

Chain-Based Fixed-Priority Scheduling of Loosely-Dependent Tasks

Hyunjong Choi, Mohsen Karimi, Hyoseung Kim

Motivational example

Loosely-dependent task chains

- Each task executes and produces output at its own rate
 - Based on most recent input data from a preceding task
 - e.g., publisher-subscriber in ROS, read-execute-write in AUTOSAR
- Give flexibility in system design, scheduling, and information sharing

Goal: Minimize the end-to-end latency of loosely-dependent chains

Contributions

- Propose a new chain-based fixed-priority scheduler that identifies effective chain instances producing valid and updated chain outputs.
- Present an analytical method to upper-bound the end-to-end latency of chains under the proposed scheduler.
- Significantly outperforms the state-of-the art chain-unaware schedulers
 - Up to 83% reduction in end-to-end latency with a shorter update rate of valid chain output.

Prior Work:

- Chain-unaware schedulers

- Upper bound on latency based on the WCRT *Abdullah et al. [DATE 2019] Kloda et al. [ETFA 2018] Becker et al. [RTCSA 2016]* - Limitations of DAG-based schedulings (inapplicable to tasks running asynchronously with different periods and priorities) *Ayan et al.* [ICCPS 2019] Han et al. [RTSS 2009]

System model

- Multi-core system with partitioned fixed-priority scheduling
- Task model: $\tau_i \coloneqq (BC_i, WC_i, D_i, T_i, o_i, \pi_i)$
 - BC_i : The best-case execution time of a job of τ_i
 - WC_i : The worst-case execution time of a job of τ_i
 - D_i : The relative deadline of τ_i ($D_i \leq T_i$)
 - T_i : The period of τ_i
 - o_i : The period of τ_i
 - π_i : The priority of τ_i
- Chain model: $\Gamma^c \coloneqq [\tau_s, \tau_{m1}, \tau_{m2}, \dots, \tau_e]$
 - τ_s : The start task of a chain Γ^c
 - τ_{m*} : The intermediate task of a chain Γ^c
 - τ_e : The end task of a chain Γ^c

< Example of chains >

Chain-based fixed-priority scheduler (1/2)

• Offline part: find effective chain instances from candidates

Definition 1.

An effective instance of a chain Γ^c is the earliest instance producing a valid and updated final output using the most recently updated input data. The *i*-th effective instance of Γ^c is denoted as $E^c[i]$.

< Synthesis of chain instances and effective instances for the taskset >

Chain-based fixed-priority scheduler (2/2)

- Runtime part: *Release-and-Ready* (RNR) policy
 - Prevent unnecessarily early start of job execution
 - Two step-phases
 - ✓ Release phase : arrival of a job according to its period, but cannot start execution
 - ✓ Ready phase : when previous jobs of the same chain instance have completed their execution

< 3 categories of jobs for ready phase of effective chain instance >

End-to-end latency analysis

Step 1. Lower bound start-time and upper bound finish-time of a job

Consider self-suspension effect caused by release phaseInterference from high priority jobs of other chains

• Iterate until converge upper- and lower-bounds

Step 2. Compute end-to-end latency of effective chain instance

•
$$L^c = \max_{\forall i} \overline{\mathcal{F}}^c[i, N_c] - \mathcal{S}^c[i, 1]$$

Our analysis framework can also be used to analyze end-to-end latency under conventional chain-unaware fixed-priority schedulers

V. Evaluation

Evaluation

Comparison with the state-of-the-art (single chain)

- SFA-RM : start- and finish-time based analysis under chain-unaware rate monotonic scheduling
- **CBS** : proposed analysis framework under chain-based scheduler
- Use 500 tasksets with 7 tasks each for each utilization
- A chain with N tasks, left tasks are hard real-time tasks (i.e., modeled single-task chains)

[2] Worst-case cause-effect reaction latency in systems with non-blocking communication (DATE 2019)[5] Synthesizing job-level dependencies for automotive multi-rate effect chains (RTCSA 2016)

V. Evaluation

Evaluation

• Comparison with the state-of-the-art (multiple chains with a mutual task)

- Utilization of 0.8 with 9 tasks that forms 2 chains
- Mutual task's position

Chain set 1: start task, Chain set 2 : end task, Chain set 3 : intermediate task

VI. Conclusion

Conclusion and future work

- Conclusion
 - New chain-based fixed-priority scheduling and analysis of end-to-end latency of chains
 - The proposed scheduler outperforms the state-of-the-art with respect to end-toend latency
 - Our analysis framework can also be used for conventional chain-unaware scheduling policies
- Future work
 - Apply proposed scheduler to robotic platforms
 - Investigate the timing unpredictability caused by shared memory resources in multi-core platforms

Chain-Based Fixed-Priority Scheduling of Loosely-Dependent Tasks

• <u>Hyunjong Choi</u>, Mohsen Karimi, Hyoseung Kim

