms of beacon period. By
reducing the beaconing period by 16ms, RETOS enables a smoother
operation of object tracking, or alternatively, RETOS can support up
to five mobile nodes with the original beacon period.

Table 2. Code size for applications (MSP430)
ROM/RAM TinyOS RETOS

MPT Total kernel apps routing*† - -

mobile 20680
/ 677

20394
/ 945

9912
/ 468 N/A - -

backbone 20200
/ 1170

20394
/ 945

976
/ 166

2358
/ 356 - -

ASL Total kernel time sync ASL RM tool -
 26674

/ 994
20394
/ 945

2666
/ 224

8490
/ 368

2278
/ 146 -

DSLS Total kernel time sync* DSLS RM tool* routing*†

 30358
/ 1636

20394
/ 945

2598
/ 240

11220
/ 180

2298
/ 146

2358
/ 356

* kernel module implementation † parametric routing [21]

While(1) {
 us_radio_recv()
 Distance calc.
 radioSend()

 //back to the mobilenode

}Calculate Distance
RadioSend()
//back to the mobilenode

Save time differenceUS.StartDetector()

TinyOS RETOS

RadioReceiveCoord.
startSymbol() US.pulseDetected()

Timer.fired()

Timer.start()

US.DetectorTimeout()

Main

Figure 7. Program structures of MPT backbone

RETOS

TinyOS

Send Beacon & Receive Reply

Twait
Trilateration

Thread 1

Thread 2

300ms

284ms

Figure 8. Execution model for MPT mobile

8.2 Localization using Mobile Acoustic Events
Sensor node localization is a fundamental requirement for large-
scale and practical use of WSN applications. We previously
developed a large-scale localization system (ASL) using mobile
acoustic sources, and implemented it in a TinyOS environment [18].
We have recently ported ASL with RETOS.

ASL consists of two types of nodes: Sound generator (SG) and
Sound Detector (SD). SG generates an acoustic event, while the
same event will be detected by SDs. With the time synchronization
among all nodes, an acoustic event generated near a SG node is first
detected by its own microphone sensor. The time of detection at the
sensor is used as the time of event generation, and is sent to all SD
nodes. SD nodes will eventually detect the acoustic event, confirm
the time of event generation with data sent by the SG node, and
store the time difference and beacon coordinates within a specific
range of acoustic events. Repeating this process, the SD nodes
continue to collect acoustic event coordinates. With three
coordinates gathered, all SD nodes use the distance data and beacon
coordinates to independently localize its own position using
trilateration.

To run the application we need a global time synchronization
module running on each node. We have implemented FTSP [19] as
a multithreaded application on RETOS. The network management
tool RMTool mentioned in Section 6 is also running on the node, as
an application, to monitor the progress of node localization as well
as the network status. Overall, the SD node has three applications
running seven threads concurrently (2 for ASL, 2 for FTSP, and 3
for RMTool). Figure 9 illustrates the program structures of ASL in
RETOS and TinyOS environment. The experiment results, with five
MSP430-based motes deployed in outdoor environment, showed
that three separate applications run accurately and efficiently in the
RETOS environment, and the overall ASL performance is as good
as in our TinyOS implementation. Figure 10 (a) and (b) show the
execution of ASL, where 3 SG nodes and 7 SD nodes are deployed.
After localization, the sensor nodes are displayed on the estimated
positions.

With this experiment, we purposely pushed the capability of the
RETOS execution environment, in terms of resource usage and
performance, by running three non-trivial applications at the same
time. We are quite satisfied with the overall performance of the
system. Although ASL, FTSP and RMTool were run as
“applications” in this setup, these are in fact core components of the
WSN operating environment. Hence, modularizing them as kernel
modules is an alternative approach to optimize the kernel, because
each component can be selectively loaded in the system depending
on the application at hand.

(a) RETOS (b) TinyOS

Figure 9. ASL implementation on RETOS and TinyOS

(a) Before localization (b) After localization

Figure 10. Screenshots of RMTool for ASL

8.3 Acoustic Source Detection
Acoustic source localization, which automatically detects the
location of a sound source is a good example of WSN and the
technique can be applied to many real-world applications.
Previously, we developed a distributed, low-complexity, range-free,
and error-tolerant acoustic source localization system (DSLS) in the
TinyOS environment [20]. We have recently ported DSLS with
RETOS, and this section details the implementation.

Upon an acoustic event in DSLS, a group, which is a unit of
acoustic source localization, is constructed on the fly with all the
listening nodes of the event. By comparing the listening times of all
nodes in the group, a leader is selected as being the closest to the
acoustic source. A voting grid is then constructed in the leader node.
The voting grid is a two-dimensional array of fields which is used to
estimate the location of the acoustic source. Every node in the group
votes for the possible location of the acoustic event separately, and
the voting results are collected in the leader node to finalize the
location.

In the RETOS implementation of DSLS, we were particularly
interested in the usage of DNL API provided by the RETOS
network stack. Evaluating the usage and practicality of the RETOS
module was another goal of this experiment. A RETOS programmer

is provided with several communication primitives. In the case of
DSLS, the send_nbr() function is effectively used to elect a leader
and to exchange the voting results in a single-hop neighbor group.
The final result is delivered to the multi-hop away sink using the
send_sink() primitive, which is implemented by a specific routing
algorithm as a loadable kernel module in RETOS. For DSLS, we
implemented the parametric routing [21] as a kernel module. The
parametric routing considers energy, reliability, and timeliness
issues together in a single framework to select an appropriate next-
hop node upon user’s performance preference.

In addition to the routing module, we re-implemented FTSP and
RMTool as kernel modules for the use with DSLS in order to
evaluate the feasibility of running core WSN elements as loadable
module in RETOS. For the experiment, ten MSP430-based motes
with MICs were deployed in 20m*20m outdoor to detect sound
sources such as hand clapping or wood sticks being struck together.
The overall system was working as correct as in the TinyOS
environment and the location error was less than 1 meter for most of
the cases. The loadable module of RETOS has proven useful and
practical in a way that we can dynamically optimize the kernel
configuration.

9. RELATED WORK
Current operating systems for WSN include TinyOS [1], SOS [2],
Contiki [3], MANTIS [4], and t-kernel [5]. They are broadly
classified into two programming models: event-driven and
multithreading. TinyOS [1] is based on the event-driven model and
nesC [22] is used to program the application and system software.
TinyOS produces a single code image where the kernel and
application are statically linked. This feature enables compile-time
optimization with a function inlining. However, the overhead for
updating the entire kernel code is not trivial. In TinyOS, the kernel
is not protected from the application, hence a badly-written
application may cause the system to fail. A watchdog timer can be
used for this purpose, but recognizing and handling the application
errors are not easy. So far, TinyOS has been implemented on AVR
and MSP430 family of microcontrollers. Based on event-driven
model, SOS [2] provides dynamically loadable modules. The
modular approach, which separates the application from the system,
enables the easy modification of the functions for the applications’
needs. Recently, Kumar et al. [23] implemented software-based
fault isolation [24] on SOS, although the technique only protects the
kernel data memory.
Contiki [3], which is also an event-driven system, has implemented
loadable modules using relocation and CELF [25]. The PIC
technique, used by SOS, is not applicable to many microcontrollers,
but Contiki somehow overcomes the portability issues of loadable
modules. The Contiki system does not provide a safety mechanism
for abnormal behavior of the kernel or application. TinyOS, SOS,
and Contiki all adopt the event-driven model to minimize the
overhead of multithreading. With event-based systems, however,
programmers must split long-lived tasks into several phases of codes
for concurrency, and construct explicit machine states manually.
Protothread [26] is proposed to use blocking functions on top of
event-driven systems without stack reservation; however the
mechanism is unable to maintain local variables and blocks only in
an explicitly declared area.
MANTIS [4] is probably the first sensor OS to support the
multithreaded programming environment. MANTIS showed that

programming long-running tasks is easier with multithreading than
with event-driven model. However, the current implementation has
some limitations. For example, the programmers heuristically assign
stack size to each thread and adjust a thread priority manually. The
MANTIS scheduler, based on fixed-interval timer interrupt, could
possibly delay response time for threads. The context switching and
timer interrupt handling in MANTIS is not optimized. MANTIS
produces a statically-linked single code image, hence
reprogramming cost is not trivial, as in TinyOS, and the kernel or
application may crash due to the lack of protection mechanism.
t-kernel [5] provides a software-based memory protection and
virtual memory via load-time code modification. The system
necessarily expands code size and incurs run-time overhead,
because every memory access or code branch requires address
transition or memory swapping. Gu et al. [5] briefly mentioned that
t-kernel provides preemptive scheduling, but the detailed execution
model is unclear in the literature.
Kernel supports for WSN networking have been studied in terms of
network abstraction. Ye [27] implemented WSN protocols in the
conventional MAC layer framework. Dunkels [28] made an effort to
implement the TCP/IP stack in 8-bit AVR MCU, Kumar [6]
suggested a data-centric network stack, and related network layering
for data fusion. SP (sensornet protocol) [29] has recently been
suggested as a translucent and unifying link abstraction for WSN.
Active development is also given to provide useful network
management tools for WSN. Among them are Mote-View[30],
SNMS [31], TinyCubus [32], and Sympathy [33]. These tools aid
the configuration, monitoring, and management of the deployed
sensor nodes.

10. CONCLUSIONS
Although active research and development is currently being
conducted in wireless sensor network communities, it is fair to say
that the practitioners in the field do not have many choices
regarding the operating system and related programming
development tools. From the very early days of WSN research, the
event-driven TinyOS has been considered the industry de-facto
operating system, due to its stability and efficiency; hence, the
software developers should understand the OS principle and
accordingly stick to its programming model for better outcomes.
Having experienced TinyOS ourselves, we have a different view on
the “right” form of WSN operating system. Our belief is that a
sensor OS should provide an easy programming interface, both for
WSN experts and general application programmers, by concealing
the underlying OS principles from users. In this context, we believe
that a multithreaded OS fits this criteria better. Our other motivation
is that a sensor OS should be robust and resilient in a sense that the
kernel or applications should not crash unexpectedly even on
MMU-less hardware. System extensibility based on a
reconfigurable kernel is also thought to be an essential OS feature,
as well as the provisioning of the WSN-specific networking
abstraction in the kernel. With this paper, we are not arguing that
RETOS is superior to existing sensor OS, but that an alternative
approach for sensor OS design is indeed feasible and practical, and
further enables a wider choice of sensor OS for application
developers or system programmers.

RETOS is not just an experimental OS for research purposes, but a
fully functional and extensively tested operating system with non-
trivial, real-life applications, as discussed in Section 8. We have

been using RETOS in undergraduate and graduate courses here in
Yonsei University as a teaching and research platform for the last
couple of semesters. The operating system is fairly stable at the
moment, although the performance is being tuned with added OS
functionality.

We are presently analyzing the performance characteristics of the
newly-ported RETOS on AVR-based MicaZ and CC2430-based H-
mote. The results will hopefully be published soon. Other efforts
include the development of the GUI-based RETOS programming
environment (IDE), remote debugging tool, and more RETOS
porting to other microcontrollers.

11. ACKNOWLEDGMENTS
This research was supported by the National Research Laboratory
(NRL) program of the Korean Science and Engineering Foundation
(No. M10500000059-06J0000-05910) and the MIC (Ministry of
Information and Communication)’s ITRC program (IITA-2006-
C1090-0603-0015).

12. REFERENCES
[1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, Kristofer Pister,

“System architecture directions for network sensors,” In Proc. of the 9th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Cambridge, MA,
November 2000.

[2] C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, M. Srivastava,
“SOS: A dynamic operating system for sensor networks,” In Proc. of the
Third International Conference on Mobile Systems, Applications, And
Services (Mobisys), Seattle, WA, June 2005.

[3] A. Dunkels, B. Grönvall, T. Voigt, “Contiki - a Lightweight and Flexible
Operating System for Tiny Networked Sensors,” In Proc. of the First
IEEE Workshop on Embedded Networked Sensors (EmNets), Tampa,
Florida, November 2004.

[4] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C.
Gruenwald, A. Torgerson, R. Han, “MANTIS OS: An Embedded
Multithreaded Operating System for Wireless Micro Sensor Platforms,”
ACM/Kluwer Mobile Networks & Applications, Special Issue on
Wireless Sensor Networks, vol. 10, no. 4, August 2005.

[5] L. Gu, J. A. Stankovic, “t-kernel: Providing Reliable OS Support to
Wireless Sensor Networks,” In Proc. of the 4th ACM Conference on
Embedded Networked Sensor Systems (Sensys), Boulder, Colorado,
2006.

[6] R. Kumar, S. PalChaudhuri, D. Johnson, U. Ramachandran, “Network
Stack Architecture for Future Sensors,” Rice University, Computer
Science, Technical Report, TR04-447.

[7] Tmote Sky, http://www.moteiv.com.
[8] MicaZ, http://www.xbow.com.
[9] CC2430, http://www.chipcon.com.
[10] H. Kim, H. Cha, “Towards a Resilient Operating System for Wireless

Sensor Networks”, In Proc. of the 2006 USENIX Annual Technical
Conference, Boston, Massachusetts, June 2006.

[11] H. Kim, H. Cha, “Multithreading Optimization Techniques for Sensor
Network Operating Systems,” In Proc. of the 4th European conference
on Wireless Sensor Networks (EWSN), Delft, Netherlands, January 2007.

[12] R. Behren, J. Condit, E. Brewer, “Why events are a bad idea (for high-
concurrency servers),” In Proc. of the 9th Workshop on Hot Topics in
Operating Systems (HotOS), Lihue, Hawaii, 2003.

[13] POSIX 1003.1B, http://www.unix.org/version3.
[14] H. Shin, H. Cha, “Supporting Application-Oriented Kernel Functionality

for Resource Constrained Wireless Sensor Nodes,” In Proc. of the 2nd
International Conference on Mobile Ad-hoc and Sensor Networks (MSN
2006), Hong Kong, China, December 2006.

[15] S. Choi, H. Cha, “Application-Centric Networking Framework for
Wireless Sensor Nodes,” In Proc. of the 3rd Annual International

Conference on Mobile and Ubiquitous Systems (MOBIQUITOUS), San
Jose, California, July 2006.

[16] I. Jung, H. Cha, “RMTool: Component-Based Network Management
System for Wireless Sensor Networks,” In Proc. of the 2007 IEEE
Consumer Communications and Networking Conference (CCNC), Las
Vegas, January 2007.

[17] S. Yi, H. Cha, “Active Tracking System using IEEE 802.15.4-based
Ultrasonic Sensor Devices,” In Proc. of the 2nd International Workshop
on RFID and Ubiquitous Sensor Networks (USN), Seoul, Korea, August
2006.

[18] Y. Lee, H. Cha, “A Light-weight and Scalable Localization Technique
Using Mobile Acoustic Source,” In Proc. of the 2006 IEEE
International Conference on Computer and Information Technology
(CIT 2006), Seoul, Korea, September 2006.

[19] M. Maróti, B. Kusy, G. Simon, A. Ledeczi, “The Flooding Time
Synchronization Protocol,” In Proc. of the 2nd ACM Conference on
Embedded Networked Sensor Systems, Baltimore, MD, 2004.

[20] Y. You, H. Cha, “Scalable and Low-Cost Acoustic Source Localization
for Wireless Sensor Networks,” In Proc. of the 3rd International
Conference on Ubiquitous Intelligence and Computing (UIC), Wuhan
and Three Gorges, China, September 2006.

[21] Y. Sung, H. Cha, “Parametric Routing for Wireless Sensor Networks,”
In Proc. of the 2006 International Symposium on Ubiquitous Computing
Systems (UCS), Seoul, Korea, October 2006.

[22] D. Gay, P. Levis, R. Behren, M. Welsh, E. Brewer, D. Culler, “The nesC
Language: A Holistic Approach to Network Embedded Systems,” In
Proc. of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI), San Diego, CA, June
2003.

[23] R. Kumar, E. Kohler, M. Srivastava, “Software-Based Memory
Protection In Sensor Nodes,” In Proc. of the Third Workshop on
Embedded Networked Sensors (EmNets), Cambridge, MA, 2006.

[24] R. Wahbe, S. Lucco, T. E. Anderson, S. L. Graham, “Software-based
fault isolation,” In Proc. of the 14th ACM Symposium on Operating
System Principles (SOSP), Asheville, NC, USA, December 1993.

[25] A. Dunkels, N. Finne, J. Eriksson, T. Voigt, “Run-time Dynamic
Linking for Reprogramming Wireless Sensor Networks,” In Proc. of the
4th ACM Conference on Embedded Networked Sensor Systems (Sensys),
Boulder, Colorado, November 2006.

[26] A. Dunkels, O. Schmidt, T. Voigt, “Protothreads: Simplifying Event-
Driven Programming of Memory-Constrained Embedded Systems,” In
Proc. of the 4th ACM Conference on Embedded Networked Sensor
Systems (Sensys), Boulder, Colorado, November 2006.

[27] W. Ye, J. Heidemann, D. Estrin, “A Flexible and Reliable Radio
Communication Stack on Motes,” USC/ISI Technical Report ISI-TR-
565.

[28] A. Dunkels, “Full TCP/IP for 8 Bit Architectures,” In Proc. of the 1st
ACM/Usenix International Conference on Mobile Systems, Applications
and Services (MobiSys), San Francisco, May 2003.

[29] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, I. Stoica, “A
Unifying Link Abstraction for Wireless Sensor Networks,” In Proc. of
the Third ACM Conference on Embedded Networked Sensor Systems
(SenSys), San Diego, November 2005.

[30] Mote-View, http://www.xbow.com.
[31] G. Tolle, D. Culler, “Design of an Application-Cooperative

Management System for Wireless Sensor Networks,” In Proc. of the 2nd
European Workshop on Wireless Sensor Networks (EWSN), Istanbul,
Turkey, January 2005.

[32] P. J. Marr´on, A. Lachenmann, D. Minder, J. Hähner, R. Sauter, K.
Rothermel, “TinyCubus: A Flexible and Adaptive Framework for
Sensor Networks,” In Proc. of the 2nd European Workshop on Wireless
Sensor Networks, Istanbul, Turkey, January 2005.

[33] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, D.
Estrin, ”Sympathy for the Sensor Network Debugger,” In Proc. of the
3rd international conference on Embedded networked sensor systems
(Sensys), San Diego, CA, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

