
ICCD 2020

Chain-Based Fixed-Priority Scheduling of
Loosely-Dependent Tasks

Hyunjong Choi, Mohsen Karimi, Hyoseung Kim



Motivational example

2

Perception reaction distance (A) Braking deceleration distance (B)

Total stopping distance (C)

I. Introduction 

Stopped 
completely

Speed (mph) A (feet) B (feet) C (feet)

55 121 144 265

60 132 172 304

65 143 202 345

< Vehicle stopping distance by National Association of 
City Transportation Officials (NACTO), 2015 >

Complex information flows implemented with chains of tasks 
Human driving Autonomous 

driving

II. Related work and contributions



Loosely-dependent task chains
 Each task executes and produces output at its own rate
 Based on most recent input data from a preceding task
 e.g., publisher-subscriber in ROS, read-execute-write in AUTOSAR

Give flexibility in system design, scheduling, and information sharing

3

Goal: Minimize the end-to-end latency of loosely-dependent chains

I. Introduction II. Related work and contributions



Contributions
 Propose a new chain-based fixed-priority scheduler that identifies effective 

chain instances producing valid and updated chain outputs.
 Present an analytical method to upper-bound the end-to-end latency of chains 

under the proposed scheduler.
 Significantly outperforms the state-of-the art chain-unaware schedulers 
 Up to 83% reduction in end-to-end latency with a shorter update rate of valid chain output.

4

- Chain-unaware schedulers
- Upper bound on latency based on the WCRT

Abdullah et al. [DATE 2019]
Kloda et al. [ETFA 2018]

Becker et al. [RTCSA 2016]

- Limitations of DAG-based schedulings
(inapplicable to tasks running asynchronously 
with different periods and priorities)

Ayan et al. [ICCPS 2019]
Han et al. [RTSS 2009]

Prior Work:

II. Related work and contributions III. Chain-based fixed-priority scheduling



System model
 Multi-core system with partitioned fixed-priority scheduling
 Task model: 𝜏𝜏𝑖𝑖 ≔ (𝐵𝐵𝐶𝐶𝑖𝑖 ,𝑊𝑊𝐶𝐶𝑖𝑖 ,𝐷𝐷𝑖𝑖 ,𝑇𝑇𝑖𝑖 , 𝑜𝑜𝑖𝑖 ,𝜋𝜋𝑖𝑖)

• 𝐵𝐵𝐶𝐶𝑖𝑖: The best-case execution time of a job of 𝜏𝜏𝑖𝑖
• 𝑊𝑊𝐶𝐶𝑖𝑖: The worst-case execution time of a job of 𝜏𝜏𝑖𝑖
• 𝐷𝐷𝑖𝑖: The relative deadline of 𝜏𝜏𝑖𝑖 (𝐷𝐷𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖)
• 𝑇𝑇𝑖𝑖: The period of 𝜏𝜏𝑖𝑖
• 𝑜𝑜𝑖𝑖: The period of 𝜏𝜏𝑖𝑖
• 𝜋𝜋𝑖𝑖: The priority of 𝜏𝜏𝑖𝑖

 Chain model: Γ𝑐𝑐 ≔ [𝜏𝜏𝑠𝑠, 𝜏𝜏𝑚𝑚𝑚, 𝜏𝜏𝑚𝑚𝑚, … , 𝜏𝜏𝑒𝑒]
• 𝜏𝜏𝑠𝑠: The start task of a chain Γ𝑐𝑐

• 𝜏𝜏𝑚𝑚∗: The intermediate task of a chain Γ𝑐𝑐

• 𝜏𝜏𝑒𝑒: The end task of a chain Γ𝑐𝑐

5

III. Chain-based fixed-priority scheduling

< Example of chains >

IV. Latency analysis



Chain-based fixed-priority scheduler (1/2)
 Offline part: find effective chain instances from candidates

6

Step 2: Build chain instances
Add each job of intermediate tasks to eligible chain instances

Step 1: Initialize chain instance candidates
Create instances for job releases from the start task of a chain

< Synthesis of chain instances and effective instances for the taskset >

An effective instance of a chain Γ𝑐𝑐 is the earliest instance 
producing a valid and updated final output using the most 
recently updated input data. The i-th effective instance of 
Γ𝑐𝑐 is denoted as 𝐸𝐸𝑐𝑐[𝑖𝑖].

Definition 1.

III. Chain-based fixed-priority scheduling IV. End-to-end latency analysis



7

Chain-based fixed-priority scheduler (2/2)
 Runtime part: Release-and-Ready (RNR) policy

• Prevent unnecessarily early start of job execution
• Two step-phases
 Release phase : arrival of a job according to its period, but cannot start 

execution
 Ready phase : when previous jobs of the same chain instance have 

completed their execution

- 𝐸𝐸𝑐𝑐[𝑖𝑖, 𝑗𝑗 − 1] complete, if 𝑗𝑗 ≠ 1
- Most recent job of 𝐸𝐸𝑐𝑐[𝑖𝑖 − 1] to 

the same CPU, if 𝑗𝑗 = 1

Rule 1. Job 𝐸𝐸𝑐𝑐[𝑖𝑖, 𝑗𝑗] in a 
single chain

- Rule 1 is satisfied for all of its 
effective instances

Rule 2. Job 𝐸𝐸𝑐𝑐[𝑖𝑖, 𝑗𝑗] in 
multiple chains

- Default: dropped (skipped)

Rule 3. Job 𝐸𝐸𝑐𝑐[𝑖𝑖, 𝑗𝑗] not in 
effective instance

< 3 categories of jobs for ready phase of effective chain instance >

III. Chain-based fixed-priority scheduling IV. End-to-end latency analysis



8

End-to-end latency analysis

Our analysis framework can also be used to analyze end-to-end latency 
under conventional chain-unaware fixed-priority schedulers

IV. End-to-end latency analysis

• Consider self-suspension effect caused by release phase
• Interference from high priority jobs of other chains
• Iterate until converge upper- and lower-bounds

Step 1. Lower bound start-time and 
upper bound finish-time of a job

• 𝐿𝐿𝑐𝑐 = max
∀𝑖𝑖

�ℱ𝑐𝑐 𝑖𝑖,𝑁𝑁𝑐𝑐 − 𝒮𝒮𝑐𝑐[𝑖𝑖, 1]Step 2. Compute end-to-end latency 
of effective chain instance

III. Chain-based fixed-priority scheduling

V. Evaluation



Evaluation
 Comparison with the state-of-the-art (single chain)

• Abdullah et al.[2], Becker et al.[5]
• SFA-RM : start- and finish-time based analysis under chain-unaware rate monotonic scheduling
• CBS : proposed analysis framework under chain-based scheduler

 Use 500 tasksets with 7 tasks each for each utilization

 A chain with N tasks, left tasks are hard real-time tasks (i.e., modeled single-task chains)

9

V. Evaluation

[2] Worst-case cause-effect reaction latency in systems with non-blocking communication (DATE 2019)
[5] Synthesizing job-level dependencies for automotive multi-rate effect chains (RTCSA 2016)

83% reduction

VI. Conclusion



Evaluation
 Comparison with the state-of-the-art (multiple chains with a mutual task)

 Utilization of 0.8 with 9 tasks that forms 2 chains
 Mutual task’s position

Chain set 1: start task, Chain set 2 : end task, Chain set 3 : intermediate task

10

Chain 1 Chain 2

B
A

C D E

F G H I

B
A

C D E

F G H I

B
A

C D E

F G H I

V. Evaluation VI. Conclusion



Conclusion and future work
Conclusion
 New chain-based fixed-priority scheduling and analysis of end-to-end latency 

of chains
 The proposed scheduler outperforms the state-of-the-art with respect to end-to-

end latency
 Our analysis framework can also be used for conventional chain-unaware 

scheduling policies

 Future work
 Apply proposed scheduler to robotic platforms
 Investigate the timing unpredictability caused by shared memory resources in 

multi-core platforms

11

VI. Conclusion



Q & A
12

Thank you

Chain-Based Fixed-Priority Scheduling of
Loosely-Dependent Tasks

Hyunjong Choi, Mohsen Karimi, Hyoseung Kim


	Chain-Based Fixed-Priority Scheduling of�Loosely-Dependent Tasks
	Motivational example
	Loosely-dependent task chains
	Contributions
	System model
	Chain-based fixed-priority scheduler (1/2)
	Chain-based fixed-priority scheduler (2/2)
	End-to-end latency analysis
	Evaluation
	Evaluation
	Conclusion and future work
	Q & A

