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ABSTRACT
As the complexity of software for Cyber-Physical Systems
(CPS) rapidly increases, multi-core processors and parallel
programming models such as OpenMP become appealing to
CPS developers for guaranteeing timeliness. Hence, a par-
allel task on multi-core processors is expected to become a
vital component in CPS such as a self-driving car, where
tasks must be scheduled in real-time.

In this paper, we extend the fork-join parallel task model
to be scheduled in real-time, where the number of parallel
threads can vary depending on the physical attributes of the
system. To efficiently schedule the proposed task model, we
develop the task stretch∗ transform. Using this transform for
global Deadline Monotonic scheduling for fork-join real-time
tasks, we achieve a resource augmentation bound of 3.73. In
other words, any task set that is feasible on m unit-speed
processors can be scheduled by the proposed algorithm on m
processors that are 3.73 times faster. The proposed scheme
is implemented on Linux/RK as a proof of concept, and
ported to Boss, the self-driving vehicle that won the 2007
DARPA Urban Challenge. We evaluate our scheme on Boss
by showing its driving quality, i.e., curvature and velocity
profiles of the vehicle.

Categories and Subject Descriptors
D.4 [Software]: Operating Systems; D.4.7 [Operating Sys-
tems]: Organization and Design—Real-time systems and
embedded systems; F.1 [Theory of Computation]: Com-
putation by Abstract Devices; F.1.2 [Computation by Ab-
stract Devices]: Modes of Computation—Parallelism and
concurrency ; I.2.9 [Artificial Intelligence]: Robotics—
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Figure 1: A motion planning algorithm for au-
tonomous driving

Autonomous vehicles

1. INTRODUCTION
With cyber-physical systems (CPS), such as medical de-
vices, aerospace systems, smart grids, nuclear power plants,
robots and transportation vehicles, becoming more popular,
demands for new functionality features multiply [28]. For
example, active safety options such as adaptive cruise con-
trol, brake assist, collision avoidance, lane departure warn-
ing, sign detection and traction control are not rare anymore
in recently built vehicles. We, in fact, expect these CPS
functionalities to be readily available even in mid-range cars.
With this trend, embedded real-time systems are indispens-
able in order to sense the physical environment, process data
in real-time, control the actuators in a desirable manner and
monitor the timing of the whole execution chain for ensuring
safety.

Autonomous driving [31, 10, 26, 16, 30] is an appealing
emerging CPS technology. In an autonomous car, motion
planning, sensor fusion, computer vision and other artificial
intelligence algorithms must run in real-time; however, the
CPU-hogging nature of those algorithms poses challenges in
guaranteeing their timeliness.

The timing challenge can be addressed by the fact that
most algorithms for autonomous driving are parallelizable. A
planning algorithm of a self-driving car can profit from par-
allelized tasks composed of numerous threads. The motion



planning algorithm calculates the best path for the vehicle
to follow among a myriad of potential paths. This algo-
rithm can be expedited by parallelizing the cost calculation
for each path. The more paths the algorithm goes through,
the better driving quality will be. Figure 1 is a screenshot of
the operator interface for Boss, which won the 2007 DARPA
Urban Challenge [31] showing a motion planning algorithm
in operation. In the figure, the multiple lines coming out
from Boss represent possible paths which Boss may follow,
where each line is generated by a parallel thread of the mo-
tion planning algorithm. When all threads are completed,
they merge into a master thread that selects the best path.
It should be noted that the number of threads can vary de-
pending on the physical conditions such as the shape of the
road, the number of detected obstacles and the speed of the
vehicle.

A perception subsystem of a self-driving car can also ben-
efit from parallel tasks. In order for the vehicle to under-
stand its surroundings, the perception subsystem should be
able to process massive amounts of data from various types
of sensors. Boss, for example, manages 36000 independent
segments from its Velodyne HDL-64 LIDAR before fusing
them with other sensor data. Then, the vehicle can classify
and track the detected obstacles, whose number has a ma-
jor impact on how many parallel threads are spawned by the
perception subsystem.

The automotive industry has already started moving to-
wards the multi-core processors for higher performance [22,
14]. AUTOSAR, a widely used automotive software infras-
tructure, supports multi-core processors [4]. In addition,
parallel programming models like OpenMP [1] utilize multi-
ple processing cores to guarantee concurrent execution. We
believe that other CPS application domains will follow this
trend sooner rather than later.

There has been relatively little research on tackling chal-
lenges in scheduling parallel real-time tasks. In [21], Lak-
shmanan et al. proposed a parallel task model and a par-
titioned fixed-priority scheduling algorithm on a multi-core
processor, but the number of threads could not exceed the
number of given processing cores. In [29], Saifullah et al.
proposed a more generalized parallel real-time task model
which allows different fork-join segments of a task to have a
different number of threads.

Contributions: In this paper, we extend the fork-join real-
time task model proposed in [21] so that an arbitrary number
of threads can be scheduled, where the number of threads
can vary depending on the physical attributes of the system.
To efficiently schedule the proposed task model, we also pro-
pose a task stretch∗ transform to schedule the task model on
a given number of processing cores. Then, we prove that a
resource augmentation bound of 3.73 is achieved when we
use the task stretch∗ transform for global Deadline Monotoic
(DM) scheduling for fork-join real-time tasks. The proposed
scheme is implemented on Linux/RK [25] and ported to the
self-driving car Boss [31]. We evaluate our proposed scheme
on Boss by showing its driving quality in terms of curvature
and velocity profiles of the vehicle with an enhanced motion
planning algorithm [17].
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Figure 2: A fork-join real-time task model

Organization: The rest of this paper is organized as fol-
lows. In Section 2, we define our fork-join real-time task
model and describe the system assumptions. We provide
a scheduling algorithm to handle parallel real-time tasks
in Section 3. The analysis using resource augmentation
bound for global DM scheduling follows in Section 4. We,
then, briefly explain in Section 5 the modifications made
to Linux/RK to support the proposed scheme on a Linux-
based system. Section 6 shows the curvature and velocity
profiles of a self-driving car when our proposed scheme is
used. We describe previous research relevant to our work in
Section 7, and, in Section 8, we summarize our paper and
discuss future work.

2. SYSTEM MODEL AND ASSUMPTIONS
Definition: We consider a set of tasks τ composed of n
multi-threaded real-time tasks, and the given set τ runs
on a system with m processing cores. τ is represented as
τ : {τ1, τ2, . . . , τn}, and the tasks in τ are sorted in non-
decreasing order of task periods (deadlines). Each task τi
begins with a single thread spawning parallel threads, which
join with another sequential thread of τi. τi interchanges this
pattern between parallel and sequential segments. The num-
ber of parallel threads depends on the physical attributes
of the given system vs ∈ Rp, where p is the number of di-
mensions that capture aspects of the operating environment.
Then, as depicted in Figure 2, each task τi is represented as
τi: ((C1

i , (P
2
i ,m

2
i (vs)), C

3
i , . . . , (P

si−1
i ,msi−1

i (vs)),
Csii ), Ti, Di), where

• si is the number of computation segments of τi. Since
τi starts with a sequential segment and ends with a se-
quential segment while having parallel segments in the
middle, si is a positive odd integer. For 1 ≤ j ≤ si, the
jth element is a parallel segment if j is an even num-
ber. Similarly, the jth element is a sequential segment
if j is an odd number.

• mj
i (vs) is the number of parallel threads for the jth

segment when 1 ≤ j ≤ si. When j is an odd inte-
ger, mj

i (vs) is 1 and omitted from the representation
of τi above for ease of presentation. When j is an even
integer, mj

i (vs) is equal to or greater than 1 and rep-
resents the number of parallel threads spawned by the
previous segment.

• Cji is the worst-case execution time of the jth segment
in task τi on a unit-speed processor when the jth ele-
ment is a sequential segment. Also, let τ j,1i denote the
jth sequential segment of τi.



• P ji is the worst-case execution time of each thread run
in the jth segment of task τi on a unit-speed processor
when the jth element is a parallel segment. For par-
allel segments of τi, each thread of parallel threads is
represented as τ j,ki , where k varies from 1 to mj

i (vs).

• Di is the relative deadline to its release time.

• Ti is the period of τi. An implicit deadline is assumed,
i.e., Ti = Di.

Application Examples to Autonomous Driving: The
motion planning algorithm of Boss uses OpenMP to parallelize
its cost calculations to find the best path. Since the algo-
rithm takes its inputs: the road rules, the road shape, the
vehicle speed, the list of static obstacles and the list of dy-
namic obstacles, we define vs as < RoadRule,RoadShape,
V ehicleInfo, StaticObstacles,DynamicObstacles >. This
vector vs is then used to decide the number of parallel threads
accordingly. The perception algorithm of Boss leverages
pthread to expedite its executions of processing perceived
objects. We therefore define vs for the perception algorithm
as <SensorList, SensorPose,RawSensorDataList,
V ehiclePose>. In this paper, we consider the number of
threads within each parallel segment not to exceed the max-
imum value of mj

i (vs) for ∀vs ∈ Rp. For ease of presentation,

therefore, we use mj
i instead of mj

i (vs).

Assumptions: Each task τi is assumed to generate an in-
finite series of independent jobs. The release time of the
jth segment of each job of τi should be after the completion
time of the (j−1)th segment1. Therefore, if the jth element
of τi is a sequential segment, all parallel threads of (j− 1)th

segment of τi should complete before the jth element of τi
starts. We assume that all jobs are preemptable with negli-
gible cost. We also assume that there is negligible migration
cost when a job is migrated from a core to another.

Terminology: Using this model, we define the maximum
number of threads of τi, which is the maximum value among
mj
i of τi. Formally,

mi =
si

max
j=1

mj
i

The maximum execution length of a task τi on a unit-speed
processor is defined as:

Ci =

si−1
2∑
j=0

C2j+1
i +

si−1
2∑
j=1

m2j
i P

2j
i

where, Ci represents the response time on a unit-speed single
core processor when run alone. The first term corresponds
to sequential task segments and the second term corresponds
to fork-join segments.

To define the minimum execution length of a task τi, we
have to consider two different cases: (1) mi ≤ m and (2)
mi > m. For the first case, the minimum execution length

is defined as ηi =
∑ si−1

2
j=0 C2j+1

i +
∑ si−1

2
j=1 P 2j

i , where ηi is the

1We will use the terms ‘jobs’ and ‘tasks’ interchangeably
where the distinction is not of importance.

response time when each single thread of τi can use a core
exclusively. When mi > m, the definition above does not
hold good because some threads must be serialized. When
mi > m, therefore, we define the minimum execution length
ηi as:

ηi =

si−1
2∑
j=0

C2j+1
i +

si−1
2∑
j=1

⌈
m2j
i

m

⌉
P 2j
i (1)

The definition above can also be used when mi ≤ m because

dm
j
i
m
e = 1 whenmi ≤ m. Hence, it holds good for both cases.

For ease of presentation, we also let Pi =
∑ si−1

2
j=1

⌈
m

2j
i
m

⌉
P 2j
i ,

which is the execution requirement of the parallel segments
contributing to ηi.

The task model in this paper is extended from the fork-
join task model2 proposed in [21]. The two main differences
between the previous one and this model are that (1) our
model places no limitation on the number of threads, and
(2) our model allows different number of threads per parallel
segment. Hence, this model is more practical.

3. SCHEDULING FORK-JOIN REAL-TIME
TASKS

It was shown in [21] that there are unschedulable task sets
where the total utilization of the taskset is slightly greater
and very close to 1 even though there are m processing cores.
In other words, deadlines can be missed even though only 1

m
of available cycles is used. Although m approaches infinity,
the schedulability does not change [21]. This worst-case be-
havior continues to hold good for the proposed model in this
paper because it is an extended form of the task model pro-
posed in [21]. In this section, we first consider a scheduling
method to handle fork-join real-time tasks on a processor
with a given number of cores. Then, we propose the task
stretch∗ transform to deal with our enhanced task model.

3.1 Running Fork-Join Real-Time Tasks on m

CPU Cores
Consider a task τi ∈ τ running on m processing cores. If the
maximum number mi of parallel threads among all parallel
segments in τi is less than the number of processing cores m,
we can directly apply the task transformation algorithm de-
scribed in [21]. If mi exceeds the number of processing cores
m, then the serialization of some parallel threads must hap-
pen as depicted in Figure 3, where a task meets its deadline
on a quad-core processor, but not on a dual-core processor.

Proposition 1. A fork-join real-time task τi requires at
least the minimum execution length ηi units of time on m
CPU cores to meet its deadline.

We obtain the minimum execution length ηi of τi depicted
in Figure 3 as 10 on a quad-core processor and 16 on a
dual-core processor from Equation 1. From Proposition 1,
we can show that the given task is infeasible on a dual-core
processor because ηi on a dual-core processor is greater than
its deadline.
2We also call our proposed model a fork-join task model
unless stated otherwise.



0 5 10 15 time 

𝜏1
1,1 𝜏1

2,1 

𝜏1
2,2 

𝜏1
2,3 

𝜏1
3,1 

𝜏1
2,4 

(a) On a quad-core processor 

0 5 10 15 

𝜏1
1,1 𝜏1

2,1 

𝜏1
2,2 

𝜏1
2,5 𝜏1

3,1 

𝜏1
2,6 

(b) On a dual-core processor 

𝜏1: ( 2, 3, 8 , 2 , 15, 15) 
misses its deadline on a 

dual-core processor. 

𝜏1
2,5 

𝜏1
2,6 

𝜏1
2,7 

𝜏1
2,8 

𝜏1
2,3 

𝜏1
2,4 

𝜏1
2,7 

𝜏1
2,8 

Figure 3: τ1 : ((2, (3, 8), 2), 15, 15) misses its deadline
on a dual-core processor, but not on a quad-core
processor.

3.2 The Task Stretch∗ Transform
We propose a task transformation algorithm stretch∗ in Al-
gorithm 1. It breaks down a fork-join real-time task into a
set of tasks. This set is composed of a long task called a mas-
ter string and a bunch of constrained-deadline tasks with
D < T . This set can be scheduled using any scheduling al-
gorithm supporting conventional single-threaded tasks such
as global DM, global EDF [12] and FBB-FFD [13].

In Algorithm 1, when a new constrained-deadline task is
created, it is represented as τ : (C,D, φ), where C is the
worst-case execution time, D is the relative deadline, and φ
is the release offset. When a parallel thread is merged into
an existing task, we use ⊕ as a symbol and τ : (C) as the
thread added to the existing task. Merging a thread does not
change either the deadline or the offset of the existing task.
In this algorithm, we made a small change on how to use
the modulo function. k mod qi returns qi if k mod qi = 0.

We use two parameters fi and qi in Algorithm 1. fi is the
ratio of the parallel execution requirements Pi to the slack
of the task Ti−ηi. We use this value to evenly distribute the
slack to each parallel segment. qi is the number of parallel
threads after a task is processed by Algorithm 1. In other
words, at any point of time t, τstretch

∗
i will have at most qi

concurrent running threads on m cores. It should be noted
that the deadline assignment for the qthi thread is different
from others because we split the thread so that we can avoid
the worst-case scenario explained in [21].

The algorithm is an extension of the task stretch transfor-
mation proposed in [21]. The stretch∗ transformation can
handle more general cases: (1) when the number of paral-
lel threads exceeds the number of cores, and (2) when the
number of parallel threads of each segment is different. The
improvements can be described as follows:

• If the number of parallel threads within a fork-join seg-
ment exceeds the number of CPU cores m, all parallel
threads τ2j,ki with the same value of (k mod qi), where

1 ≤ k ≤ m2j
i , coalesce into the thread τ2j,k mod qi

i .
This step guarantees that the number of parallel threads
does not exceed the number of processing cores after
the task transformation.

• Based on the new worst-case execution time of the
merged threads of each parallel segment, a constrained
deadline proportional to (1+fi) is assigned to each par-

Algorithm 1 Stretch∗(τ)

Input: τ : a fork-join real-time task
Output: τstretch

∗
: a stretch∗ed task set

1: τmasteri ← ()
2: {τ cdi } ← {}
3: if Ci ≤ Ti then
4: . The task can run on a single core
5: for j = 1 to si−1

2
do

6: τmasteri ← τmasteri ⊕ τ2j−1,1
i : (C2j−1

i )

7: for k = 1 to m2j
i do

8: τmasteri ← τmasteri ⊕ τ2j,ki : (P 2j
i )

9: τmasteri ← τmasteri ⊕ τsi,1i : (Csii )
10: else
11: . Stretch∗ the task to its deadline
12: fi ← Ti−ηi∑ si−1

2
j=1 d

m
2j
i
m
eP2j
i

13: qi ← min (m,mi)− bfic
14: for j = 1 to si−1

2
do

15: τmasteri ← τmasteri ⊕ τ2j−1,1
i : (C2j−1

i )
16: . 1) Coalesce threads so that the total number of

parallel threads is less than qi
17: for k = 1 to m2j

i do
18: if k mod qi = 1 then
19: . Part of the master string
20: τmasteri ← τmasteri ⊕ τ2j,ki : (P 2j

i )

21: else if τ2j,k mod qi
i /∈ {τ cdi } then

22: . Create a new parallel thread

23: D2j
i ← (1 + fi)d

m
2j
i
m
eP 2j

i

24: φ2j
i ←

∑j−1
l=0 C

2l+1
i +

∑j−1
l=1 D

2l
i

25: {τ cdi } ← {τ cdi } ∪ τ2j,k mod qi
i : (P 2j

i , D2j
i , φ

2j
i )

26: else if τ2j,k mod qi
i ∈ {τ cdi } then

27: . Part of the existing threads
28: τ2j,k mod qi

i ← τ2j,k mod qi
i ⊕ τ2j,ki : (P 2j

i )
29: . 2) Split among the qi-th thread and the master

string
30: if τ2j,qii ∈ {τ cdi } then

31: {τ cdi } ← {τ cdi } − τ2j,qii

32: τmasteri ← τmasteri ⊕ τ ′2j,qii : ((fi −
bfic)d

m
2j
i
m
eP 2j

i )
33: . Create a new parallel thread

34: D2j,qi
i ← (1 + bfic)d

m
2j
i
m
eP 2j

i

35: φ2j
i ←

∑j−1
l=0 C

2l+1
i +

∑j−1
l=1 D

2l
i

36: {τ cdi } ← {τ cdi } ∪ τ ′′2j,ki : ((1 + bfic −
fi)d

m
2j
i
m
eP 2j

i , D2j,qi
i , φ2j

i )

37: τmasteri ← τmasteri ⊕ τsi,1i : (Csii )

38: return τstretch
∗

i :=
(
τmasteri , {τ cdi }

)

allel segment by the algorithm. Accordingly, an offset
is also determined so that parallel threads are released
at the right time instants.

Figure 4 shows an example of the task stretch∗ transforma-
tion with a task τ1 : ((2, (3, 8), 2), 15, 15). The task has 8
parallel threads, and it has a slack of 5 because the mini-
mum execution length η1 is 10. Using the slack, a portion
of τ2,41 and τ2,81 are scheduled with the master string.
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Figure 4: The task stretch∗ transformation example
with τ1 : ((2, (3, 8), 2), 15, 15)

4. RESOURCE AUGMENTATION BOUND
ANALYSIS FOR GLOBAL DEADLINE
MONOTONIC SCHEDULING

In this section, we derive the resource augmentation bound
of global DM scheduling for the task model described in Sec-
tion 3. To the best of our knowledge, this is the first result
of resource augmentation bound of global DM scheduling for
parallel real-time tasks. For this approach, we use a density-
based schedulability test proposed in [8] given below.

Theorem 1 (from [8]). A set of periodic or sporadic
tasks with constrained deadlines is schedulable with Deadline-
Monotonic priority assignment on m ≥ 2 processors if:

λsum ≤
m

2
(1− λmax) + λmax (2)

where, λsum is the sum of the density of each task in the
taskset, λmax is the maximum value of task densities, and a
density λ is a ratio of the deadline of a task to its worst-case
execution time.

Let λstretch
∗

i denote the sum of the density of each task in
the stretched taskset τstretch

∗
i . As specified in Algorithm 1,

two cases, (1) Ci ≤ Ti and (2) Ci > Ti should be considered

to understand the properties of λstretch
∗

i . Two corresponding
lemmas are presented next.

Lemma 1. For a fork-join real-time task τi, the density
of the resulting stretched task τstretch

∗
i is bounded by Ci

Ti
if

Ci ≤ Ti.

Proof. For the case of Ci ≤ Ti, we use the fact that the
execution requirement and Ti(= Di) of both τi and τstretch

∗
i

are equal. Then, from the definition of density, Ci
Ti

.

Before investigating a fork-join real-time task τi with Ci >
Ti, we assume that τi is provided with a level of parallelism
so that Ci

min(m,mi)
≥ Pi is satisfied. In the ideal case, based

on Amdahl’s law [2], Ci
min(m,mi)

= Pi holds good because all

the segments are running in parallel. Since we assume a fork-
join model that has non-zero serial segments, the ideal case
cannot be achieved. However, approaching Pi to Ci

min(m,mi)

is desirable to fully utilize parallelism.

Lemma 2. For a fork-join real-time task τi, the sum of
the density of the resulting stretched τstretch

∗
i is bounded by

Ci
Ti−ηi

if Ci > Ti.

Proof. For the case of Ci > Ti, it should be noted that
the output of the algorithm is a set of tasks composed of
a master thread τmasteri and several constrained deadline
tasks {τ cdi }. Hence, the following inequality holds good:

λstretch
∗

i ≤ λmasteri +
∑

τi∈{τcdi }

λi

Since the worst-case execution time of τmasteri is less than
Ti, λ

master
i ≤ 1 from the implicit deadline assumption. It

is known that there will be at most qi concurrent running
threads including the master thread at any point of time
t. We ensure this by assigning an offset whenever a new
parallel thread is created in Algorithm 1. The offset also
guarantees that only one segment is active at a time. Thus,
the density of τi can be substituted with the density of a
segment that has the largest value among the densities of
the segments of τi.

Let Pmaxi = max
si−1

2
j=1 d

m
2j
i
m
eP 2j

i . We first consider the case
of qi > 2. When qi threads are simultaneously running,
for the qi − 1 constrained tasks, there will be qi − 2 paral-
lel threads with the execution time of Pmaxi and the rela-
tive deadline of (1 + fi)P

max
i . There will also be a parallel

thread with the execution time of (1 + bfic − fi)Pmaxi and
the relative deadline of (1 + bfic)Pmaxi . Therefore, if we

let Pi =
∑ si−1

2
j=1

⌈
m

2j
i
m

⌉
P 2j
i , the following inequalities are

satisfied:

∑
τi∈{τcdi }

λi ≤
(qi − 2)Pmaxi

(1 + fi)Pmaxi

+
(1 + bfic − fi)Pmaxi

(1 + bfic)Pmaxi

≤ (qi − 1)

(1 + fi)
=

(qi − 1)Pi
(Pi + Ti − ηi)

We then consider the case of 0 < qi ≤ 2. When qi is 1, it
means that τi can run on a single core. Therefore, we focus
on the case of qi = 2, which means that

∑
τi∈{τcdi }

λi will

have only the task which is split. Therefore,

∑
τi∈{τcdi }

λi ≤
(1 + bfic − fi)Pmaxi

(1 + bfic)Pmaxi

≤ 1

(1 + fi)

=
Pi

(Pi + Ti − ηi)
=

(qi − 1)Pi
(Pi + Ti − ηi)



Now, we consider both τmasteri and {τ cdi }.

λstretch
∗

i ≤ 1 +
(qi − 1)Pi

(Pi + Ti − ηi)
=
Pi + Ti − ηi + (qi − 1)Pi

(Pi + Ti − ηi)

=
(fi + qi)Pi

(Pi + Ti − ηi)
=

(fi +min(m,mi)− bfic)Pi
(Pi + Ti − ηi)

≤ min(m,mi)Pi
(Pi + Ti − ηi)

≤ Ci
Ti − ηi

From the inequality above, the lemma is proved.

We define a task called a heavy task that has a density
greater than or equal to 1

ν
on a ν-speed processing core.

Theorem 2. Global Deadline Monotonic scheduling of the
fork-join real-time task model has a resource augmentation
bound of 3.73 when each heavy task is assigned to its own
processing core.

Proof. Consider a set of n fork-join real-time tasks τ .
We assume that the given taskset is feasible on m identical
unit-speed processors, which implies

∑n
i=1

Ci
Ti
≤ m. Other-

wise, the given taskset is not feasible.

Let there be k heavy tasks on a ν-speed processor. Under
the task stretch∗ transform described in Algorithm 1, these
are either fully stretched tasks (Ci ≤ Ti) or master threads
(Ci > Ti). Both types of tasks have a deadline equal to
their period, and their density is at least 1 on a unit-speed
processor by the definition of a heavy task.

Therefore, for the remaining n′ tasks:

n′∑
i=1

Ci
Ti

=

n′∑
i=1

Ci
Di

=

n′∑
i=1

λi = λsum ≤ (m− k) (3)

We need to show that these remaining tasks are schedulable
on m′(= m− k) processors of speed ν, where ν ≥ 3.73.

On a processor that is ν times faster, the minimum execution
length ηνi on a ν-speed processor is given by

ηνi =

si−1
2∑
j=0

C2j+1
i

ν
+

si−1
2∑
j=1

⌈
m2j
i

m

⌉
P 2j
i

ν
≤ ηi

ν
≤ Ti

ν
(4)

where, ∀1 ≤ i ≤ n. Also, the maximum execution length of
τi on a ν-speed processor is

Cνi =

si−1
2∑
j=0

C2j+1
i

ν
+

si−1
2∑
j=1

m2j
i

P 2j
i

ν
=
Ci
ν

(5)

where, ∀1 ≤ i ≤ n.

Case (1): For each fully stretched task τi that is non-heavy

on ν-speed processors, the density is
Ci
ν
Ti
≤ 1

ν
Ci
Ti
≤ 1

ν−1
Ci
Ti

from Lemma 1 and Equation 5.

Case (2): Consider the constrained-deadline taskset gener-
ated by stretch∗ on ν-speed processors for task τi. From the

perspective of load, the total density on ν-speed processors

is bounded by
Cνi

Ti−ηνi
≤ Ci/ν

Ti−
Ti
ν

= 1
ν−1

Ci
Ti

from Lemma 2,

Inequality 4 and Equation 5.

λsum on ν-speed processors, therefore, is bounded by m′

ν−1

because λsum ≤
∑n′

i=1
1

ν−1
Ci
Ti

= 1
ν−1

∑n′

i=1
Ci
Ti
≤ m′

ν−1
from

Inequality 3. The master threads for tasks that cannot be
fully stretched are always heavy tasks since they use up the
entire Ti on the ν-speed processor. By the definition of heavy
tasks, λmax is always upper bounded by 1

ν
on ν-speed pro-

cessors. Then, for m′ ≥ 2 using Inequalities 2 and 3 and the
cases considered above,

m′

2

(
1− 1

ν

)
+

1

ν
≥ m′

ν − 1

⇔m′

2
− 1 ≤ ν

(
m′

2
− m′

ν − 1

)
⇔m′ 4ν − ν

2 − 1

2ν(ν − 1)
≤ 1

ν

⇔4ν − ν2 − 1

2(ν − 1)
≤ 1

m′

As m′ →∞, we get,

4ν − ν2 − 1

2(ν − 1)
≤ 1

m′
⇐ ν ≥ 2 +

√
3

This holds good for all m′ ≥ 2 processors using ν ≥ 2+
√

3 ≈
3.73.

5. GLOBAL SCHEDULING ON LINUX/RK
We have designed an operating system abstraction for man-
aging our parallel real-time task model using the resource-
reservation paradigm. A parallel task in our model is com-
posed of multiple threads. A thread called master string
executes all sequential segments and a portion3 of paral-
lel segments. Parallel threads are spawned by the master
thread and execute the remaining portion of parallel seg-
ments. In order to represent the multiple threads and their
precedence constraints, our abstraction employs the resource
management entities, resource set and reserve, introduced in
resource kernels [27], where

• Resource set : A resource set corresponds to a parallel
task. It is a container of multiple reserves.

• Reserve: A reserve represents the amount of CPU bud-
get to be reserved on a single core or multiple cores. A
reserve is specified with (C, T,D, φ): C is a worst-case
execution time; T is a period; D is a relative deadline;
φ is a release offset.

Figure 5 shows the scheduling of a parallel real-time task
on four cores with the stretch∗ transformation. The paral-
lel task τ1 has one parallel segment comprising four threads.

3This portion is obtained by running Algorithm 1.
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Figure 5: CPU resource abstraction for a parallel
task with global DM scheduling

The stretch∗ transformation splits the last thread of the par-
allel segment, τ2,41 , into τ ′

2,4
1 and τ ′′

2,4
1 . Hence, τ ′

2,4
1 is as-

signed a relative deadline of 8 that is equal to the release
offset of τ ′′

2,4
1 . The CPU usage and its offset on each core

can be represented as a reserve. Since a reserve is equiva-
lent to an individual sequential periodic task, the global DM
scheduling algorithm can determine the scheduling priorities
for reserves. Then, we assign reserves to threads so that each
thread is scheduled with the priority and the release offset of
the assigned reserve and consumes the reserve’s CPU bud-
get. The master string thread, (τ1,11 → τ2,11 → τ3,11 ), is
assigned a reserve (rsv1). The second and the third thread
in the parallel segment, τ2,21 and τ2,31 , are assigned (rsv2)
and (rsv3), respectively. The last thread τ2,41 is assigned an
ordered list of reserves, (rsv4 → rsv1). This means that
τ2,41 first uses rsv4’s priority and CPU budget, and when it
uses up rsv4’s budget, it continues its execution with rsv1’s
priority and remaining CPU budget.

We implemented the abstraction for parallel tasks on Linux/
RK [25], which is based on the Linux 2.6.38.8 kernel. We
used hrtimers to release threads at specified offsets and to
account the CPU usage of threads. When a thread uses up
all reserves assigned to it, the abstraction enforces the CPU
usage of the thread by suspending it. The accounting and
the enforcement of our abstraction can also be used for the
measurement-based worst-case-execution-time estimation of
threads in a parallel task, by checking an occurrence of the
enforcement with a tentative execution time.

6. CASE STUDY ON SELF-DRIVING CAR
We studied the efficacy of our proposed scheme using a self-
driving car platform Boss. The latest motion planning algo-
rithm running on Boss [17] is used for our evaluation. The
algorithm considers the distance to the next destination, the
lateral offset of the car to the center of the lane, the lon-
gitudinal velocity, the longitudinal acceleration, the lateral
acceleration and a list of static/dynamic obstacles on the
road where the vehicle is driving. With the given informa-
tion based on which the number of parallel threads varies,
the algorithm generates curvature and velocity profiles for
the path which the vehicle should follow. The planning al-
gorithm is implemented using OpenMP, and we evaluate the
quality of autonomous driving by analyzing curvature and
velocity profiles of Boss (1) when the conventional reserva-
tion approach with Linux/RK [25] is used, (2) when the
previous task model [21] is used, and (3) when our proposed

4-way intersection 

Parking lot 

Boss starts here 

SE intersection 

(1) 

(2) 

(3) 

(4) 

(5) 

NW intersection 

Figure 6: The map followed by Boss

task model and algorithm are used.

We ran the planning algorithm on a simulation cluster [23,
19] equipped with an Intel Core i7 quad-core processor. Al-
though we run the exact same algorithm on the vehicle, we
measure the results on the simulation cluster due to testing,
convenience and safety considerations. We ran a scenario
with the layout of our test track located at Robot City in
Hazelwood, Pittsburgh, PA, where we test the vehicle at
straight multi-lane roads, curvy roads, intersections, U-turns
and parking lots. The exact same scenario file is also used
during the field test, but the tasks for receiving raw sensor
data are replaced with simulation tasks. In Figure 6, the
test track for the scenario is illustrated. Boss will depart at
the point circled in the middle of Figure 6. Boss will follow
the road, (1) cross a 4-way intersection governed by stop
signs, follow the straight road and (2) make a left turn at
NW intersection. Then, Boss will (3) make a left turn at SE
intersection, proceed to NW intersection and (4) turn right
towards the curve marked with (5) connecting to the long
straight road.

The scenario is composed of eight tasks: BehaviorTask,
MissionPlannerTask, OnRoadMotionPlannerTask, PrePlan-
nerTask, RoadBlockageDetector, RobotClient, ServerTask
and SimpleControllerTask. The BehaviorTask decides what
to do such as turning, intersection handling and lane chang-
ing. The MissionPlannerTask interacts with the stored
map to decide where to go. The OnRoadMotionPlanner-

Task and the PrePlannerTask send trajectories to the vehi-
cle controller. The RoadBlockageDetector works with the
BehaviorTask so that the vehicle detects the blocked road
and finds an alternate route when needed. The SimpleCon-

trollerTask receives the actuator commands and directly
interfaces with the vehicle hardware such as the accelerator,
the brake and the steering wheel. On the simulation cluster,
this task operates in simulation mode, and the ServerTask

and the RobotClient behave as the vehicle hardware. In this
paper, our focus is on the OnRoadPlannerTask running the
motion planning algorithm [17] with OpenMP enabled. The
task generates curvature and velocity profiles for the vehicle
hardware, so the lack of resources will affect the control al-
gorithm, making the car drive in an unstable manner. If the
planning algorithm does not meet the deadline, the steering
wheel, for example, jerks and the car goes to an unexpected
place, which can cause an accident.
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Figure 7: Curvature and velocity profiles during the entire journey of Boss illustrated in Figure 6.
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Figure 8: Curvature and velocity profiles of Boss when conventional resource reservation is used.
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Figure 9: Curvature and velocity profiles of Boss when previously known techniques [21] are used.

Figure 7 shows the autonomous driving performance, i.e.,
the curvature and velocity profiles collected from the out-
put of OnRoadMotionPlannerTask when the proposed task
model and algorithm are used with a varying number of
threads. We limit the maximum number of threads to 50.
The curvature graph shows when Boss makes turns; a neg-
ative value means a left rotation of steering wheel, and vice
versa. For example, Boss arrives at the SE intersection in

Figure 7 around t = 65s, and that is the fourth valley in
the curvature graph. Accordingly, we can see the velocity of
Boss decreases to turn left. The bigger the absolute value
of curvature, the steeper will be the turn made by Boss.
From the perspective of autonomous driving quality, a sud-
den control change on an actuator is not desirable.

Figure 8 shows an undesirable case when the conventional



resource reservation approach with Linux/RK is used. Since
the traditional Linux/RK does not consider a parallel task
model, it assigns all child threads into a reserve allocated
to a processing core. Since this may prevent the planning
algorithm from running in parallel, the planner may not be
able to meet its deadline, which is shown from 130s to 150s
in Figure 8. The planning algorithm requires more threads
when a car is moving faster and/or when a car is making a
sharp turn. The results shown, therefore, are consistent with
the property of the planning algorithm. Figure 9 also shows
the result when the model of [21] is used, where only four
threads can run in parallel because the simulation cluster
has a quad-core processor. For this case, the velocity profiles
are fine, but the curvatures show some jitters that can make
the vehicle unstable and also uncomfortable for passengers.
The results shown in Figure 8 and 9 could be potentially
dangerous on the real vehicle because the vehicle in the real-
world may slip, drift and crash.

7. RELATED WORK
Since Dhall and Liu [12] showed that RM and EDF sche-
duling could utilize only one processor regardless of how
many processors a system had, there has been extensive re-
search on global real-time scheduling [3, 15, 6, 5, 7, 8, 9, 11],
where a comprehensive survey can be found in [11]. It is
well-known that the anomaly of global scheduling happens
when a set of tasks has two types of tasks: tasks with a low
ratio of the worst-case execution time to relative deadline
and tasks with a high ratio of the worst-case execution time
to relative deadline. Many algorithms have been invented
to avoid such cases, and corresponding schedulability tests
have been proposed. Using our proposed task transforma-
tion, any existing global scheduling algorithm can be applied
to schedule parallel real-time tasks. In this paper, we have
used the schedulability bounds for global DM proposed in [6,
9].

There has not been much research on scheduling parallel
real-time tasks [18, 21, 29, 24]. Lakshmanan et al. [21] pro-
posed a fork-join real-time task model composed of alter-
nating sequential and parallel segments. They also provided
the analysis and resource augmentation bound for the par-
titioned DM scheduling [13] of parallel real-time tasks using
the task stretch transformation. The proposed multiproces-
sor scheduling algorithm is shown to have a resource aug-
mentation bound of 3.42, which implies that any task set
that is feasible on m unit-speed processors can be sched-
uled by the proposed algorithm on m processors that are
3.42 times faster. Our work is a generalization of this model
and provides a resource augmentation bound when global
scheduling is used.

Saifullah et al. [29] also proposed a parallel synchroniza-
tion model that is also generalized from the fork-join task
model in [21] so that a task can have an arbitrary number of
threads per segment. Based on the proposed model, a task
decomposition method is used to decompose each parallel
task into a set of sequential tasks. The task decomposition
achieves a resource augmentation bound of 4 and 5 when the
decomposed tasks are scheduled using global EDF and parti-
tioned DM scheduling, respectively. Our work focuses more
on global fixed-priority scheduling and shows the evaluation
results measured from a real-world implementation.

More recently, Nelissen et al. [24] presented both offline and
online algorithms to minimize the number of cores to be used
to schedule multi-threaded tasks using a similar model to
the model proposed in [29]. By using scheduling algorithms
which can guarantee the schedulability of the given tasks as
long as the sum of densities of all the given tasks is less than
or equal to the number of processing cores, they obtained
a resource augmentation bound of 2. Our perspective is
different from theirs in a sense that we schedule a set of tasks
under a given hardware constraint (the number of processing
cores) rather than finding hardware for the given tasks. We
also use global DM scheduling algorithm more commonly
used in practice and show the evaluation results obtained
from a working system.

Apart from work using the Thread model mentioned above,
there has also been research based on gang scheduling, where
all parallel components of the same task should arrive and
complete at the same time. Gang EDF [18] was proposed to
address gang scheduling in the real-time context. Our work
is different from this in two ways: (1) our model allows
the parallel segments to be preempted during the parallel
execution, and (2) a different number of parallel threads
can be used.

8. SUMMARY AND FUTURE WORK
To meet rapidly increasing demands for complex cyber-physi-
cal systems, we motivated the necessity of using multi-core
processors and corresponding parallel programming models
such as OpenMP [1]. In particular, emerging CPS such as
a self-driving vehicle can benefit significantly from paral-
lel real-time tasks allowing multiple compute-intensive real-
time tasks to support demanding requirements. Thus, a
self-driving vehicle can model its physical surroundings in
parallel and react to them in real-time. In this paper, we
proposed a fork-join parallel real-time task model, where the
amount of parallel executions can vary depending on the
physical attributes of the system. The proposed task model
is transformed using our stretch∗ algorithm. With global
deadline-monotonic scheduling, we obtained a resource aug-
mentation bound of 3.73, which means that any task set
that is feasible on m unit-speed processors can be sched-
uled by the proposed algorithm on m processors that are
3.73 times faster. The proposed scheme was implemented
on Linux/RK [25] as a proof of concept, and ported to Boss,
the self-driving car that won the 2007 DARPA Urban Chal-
lenge [31]. On Boss, we evaluated our proposed scheme that
improved its autonomous driving quality. Future work to be
done includes supporting dynamic changes of periods and
execution times of parallel real-time tasks. We already have
early work on varying periods [20], and the dynamic nature
of CPS will be addressed using this model combined with
parallel tasks.
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