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ABSTRACT 
This paper presents the design principles, implementation, and 
evaluation of the RETOS operating system which is specifically 
developed for micro sensor nodes. RETOS has four distinct 
objectives, which are to provide (1) a multithreaded programming 
interface, (2) system resiliency, (3) kernel extensibility with 
dynamic reconfiguration, and (4) WSN-oriented network 
abstraction. RETOS is a multithreaded operating system, hence it 
provides the commonly used thread model of programming 
interface to developers. We have used various implementation 
techniques to optimize the performance and resource usage of 
multithreading. RETOS also provides software solutions to separate 
kernel from user applications, and supports their robust execution on 
MMU-less hardware. The RETOS kernel can be dynamically 
reconfigured, via loadable kernel framework, so a application-
optimized and resource-efficient kernel is constructed. Finally, the 
networking architecture in RETOS is designed with a layering 
concept to provide WSN-specific network abstraction. RETOS 
currently supports Atmel ATmega128, TI MSP430, and Chipcon 
CC2430 family of microcontrollers. Several real-world WSN 
applications are developed for RETOS and the overall evaluation of 
the systems is described in the paper.   

Categories and Subject Descriptors 
D.4.7 [Operating systems]: Organization and Design  

General Terms 
Design, Experimentation, Measurement, Performance 

Keywords 
Wireless Sensor Network, Operating Systems, Multithreading 

1. INTRODUCTION 
With the promise of wireless sensor network (WSN) applications in 
the ubiquitous computing era, active research has recently been 
conducted in a wide spectrum of devices, system software, and 
applications. The technology advance in WSN is primarily 

accelerated by the readily-available hardware platforms, as well as 
core system software such as sensor node operating systems in 
particular. From the early days, much effort has been given to 
develop efficient and yet complete operating systems for micro 
sensor nodes. For instance, TinyOS [1] has historically been used by 
many practitioners in the field and even advocated as “the” 
operating system for WSN. Other operating systems such as 
SOS[2], Contiki[3], MANTIS[4], and t-kernel[5] have challenged 
the success of TinyOS and provide incremental, or even alternative 
solutions for many practical issues still being debated in the related 
communities. 

Writing an operating system for micro sensor platforms poses 
several unprecedented problems. First, the OS implementation 
should consider microcontrollers which typically provide very 
limited processing power, memory and battery life-time. The event-
driven paradigm for sensor OS is especially favored for the 
resource-constrained environment, and we have seen the 
proliferation of TinyOS or SOS in this context. Second, the 
application programming model should be seriously considered to 
provide an easy and convenient programming interface to 
application developers, without needing to be aware of underlying 
operating system principles. The event-driven operating systems, for 
example, enforce programmers to structure and program an 
application as a state machine in terms of tasks and event handlers. 
Understanding this concept is an easy task for experts, but 
conventional programmers who are accustomed to a process model 
of programming may find the concept hard to grasp. Third, a micro 
sensor node usually does not have memory management unit 
(MMU) hardware. The MMU-less hardware imposes severe 
restrictions in implementing protected mode of OS operations. Any 
malicious or erroneous application program can easily disrupt other 
applications or even crash the kernel, because of the lack of memory 
protection by hardware. To provide robustness at the OS level, an 
effective mechanism should be devised, preferably by software. 
Fourth, the limited memory of only a few kilobytes in a sensor node 
necessitates the minimal implementation of sensor OS by reducing 
kernel functionality However, a wide variety of sensor applications 
are found in practice, and they may require different OS support, 
depending on the nature of the application, which is sometimes 
exclusive to the application. The sensor OS surely cannot provide 
all the functionality required by many applications at one time. The 
OS should therefore have a mechanism to reconfigure the kernel 
appropriately upon the application’s request. Fifth, the networking 
architecture in WSN is differentiated from traditional IP-based 
networks in many ways. A typical sensor network application 
requires data-centric [6], rather than address-based, networking 
support, based on energy-efficient implementation of network and 
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link layer protocols, over performance-constrained RF hardware. 
The conventional layering architecture for an IP network, for 
instance, is considered heavy-weight and unsuitable for WSN 
applications. A sensor OS should therefore provide a specifically-
designed network abstraction to application programmer, and the 
kernel should provide an optimal implementation. 

In this paper, we describe a sensor network operating system, 
RETOS, which has been developed to cover the various issues 
discussed above. Knowing that there are already a few sensor OS, 
some of which are mature and some which are still in the 
development stage, we have had specific goals to develop yet 
another OS for WSN. Our primary objective is to develop a robust, 
reconfigurable, and resource-efficient multithreaded operating 
system for off-the-shelf micro sensor nodes. The overall concept is 
illustrated in Figure 1. Although the event-driven approach is 
commonly adopted for sensor OS mainly due to its efficient 
implementation in a resource-constrained hardware environment, 
application developers manage the states of tasks and events 
explicitly, via program split process. We believe that, in order for a 
sensor network to become more popular in real world applications, 
the programming model should be more user-friendly and perhaps 
the well-understood multithreading approach could be an alternative 
solution, as far as its efficient implementation is guaranteed. We 
describe our solution for this issue. Another important fact regarding 
most of the currently available sensor OS is that the robustness issue 
on kernel and application use is barely considered in the 
implementation, because of MMU-less hardware. We believe that a 
sensor OS should guarantee a robust execution of both kernel and 
application. RETOS provides a software solution for this issue. 
Kernel optimization with adequate functionality is also an important 
requirement of sensor OS. RETOS explicitly separates applications 
from the kernel, hence an application is dynamically loaded into the 
system, so does the kernel module. RETOS achieves the kernel 
reconfigurability via a loadable module framework.   

RETOS is fully functional as a kernel, and a set of real applications 
has been developed to evaluate the system. RETOS is initially 
implemented on the TI’s MSP430-based motes such as Tmote Sky 
[7]. Presently the operating system supports ATmega128-based 
MicaZ [8], and even the latest CC2430 [9] SoC processor from 
Chipcon. As far as we are aware, RETOS is the first sensor OS 
which runs on this variety of microcontrollers. 

The next three sections discuss the key principles of RETOS and 
their implementation techniques, from the viewpoint of system 
resiliency, multithreading support, and kernel reconfigurability. 
Section 5 and 6, then, describe the network abstraction provided by 
RETOS, and the network monitoring effort accompanied by the 
operating system, respectively. Some of the implementation issues 
on various hardware are discussed in Section 7. Overall evaluation 
of RETOS, rather than detailed analysis of the individual OS 
component, is given in Section 8 with three real-world WSN 
applications. We conclude the paper with related work and closing 
comments in Section 9 and Section 10. Note that details on from 
Section 2 to Section 6 are covered in our previous work. This paper 
reorganizes and highlights the key concept of RETOS from the 
overall system point of view.  

Hardware (MCU control register, I2C, SPI, ADC, …  )

Code (Flash Rom) Data (RAM)

Kernel area

User area

Event-boosting 
Thread 

Scheduler

Variable 
Timer

Modules

Module Manager
Dependency checker

Common Libraries

Networking Support Layer
Logical link table (LLT)

Data delivery queue

MAC Protocol
Kernel Data

Single Kernel 
Stack

Module Data

Thread Data & Stack

Dynamic Networking Layer
Protocol 

C Protocol 
E

Protocol 
A

Protocol 
B

Protocol 
D

Static / Dynamic 
Code Checking

 
Figure 1. RETOS architecture 

2. SYSTEM RESILIENCY 
The primary objective of a robust and resilient operating system is 
to enable a sensor node to run efficiently, safe from errant 
applications without extra hardware support. The kernel should be 
able to detect harmful attempts by applications on system safety, 
and terminate them appropriately. The microcontroller used for a 
sensor node typically has a single address space due to the MMU-
less hardware, hence the kernel and applications exist in the same 
address space. The operating system mechanism for error-free 
wireless sensor networks should therefore operate with software 
assistance.  

RETOS ensures system resilience with two techniques: dual mode 
operation and application code checking [10]. Dual mode operation 
logically separates the kernel and the user execution area. 
Application code checking evaluates the validity of compiled code 
via static analysis, and run-time behavior of application code via 
dynamic check.  

2.1 Dual Mode Operation 
In RETOS, dual mode operation is implemented by stack switching. 
Applications in the user mode use the user stack, and the stack is 
changed to the kernel stack upon system calls and interrupts 
handling. Dual mode operation may incur memory overhead on 
resource-constraint sensor nodes due to the per-thread kernel stack. 
To save memory usage, RETOS maintains a single kernel stack in 
the system. Thread switching is performed right before returning to 
user mode,  that  is,  the  time  when  all  work  pushed  on  the 
kernel stack is finished. Although the single kernel stack is unable to 
preempt threads in the kernel mode, it enables memory efficient 
implementation of dual mode operation. 

Unlike dual mode operation on general-purpose operating systems, 
RETOS should implement it without hardware supports, because 
microcontrollers such as MSP430, ATmega128, and CC2430 do not 
have a privileged mode of operation. Upon an invoked interrupt, the 
microcontroller saves the status registers in the current stack and 
calls the corresponding interrupt handler. The handler function 
saves the current stack pointer in the TCB (Thread Control Block) 
and switches to the kernel stack, if the system was in the user mode. 
In the real implementation, some registers might be saved in the 



user stack, due to stack switching, thereby leaving them modified by 
other threads. RETOS stores the registers within the TCB and 
restores them before returning to the user mode. The system call is 
implemented by a function call, so the return address remains in the 
user stack. RETOS also stores the return address in TCB and 
validates it.  

2.2 Application Code Checking 
In order to compromise the lack of virtual memory functionality due 
to the MMU-less microcontroller, RETOS provides a software 
technique called application code checking which consists of static 
and dynamic checks. Application code checking prevents user 
applications from accessing memory outside of its legal boundary 
and direct hardware manipulation. To achieve this goal, the 
technique inspects the destination field of machine instructions. The 
source field of instructions can also be examined to prevent the 
application from reading kernel or other applications data. Static 
code checking verifies direct or immediate addressing instructions, 
pc-relative jumps and eint/dint during the compile time. Dynamic 
code checking verifies the correct usage of indirect addressing 
instructions in runtime. Dynamic checking is also required for the 
ret instruction as the return address can be affected by buffer 
overrun.  

Figure 2 shows the sequence of constructing trusted application 
code. Applications loaded on the system are allowed to store data 
and to execute codes in their own resources. Every source code of 
the application is compiled to assembly code; then checking code is 
inserted to the place where dynamic code checking is required.  
After dynamic code insertion, a binary image is created via 
compiling and linking, and the static code checking is then 
conducted on the binary. Application errors that are not detected at 
the compile time are reported to the kernel. When the errors are 
reported, the kernel informs users of the illegal instruction address 
and safely terminates the program. 

 
Figure 2. Generating trusted code 

3. MULTITHREADING SYSTEM 
In contrast to an event-driven operating system, multithreading 
inherently provides high concurrency with preemption and blocking 
I/Os characteristics of the underlying system. The application 
programmers may concentrate on the semantics of the problem at 
hand; not worrying about the optimal execution of their programs, 
via explicit concurrency control, as in the event-driven 
programming environment. Although the multithreading approach is 
attractive in sensor application developments, its efficient 
implementation is vital, especially in resource-constrained sensor 
node environment. Multithreading requires a per-thread stack, and 
context switching between them via scheduling principle. Hence, 
memory usage, energy consumption, and scheduling efficiency 
should be carefully considered to achieve optimal implementation. 

Current thread-based sensor operating systems [3, 4] do not provide 
specific solutions for this issue. This has motivated us to develop 
multithreading techniques specifically designed for micro sensor 
nodes 

RETOS provides a few optimization techniques for the efficient 
implementation of multithreading on sensor node [11]. To cover the 
issues on memory resource, energy consumption, and thread 
scheduling policy, RETOS implements single kernel stack and 
stack-size analysis, variable timer, and event-boosting thread 
scheduler, respectively.   

3.1 Minimizing Memory Usage 
To reduce the memory usage for the kernel, RETOS provides two 
techniques: single kernel stack and stack-size analysis. Single kernel 
stack reduces the size of thread stack requirement, and stack-size 
analysis assigns an appropriate stack size to each thread 
automatically. 

Multithread systems require stack reservation for each thread. The 
amount of the required stack of a thread is the sum of the resource 
required by thread functions, system calls, interrupt handlers and 
hardware context saving. RETOS implements single kernel stack 
management for data memory efficiency. The mechanism separates 
the thread stack into kernel and user stacks, and maintains a unitary 
kernel stack to reduce the thread stack. In the single kernel stack 
system, the kernel stack is shared among every thread. Controlled 
access to the kernel stack is implemented in such a way that the 
system does not arbitrarily interleave execution flow, including 
thread preemption, while in the kernel mode. Thread switching 
could be performed immediately prior to returning to user mode and 
executing an idle function. With thread preemption, hardware 
contexts are saved in each thread’s thread control block due to 
kernel stack sharing. 

With MMU-less hardware, application developers should estimate 
accurate thread stack size to reduce the memory usage. A stack size 
that is less than required by the thread causes stack overflow and 
easily crashes a system. Assigning a large stack would cause 
memory wastage. RETOS implements a stack-size analysis to 
provide minimal and system-safe stack for each thread, 
automatically. The analysis mechanism produces a control flow 
graph of an application. A function label, start address and internal 
stack usage are used as nodes in the graph, and branch instructions 
are used as edges. The maximum possible thread stack size is then 
calculated with a depth-first search. The operations are conducted 
on a binary image which is the result of linking application and 
system codes.  

3.2 Reducing Energy Consumption with 
Variable Timer 
The multithreading model of computation generally creates energy 
overhead due to timer management, context switching, and 
scheduling operation. Context switching and scheduling are known 
to be the source of major overhead in threaded systems. However, 
the frequency of scheduling in the threaded system is lower than 
that of passing messages between handlers in the event-driven 
system [12], and the context saving and restoring overhead is only a 
moderate issue in common sensor nodes [4].  

In general-purpose threaded systems, the timer management relies 
on a periodic timer interrupt. This continuously triggers the interrupt 



handler regardless of the timer handler request, and increases energy 
consumption of the sensor node which stays idle most of the time. 
Also, the periodic timer interrupt restricts the time accuracy within 
the timer interval. Instead of the periodic timer, the system may use 
a variable-time tick rate by way of reprogramming the tick rate with 
an upcoming timeout request. RETOS implements a variable timer 
technique to minimize the energy consumption of the 
multithreading system. The system timer manages timer requests 
from threads and updates the remaining time quantum of currently 
running threads. The variable timer reprograms the timer interrupt 
interval to the earliest upcoming timeout among the time quantum 
of currently running thread and the timer requests, such as the 
sleep() system-call. 

3.3 Event-aware Thread Scheduling 
RETOS supports the POSIX 1003.1b real-time scheduling interface 
to enable both programmers’ explicit priority assignment and 
kernel’s dynamic priority management. Threads are scheduled by 
three policies, SCHED_RR, SCHED_FIFO, and SCHED_OTHER 
[13]. 

SCHED_OTHER, the default scheduling policy, is specifically 
designed to satisfy threads used in sensor network applications with 
fast response time. To meet the requirement, RETOS implements an 
event-aware thread scheduling to increase the event response time 
of threads. The scheduler directly boosts the priority of the thread 
requesting to handle a specific event. Events in the sensor network 
applications are defined as the expiration of the timer request, the 
reception of a packet, and the completion of sensing. A thread issues 
a blocking system-call to handle one of these events, and the kernel 
enhances the thread’s priority according to the type of system-call. 
When an event occurs, the priority-boosted thread will be able to 
swiftly preempt other threads. The priority of the thread reduces 
with the CPU time, hence other threads would have chances to be 
scheduled.  

4. LOADABLE KERNEL MODULE 
Due to the limited resources of sensor node hardware, a sensor OS 
can not provide all the functionality required by various types of 
applications at one time. Hence, a modular approach is necessary in 
designing the kernel. RETOS provides a mechanism to support the 
diverse kernel functionality that is needed only by the application at 
hand, enhancing kernel reconfigurability [14]. The self-
reconfiguration is achieved by selecting the appropriate kernel 
components in the operating system without modifying the 
application.  

4.1 Module Relocation and Linking 
RETOS unloads unnecessary kernel modules and only maintains 
modules that are currently required by the applications. RETOS 
supports dynamic application loading and each application may 
require different modules. To maintain an optimized system, the 
kernel should always keep a minimal configuration by removing 
unused modules and acquiring newly-required modules, following 
the changes in application running. 

Module implementation requires dynamic memory relocation and 
linking, which is not well supported by MMU-less hardware. To 
support a variety of microcontrollers, RETOS relies on a memory 
relocation mechanism, rather than a PIC (position independent 
code) approach. The relocation mechanism compiles the source 

code and extracts the relocation information of global variables and 
functions. The RETOS kernel acquires the compiled module with 
meta-information and performs code relocation. Figure 3 shows an 
overview of the relocation mechanism. Compiled code is stored in a 
RETOS file format which consists of a generic portion and a 
hardware-dependant section. The microcontrollers that RETOS 
currently supports have different addressing features, such as 
relocation type and relative memory-accessing instructions. Hence, 
we require hardware-specific information in this format to aid the 
relocation process for the corresponding hardware. The kernel 
replaces every accessible address from the code while looking up 
the relocation information. Since the RETOS file format has a 
flexible structure, any relocation mechanism in new hardware can 
easily be supported. 

  
Figure 3. RETOS relocation mechanism 

4.2 Module Communication 
RETOS maintains a function table that allows modules and 
applications to access other module’s functions. The table manages 
the function information of modules, such as function entry points, 
ownership, parameters and return types, which are accessible by 
other modules or applications. The module registers, un-registers 
and accesses the functions through the table. The kernel and kernel 
modules are dynamically linked at run time and work as a single 
image. An application accesses the module’s function through a 
system call which references the function table and invokes the 
required functions. The invoked system call performs a mode switch 
and validates the corresponding function. This provides protection 
for the kernel and kernel modules from an application’s illegal 
memory access. 

5. NETWORKING ABSTRACTION 
Existing networking protocols for WSN usually adopt a cross-
layering architecture; hence, an application developer sometimes 
takes the responsibility of developing MAC and routing protocols. 
This is caused by improper layering architecture in the conventional 
system, especially a lack of distinct layers for developing network 
protocols. 

RETOS implements a layering architecture that provides a distinct 
and independent programming environment to different class of 
WSN developers: i.e., kernel developers, network developers, and 
application developers [15]. Kernel developers take responsibility 
for implementing core parts of operating systems so that the kernel 
fully utilizes the hardware. Network developers implement various 
networking algorithms, and using those networking algorithms 
application developers program the required functions. To support 



this abstraction the RETOS kernel provides an appropriate protocol 
architecture which allows minimal modification to other layers and 
maximum functionality of network modules. 

5.1 Overview 
The RETOS network architecture provides an easy programming 
interface for application developers, and also enables an efficient 
implementation of networking functionality on a resource 
constrained hardware environment. The network stack consists of 
both static and dynamic parts. The networking functionality in the 
static kernel is to transmit data packets to neighbors and maintain 
network connectivity via neighborhood management. The static part 
is performance-critical, hence the implementation should be 
optimized at the device driver level by the kernel developer. The 
dynamic part of the kernel, which is normally implemented as 
loadable modules, implements application-dependent networking 
algorithms. Various kinds of routing or transport protocols can be 
implemented as part of the dynamic kernel.  

Figure 4 shows the layered architecture of the RETOS network 
stack. The static kernel contains MLL and NSL. The bottom layer 
MLL (MAC and Data Link Layer), which controls the network 
devices, manages the physical connection and transmits data 
packets. The NSL (Networking Support Layer) supports logical 
connections, managing neighboring nodes and data transmission. 
The DNL (Dynamic Network Layer), which belongs to the dynamic 
part of the kernel, enables implementing network protocol 
algorithms and provides user API for easy development. In the 
RETOS network architecture, three classes of developers can 
implement layer-specific programs, without interfering in others, 
and the usage of modularization of the operating system becomes 
maximized. In particular, the RETOS loadable kernel module makes 
efficient network architecture possible. The following section 
describes NSL and DNL in detail. 

5.2 Network Support Layer (NSL) and 
Dynamic Network Layer (DNL) 
The NSL maintains the information of neighboring nodes and 
provides an interface to the DNL. The NSL consists of the Logical 
Link Table, Data Delivery Queue, and NSL API. The Table 
Manager maintains the Logical Link Table which contains the 
information of neighboring nodes, such as node ID, geographical 
position, RSSI, LQI, battery level, packet delivery ratio, packet 
delivery time and so on. The information collecting interval in the 
NSL is set periodic by network protocol developers. 

In the DNL, packet routing or transport algorithms are implemented 
in the form of reconfigurable kernel modules. Various kinds of 
existing protocols can be implemented in this layer as dynamic 
modules. DNL modules implement core network algorithms, based 
on the information of neighboring nodes, network status 
information, and data transmission provided by the NSL API.  

With the modularized protocols, the RETOS application developers 
build diverse networking applications by just selecting an 
appropriate protocol, without detailed knowledge on its 
implementation. To further support network transparency, RETOS 
provides a DNL API for application programmers, as listed below. 

We have considered a variety of send operations in order to support 
common communication patterns found in typical WSN 
applications. 

set_network(): select routing module  
send_sink(): send to designated sink node  
send_nbr(): broadcast only to neighbors 
send_net(): broadcast to entire network 
recv(): receive data 

6. NETWORK MANAGEMENT TOOL 
For any reasonable WSN programming environment, a certain form 
of network management tool is necessary to provide the developer 
with the current status of the overall network accurately and 
efficiently. The developer should be informed about any significant 
problems that need to be dealt with, such as reconfiguring the 
network parameters or manually relocating nodes that are not able 
to communicate with the network for some reason.  

RETOS is accompanied by a network management system, called 
RMTool [16], to support component wise network management and 
monitoring of real sensor networks. RMTool assures a user of the 
network’s functionality and gives the developer control over the 
network while running user applications over it. From the 
application developer’s point of view, RMTool can be used as an 
overall view of the applications’ behavior in the network, while the 
network health is concurrently monitored. RMTool is designed to 
run concurrently with other sensor network applications. As the tool 
should not require excessive resources over local applications, 
RMTool has specifically been designed to consume minimal system 
resources while providing a simple and robust mechanism.  

7. RETOS IMPLEMENTATION 
RETOS is initially implemented on the TI’s MSP430-based mote, 
(Tmote Sky[7] and H-mote). The current version supports 
ATmega128 (Crossbow’s MicaZ) and the CC2430 [9] SoC 
processor from Chipcon. Figure 5 shows the H-mote family of 
hardware developed in our laboratory.   
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Figure 4. RETOS network architecture 



  
(a) MSP430 H-mote   (b) Sensor board   (c) CC2430 H-mote 

Figure 5. H-mote family of sensor nodes 

One of the main objectives of RETOS is to support various types of 
microcontrollers. The RETOS kernel should, therefore, provide the 
same kernel operations on different hardware. To provide a portable 
kernel structure across different platforms, we have separated the 
architecture-independent part of the kernel from the hardware-
specific part. The functionality and policies of the kernel are 
commonly defined in the architecture-independent part, whereas 
their actual implementations are optimized in the hardware-specific 
part depending on the individual hardware. 

This section briefly explains some of the implementation issues we 
came across during the course of RETOS porting on different 
microcontrollers. The technical difficulties are mainly due to the 
different memory layouts, code relocation, and power management 
scheme of the target hardware. In particular, the memory layout and 
relocation mechanism provided by microcontrollers are widely 
different, hence we have designed an architecture-independent 
executable file format for the RETOS application, with which the 
actual code/data relocation is conducted in binary load stage. The 
detailed relocation mechanism is implemented architecture-
dependent way. Figure 6 shows the overview of RETOS code 
layout on various architectures. The power management mechanism 
also varies with the microcontrollers. In RETOS, basic power 
management is conducted in an architecture-independent part, 
whereas the detailed power control is specifically carried out by the 
underlying processor.  

Table 1 shows the code size comparison of fully-equipped RETOS 
kernel v1.0 and TinyOS v1.1.15, where various sensor drivers as 
well as network module are included. The case of minimal 
configuration of TinyOS without any sensor drivers or network 
module is also given in the table for the reference. 

7.1 TI MSP430 
Different from the AVR or CC2430 memory layout, MSP430 
enables the access to the entire flash area without memory bank or 
page selection. Hence, the kernel code section is implemented as it 
is in the RETOS code image layout, as illustrated in Figure 6. The 
compiled kernel image is stored in the starting address of flash. The 
remaining flash area is used for application loading or dynamic 
kernel module. In the case of MSP430 F1611 which has 48KB of 
flash memory, approximately 24KB of flash can be used by 
application or run-time modules.  

The relocation mechanism of MSP430 can optimally be 
implemented by using a single-bit of information allocated for each 
word. In MSP430, knowing the start addresses of code and data 
sections, the relocation is made possible by checking the address 
range of the operands in an instruction if it is a code or data. Any 
instruction with the single-bit set is relocated. The bit-based 
relocation mechanism in MSP430 has a storage overhead of 1/16 of 
the code size. 

MSP430 provides five levels of power operating modes: LPM0 to 
LPM4. For idle running, RETOS runs in LPM1 which halts the 
processor operation and the system clock. Also, depending on which 
sensor uses the digitally-controlled oscillator, the processor runs in 
LPM3 to further reduce the energy consumption. 

Code Image Layout

Kernel Code

MSP430 F1611

0x4000

0xFFE0

Application

Kernel Module

CC2430

Kernel Code

AVR ATmega128

Applications
and

Kernel Modules

Kernel Code
(Except File 
Manager)BOOTSZ=00

0x0000

Kernel Code

File Manager
(Boot Loader 

Section)BOOTSZ=00
0xF000

Applications
and

Kernel Modules
Applications

and
Kernel Modules

BANK 0

BANK 1

BANK 2

BANK 3

 
Figure 6. RETOS code layout on various architecture 

 

Table 1. Code size comparison 

 MSP430 AVR CC2430 
 ROM RAM ROM RAM ROM RAM 

RETOS v1.0 20394 945 24252 1125 27321 724 
TinyOS v1.1.15 20924 798 17160 792 N/A 
TinyOS (Min.) 11286 311 9500 332 N/A 

 

7.2 Atmel ATmega128 
ATmega128 addresses the SRAM area and the 128KB of internal 
flash separately. Also, the internal flash is divided into a boot flash 
section and an application flash section. Any operation for data read 
or write on internal flash should be executed in the boot flash 
section starting from $0xf000, hence a part of the RETOS kernel 
resides in the boot area while the rest is loaded into the application 
flash area. The application loading on ATmega128 can be easily 
implemented with the PIC approach, but the mechanism has a 
limitation when addressing large amount of code, and more 
importantly, many microcontrollers do not support this mechanism. 
RETOS implements the address relocation mechanism, instead. 
Since ATmega128 is an 8-bit microcontroller with a 16-bit 
addressing mode, the relocation mechanism is complex, compared 
to the case of MSP430. ATmega128 has 19 different types of 
relocation, depending on the instruction type as well as the 
addressing range of the operand. The relocation information field in 
the executable file format in Figure 3 enables the relocation of 
individual applications. For each relocating instruction, five bytes 
are used for the field: two bytes for instruction offset, one byte for 
relocation type, and another two bytes for address.  

Six low-power modes are provided by ATmeg128. RETOS makes 
use only of the “standby” mode when the processor becomes idle, 
but more sophisticated power management is currently under 
development. 

7.3 Chipcon CC2430 
CC2430 is the latest SoC microcontroller from Chipcon, which 
integrates the 8051-based processor core running at 32MHz and the 
IEEE 802.15.4-compatible RF module. Due to its small form factor 
and high performance, CC2430 is considered a useful building 
block for WSN hardware platforms. Out of 128Kbytes of flash 



memory available in CC2430, only 55KB can be used for program 
memory, where the bottom 32KB should be used for the boot and 
kernel codes, and the remaining 23KB are used for application and 
libraries. No relocation is required for the bottom 32KB, but the 
upper 23KB needs extra operations, due to the different flash bank, 
and the codes are mapped to XDATA space and the relocation is 
conducted appropriately. The network performance of RETOS is 
enhanced by using the RADIO DMA trigger, which enables 
efficient and power-aware data processing by not waking up the 
processor. The MAC timer provided by CC2430 also aids the 
efficient execution of the CSMA/CA protocol. 

CC2430 provides four levels of power operating mode: PM0 to 
PM3. PM0 is a full-functioning mode, PM1 and PM2 the low-power 
modes, and PM3 the lowest power mode without running the clock. 
Based on the variable-timer operation, RETOS makes use of PM1 
and PM2 modes aggressively, depending on the current hardware 
usage on sensor I/O or network I/O. While operating in PM1 or 
PM2 modes, the sleep timer, which runs on a 32.768KHz oscillator, 
is used to support interrupt handling and to maintain the system 
timer. 

8. EVALUATION 
Evaluating an operating system is not an easy task, and requires a 
manifold and sophisticated methodology. Each OS component, as 
well as their integrated operations, can be analyzed separately, or 
evaluated comparatively with other operating systems. We have 
previously evaluated the performance of RETOS [10,11,14,15,16], 
along with various design issues, and interested readers may find the 
quantitative results published in our earlier work useful. In this 
paper, we evaluate RETOS from the perspective of overall system 
operation, rather than individual component-wide characteristics, 
while running some of the real-world WSN applications. We 
demonstrate how the design principles of RETOS work with real 
applications.  

Three applications are used for the evaluation. First, a multiple-
object tracking system (MPT) is implemented with RETOS in an 
indoor environment, based on ultrasonic sensor devices. MPT is a 
good example of evaluating the efficiency of thread-based 
programming. Second, we have implemented a large-scale node 
localization mechanism using mobile acoustic sources (ASL), based 
on inexpensive MICs, in RETOS. With this application, the 
concurrency feature of RETOS is evaluated, together with the 
usefulness of the network management tool. Finally, a distributed 
acoustic source detection system (DSLS) is implemented with 
RETOS. The system enables the evaluation of effectiveness of 
RETOS modules and network architectures. Table 2 shows the code 
size analysis of the RETOS applications running on MSP430, 
compared to TinyOS. 

8.1 Multiple Object Tracking 
Ultrasound-based object tracking is a common indoor WSN 
application, due to its low-cost ad high-accuracy advantages. In our 
previous work [17], we developed an active tracking system for 
multiple moving objects (MPT) in a TinyOS environment. Our 
hardware platform is compatible to the Telos mote, but equipped 
with an ultrasonic sensor module that detects 40KHz ultrasonic 
pulses. With the availability of RETOS, we have ported MPT to the 
same hardware. This section describes the implementation and 
evaluation of the system. 

MPT consists of mobile nodes and backbone nodes. The mobile 
nodes periodically send synchronized radio signals and ultrasound 
pulses. Upon receiving a radio signal, the backbone node measures 
the arrival time difference between the radio signal and the 
ultrasound pulse, calculates the distance, then sends it back to the 
mobile node. With three pieces of distance information calculated 
from backbone nodes, the mobile node estimates its location in the 
2D plane coordinate by a trilateration algorithm. This process is 
continued in every beaconing period of the mobile nodes, enabling 
the tracking of mobile nodes. To solve multiple mobile nodes 
transmitting the beacon signals in an overlapped fashion, an 
adaptive beaconing algorithm is implemented, with which mobile 
nodes overhear the beacon messages of other mobile nodes and 
adaptively adjust their beaconing periods to avoid a simultaneous 
ultrasound pulse. 

Compared to the TinyOS implementation of MPT, a simple and 
intuitive implementation was possible with RETOS. Figure 7, for 
example, outlines the program structures, written in TinyOS and 
RETOS, running on the MPT backbone node. The control flow is 
straightforward, but the TinyOS implementation requires a careful 
split of tasks and proper sequencing of the event handlers. With 
RETOS, an application programmer can implement the code 
sequentially in a single thread. A set of API functions for the sensor 
device, provided by RETOS, also eases the implementation effort.  

Apart from the programming convenience of RETOS, we now 
discuss the efficiency of the threaded system. The MPT mobile 
node executes trilateration after receiving distance information from 
three beacon nodes. The trilateration is a CPU-bound job and takes 
approximately 16ms on MSP430. Each beaconing should be 
sufficiently separated by Twait, as the backbone node needs 
processing time. Figure 8 compares the execution model of the 
mobile node for TinyOS and RETOS. With TinyOS, the node 
cannot handle events during the trilateration, nor overhear the 
beacon messages from other mobile nodes. With RETOS, however, 
a thread is created only for trilateration, hence the main thread can 
concurrently handle the beacon messages. Our experiments show 
that the MPT system running on MSP430-based motes with TinyOS 
handles four mobile nodes at most with 300ms of beacon period. By 
reducing the beaconing period by 16ms, RETOS enables a smoother 
operation of object tracking, or alternatively, RETOS can support up 
to five mobile nodes with the original beacon period.  

Table 2. Code size for applications (MSP430)
ROM/RAM TinyOS RETOS 

MPT Total kernel apps routing*† - - 

mobile 20680 
/ 677 

20394 
/ 945 

9912 
/ 468 N/A - - 

backbone 20200 
/ 1170 

20394 
/ 945 

976 
/ 166 

2358 
/ 356 - - 

ASL Total kernel time sync ASL RM tool - 
 26674

/ 994 
20394 
/ 945 

2666 
/ 224 

8490 
/ 368 

2278 
/ 146 - 

DSLS Total kernel time sync* DSLS RM tool* routing*†

 30358 
/ 1636 

20394 
/ 945 

2598 
/ 240 

11220 
/ 180 

2298 
/ 146 

2358 
/ 356 

* kernel module implementation           † parametric routing [21] 
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Figure 8. Execution model for MPT mobile 

8.2 Localization using Mobile Acoustic Events 
Sensor node localization is a fundamental requirement for large-
scale and practical use of WSN applications. We previously 
developed a large-scale localization system (ASL) using mobile 
acoustic sources, and implemented it in a TinyOS environment [18]. 
We have recently ported ASL with RETOS.  

ASL consists of two types of nodes: Sound generator (SG) and 
Sound Detector (SD). SG generates an acoustic event, while the 
same event will be detected by SDs. With the time synchronization 
among all nodes, an acoustic event generated near a SG node is first 
detected by its own microphone sensor. The time of detection at the 
sensor is used as the time of event generation, and is sent to all SD 
nodes. SD nodes will eventually detect the acoustic event, confirm 
the time of event generation with data sent by the SG node, and 
store the time difference and beacon coordinates within a specific 
range of acoustic events. Repeating this process, the SD nodes 
continue to collect acoustic event coordinates. With three 
coordinates gathered, all SD nodes use the distance data and beacon 
coordinates to independently localize its own position using 
trilateration. 

To run the application we need a global time synchronization 
module running on each node. We have implemented FTSP [19] as 
a multithreaded application on RETOS. The network management 
tool RMTool mentioned in Section 6 is also running on the node, as 
an application, to monitor the progress of node localization as well 
as the network status. Overall, the SD node has three applications 
running seven threads concurrently (2 for ASL, 2 for FTSP, and 3 
for RMTool). Figure 9 illustrates the program structures of ASL in 
RETOS and TinyOS environment. The experiment results, with five 
MSP430-based motes deployed in outdoor environment, showed 
that three separate applications run accurately and efficiently in the 
RETOS environment, and the overall ASL performance is as good 
as in our TinyOS implementation. Figure 10 (a) and (b) show the 
execution of ASL, where 3 SG nodes and 7 SD nodes are deployed. 
After localization, the sensor nodes are displayed on the estimated 
positions. 

With this experiment, we purposely pushed the capability of the 
RETOS execution environment, in terms of resource usage and 
performance, by running three non-trivial applications at the same 
time. We are quite satisfied with the overall performance of the 
system. Although ASL, FTSP and RMTool were run as 
“applications” in this setup, these are in fact core components of the 
WSN operating environment. Hence, modularizing them as kernel 
modules is an alternative approach to optimize the kernel, because 
each component can be selectively loaded in the system depending 
on the application at hand. 

 
(a) RETOS        (b) TinyOS 

Figure 9. ASL implementation on RETOS and TinyOS 

 
(a) Before localization                 (b) After localization 

Figure 10. Screenshots of RMTool for ASL 

8.3 Acoustic Source Detection  
Acoustic source localization, which automatically detects the 
location of a sound source is a good example of WSN and the 
technique can be applied to many real-world applications. 
Previously, we developed a distributed, low-complexity, range-free, 
and error-tolerant acoustic source localization system (DSLS) in the 
TinyOS environment [20]. We have recently ported DSLS with 
RETOS, and this section details the implementation. 

Upon an acoustic event in DSLS, a group, which is a unit of 
acoustic source localization, is constructed on the fly with all the 
listening nodes of the event. By comparing the listening times of all 
nodes in the group, a leader is selected as being the closest to the 
acoustic source. A voting grid is then constructed in the leader node. 
The voting grid is a two-dimensional array of fields which is used to 
estimate the location of the acoustic source. Every node in the group 
votes for the possible location of the acoustic event separately, and 
the voting results are collected in the leader node to finalize the 
location.  

In the RETOS implementation of DSLS, we were particularly 
interested in the usage of DNL API provided by the RETOS 
network stack. Evaluating the usage and practicality of the RETOS 
module was another goal of this experiment. A RETOS programmer 



is provided with several communication primitives. In the case of 
DSLS, the send_nbr() function is effectively used to elect a leader 
and to exchange the voting results in a single-hop neighbor group. 
The final result is delivered to the multi-hop away sink using the 
send_sink() primitive, which is implemented by a specific routing 
algorithm as a loadable kernel module in RETOS. For DSLS, we 
implemented the parametric routing [21] as a kernel module. The 
parametric routing considers energy, reliability, and timeliness 
issues together in a single framework to select an appropriate next-
hop node upon user’s performance preference.  

In addition to the routing module, we re-implemented FTSP and 
RMTool as kernel modules for the use with DSLS in order to 
evaluate the feasibility of running core WSN elements as loadable 
module in RETOS. For the experiment, ten MSP430-based motes 
with MICs were deployed in 20m*20m outdoor to detect sound 
sources such as hand clapping or wood sticks being struck together. 
The overall system was working as correct as in the TinyOS 
environment and the location error was less than 1 meter for most of 
the cases. The loadable module of RETOS has proven useful and 
practical in a way that we can dynamically optimize the kernel 
configuration. 

9. RELATED WORK 
Current operating systems for WSN include TinyOS [1], SOS [2], 
Contiki [3], MANTIS [4], and t-kernel [5]. They are broadly 
classified into two programming models: event-driven and 
multithreading. TinyOS [1] is based on the event-driven model and 
nesC [22] is used to program the application and system software. 
TinyOS produces a single code image where the kernel and 
application are statically linked. This feature enables compile-time 
optimization with a function inlining. However, the overhead for 
updating the entire kernel code is not trivial. In TinyOS, the kernel 
is not protected from the application, hence a badly-written 
application may cause the system to fail. A watchdog timer can be 
used for this purpose, but recognizing and handling the application 
errors are not easy. So far, TinyOS has been implemented on AVR 
and MSP430 family of microcontrollers. Based on event-driven 
model, SOS [2] provides dynamically loadable modules. The 
modular approach, which separates the application from the system, 
enables the easy modification of the functions for the applications’ 
needs. Recently, Kumar et al. [23] implemented software-based 
fault isolation [24] on SOS, although the technique only protects the 
kernel data memory.  
Contiki [3], which is also an event-driven system, has implemented 
loadable modules using relocation and CELF [25]. The PIC 
technique, used by SOS, is not applicable to many microcontrollers, 
but Contiki somehow overcomes the portability issues of loadable 
modules. The Contiki system does not provide a safety mechanism 
for abnormal behavior of the kernel or application. TinyOS, SOS, 
and Contiki all adopt the event-driven model to minimize the 
overhead of multithreading. With event-based systems, however, 
programmers must split long-lived tasks into several phases of codes 
for concurrency, and construct explicit machine states manually. 
Protothread [26] is proposed to use blocking functions on top of 
event-driven systems without stack reservation; however the 
mechanism is unable to maintain local variables and blocks only in 
an explicitly declared area.  
MANTIS [4] is probably the first sensor OS to support the 
multithreaded programming environment. MANTIS showed that 

programming long-running tasks is easier with multithreading than 
with event-driven model. However, the current implementation has 
some limitations. For example, the programmers heuristically assign 
stack size to each thread and adjust a thread priority manually. The 
MANTIS scheduler, based on fixed-interval timer interrupt, could 
possibly delay response time for threads. The context switching and 
timer interrupt handling in MANTIS is not optimized. MANTIS 
produces a statically-linked single code image, hence 
reprogramming cost is not trivial, as in TinyOS, and the kernel or 
application may crash due to the lack of protection mechanism.  
t-kernel [5] provides a software-based memory protection and 
virtual memory via load-time code modification. The system 
necessarily expands code size and incurs run-time overhead, 
because every memory access or code branch requires address 
transition or memory swapping. Gu et al. [5] briefly mentioned that 
t-kernel provides preemptive scheduling, but the detailed execution 
model is unclear in the literature. 
Kernel supports for WSN networking have been studied in terms of 
network abstraction. Ye [27] implemented WSN protocols in the 
conventional MAC layer framework. Dunkels [28] made an effort to 
implement the TCP/IP stack in 8-bit AVR MCU, Kumar [6] 
suggested a data-centric network stack, and related network layering 
for data fusion. SP (sensornet protocol) [29] has recently been 
suggested as a translucent and unifying link abstraction for WSN.  
Active development is also given to provide useful network 
management tools for WSN. Among them are Mote-View[30], 
SNMS [31], TinyCubus [32], and Sympathy [33]. These tools aid 
the configuration, monitoring, and management of the deployed 
sensor nodes.  

10. CONCLUSIONS 
Although active research and development is currently being 
conducted in wireless sensor network communities, it is fair to say 
that the practitioners in the field do not have many choices 
regarding the operating system and related programming 
development tools. From the very early days of WSN research, the 
event-driven TinyOS has been considered the industry de-facto 
operating system, due to its stability and efficiency; hence, the 
software developers should understand the OS principle and 
accordingly stick to its programming model for better outcomes. 
Having experienced TinyOS ourselves, we have a different view on 
the “right” form of WSN operating system. Our belief is that a 
sensor OS should provide an easy programming interface, both for 
WSN experts and general application programmers, by concealing 
the underlying OS principles from users. In this context, we believe 
that a multithreaded OS fits this criteria better. Our other motivation 
is that a sensor OS should be robust and resilient in a sense that the 
kernel or applications should not crash unexpectedly even on 
MMU-less hardware. System extensibility based on a 
reconfigurable kernel is also thought to be an essential OS feature, 
as well as the provisioning of the WSN-specific networking 
abstraction in the kernel. With this paper, we are not arguing that 
RETOS is superior to existing sensor OS, but that an alternative 
approach for sensor OS design is indeed feasible and practical, and 
further enables a wider choice of sensor OS for application 
developers or system programmers. 

RETOS is not just an experimental OS for research purposes, but a 
fully functional and extensively tested operating system with non-
trivial, real-life applications, as discussed in Section 8. We have 



been using RETOS in undergraduate and graduate courses here in 
Yonsei University as a teaching and research platform for the last 
couple of semesters. The operating system is fairly stable at the 
moment, although the performance is being tuned with added OS 
functionality. 

We are presently analyzing the performance characteristics of the 
newly-ported RETOS on AVR-based MicaZ and CC2430-based H-
mote. The results will hopefully be published soon. Other efforts 
include the development of the GUI-based RETOS programming 
environment (IDE), remote debugging tool, and more RETOS 
porting to other microcontrollers. 
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