
Chain-Based Fixed-Priority Scheduling of
Loosely-Dependent Tasks

Hyunjong Choi, Mohsen Karimi, and Hyoseung Kim
University of California, Riverside

{hchoi036, mkari007, hyoseung}@ucr.edu

Abstract—Many cyber-physical applications consist of chains
of tasks. Such tasks are often loosely dependent, meaning task
execution is time-triggered and independent of the update rate
of input data. Since meaningful output can be obtained after
processing all the intermediate tasks of a chain, the end-to-
end latency of the chain is an important metric that can affect
the correctness and quality of the system. In this paper, we
present a chain-based fixed-priority preemptive scheduler for multi-
core real-time systems. The scheduler identifies effective chain
instances contributing to the generation of updated output, and
employs a runtime policy to improve the end-to-end latency of
chains. Based on our scheduler, an analysis method is proposed
with two parts: (i) bounding the start and finish time of
each job, and (ii) analyzing the end-to-end latency of effective
chain instances. Experimental results show that our chain-
based scheduler achieves up to 83% reduction in end-to-end
latency compared to the state-of-the-art and yields a significant
benefit in inter-chain distance over chain-unaware schedulers.
Furthermore, our analysis method can be easily adapted to chain-
unaware schedulers and provides tighter bounds than prior work.

I. INTRODUCTION

The complex information flows of cyber-physical systems
are increasingly implemented with chains of tasks. An au-
tonomous vehicle is a good example as studied in [1, 15, 17].
Sensing tasks collect data from various sensors, e.g., LiDAR,
cameras, and IMU, according to their update rate. Using
the collected data, computation tasks periodically perform
operations like localization, detection, and prediction, and then
generate the trajectory of the vehicle. In the actuation stage,
control tasks manipulate steering and throttle based on the
latest results of the computation tasks. Since the final output
is obtained only after processing all the intermediate tasks,
bounded and predictable end-to-end latency is the key to
meet the application-level requirements such as control quality
and data freshness. Similar design is also observed in IoT
applications, e.g., real-time smart home control [14].

Data dependency in task chains does not necessarily impose
strict precedence constraints among tasks. Each task can
execute and produce output at its own rate, independent of
other tasks, by using the most recently updated input data.
This model, we call loosely-dependent chains, gives flexibility
in task scheduling and allows output from one task to be shared
with the tasks of other chains, without having to synchronize
their release times. The meaning of the end-to-end latency of a
loosely-dependent chain does not differ from the conventional
definition, which is the time elapsed from the release of

the first task in a chain to the completion of the last task
generating an updated output. In fact, the publisher-subscriber
model in ROS [26] and the read-execute-write semantics in
AUTOSAR [5] with shared memory have been widely used
to utilize loosely-dependent chains in system design.

The end-to-end latency of loosely-dependent chains can be
negatively affected by the deadline misses of intermediate
tasks. However, not all the task-level deadlines need to be
always met unless each has a hard real-time constraint. Timely
execution of a specific job may not contribute to the gener-
ation of the final chain output if the preceding task has not
updated input data or the following task does not consume
the output of this job. Moreover, many sensing and control
applications are known to be capable of tolerating some
deadline misses as long as they do not affect the functional
correctness of system-level behavior. While weakly-hard real-
time systems [9, 11, 29] have been studied to capture this
effect, the notion of loose dependency and end-to-end latency
has not been well studied in the literature. Note that this is
a non-trivial problem since each chain may consist of tasks
with different periods and priorities. The complexity multiplies
when tasks are shared among multiple chains.

In this paper, we propose chain-based fixed-priority pre-
emptive scheduling for periodic tasks with loose dependency
in a multi-core environment. The goal of this work is to
minimize end-to-end latency of task chains since this is the
foremost requirement in many practical applications. The main
contributions of this paper are shown as follows:

• We present the design of the proposed chain-based sched-
uler. The offline part of the scheduler identifies effective
chain instances which produce valid and updated chain
outputs. Based on this information, the runtime part enforces
execution rules to reduce the end-to-end latency of chains.

• We develop an analytical method to upper-bound end-to-end
chain latency under the proposed scheduler. Our method first
bounds the start and finish time of individual jobs and then
analyzes the maximum latency of effective chain instances.

• We show that, with small modifications, our analysis can be
used to analyze end-to-end chain latency under conventional
chain-unaware fixed-priority schedulers.

• Experimental results demonstrate that the proposed chain-
based scheduler yields significant improvement over chain-
unaware schedulers, in terms of end-to-end latency and the
distance between valid chain outputs.

The rest of the paper is organized as follows. Sec. II reviews
prior work, and Sec. III gives the system model used. The
proposed chain-based scheduling and the analysis method are
presented in Sec. IV and Sec. V. Evaluation results are given
in Sec. VI. Sec. VII concludes the paper with future scope.

II. RELATED WORK

Many studies have been conducted on the schedulabil-
ity analysis of hard real-time tasks with data dependencies.
Palencia et al. proposed approaches to analyze tasks with
dynamic offset and extended the work to tasks with precedence
constraints in multi-core systems [22, 23]. In [10, 28], methods
to capture the upper-bound of end-to-end latency of tasks with
dependency are presented based on the worst-case response
time. The recent work by Kloda et al. [18], Abdullah et al. [2],
and Becker et al. [5] present analytical methods to bound
the end-to-end latency of a chain, which have inspired our
work. However, all of these studies assume conventional chain-
unaware scheduling and do not propose a new scheduler design
to improve end-to-end latency.

Direct Acyclic Graph (DAG) has been widely used to
represent precedence constraints among tasks [20, 27, 31].
However, DAG-based scheduling cannot be directly used to
solve the scheduling problem of loosely-dependent task chains
where tasks run asynchronously with different periods and
priorities.

Age of Information (AoI) has recently received much at-
tention in networking systems and cyber-physical applica-
tions [4, 16, 21, 30] and used as a metric to quantify the
freshness of data over time. While scheduling approaches to
improve or maintain data freshness have been proposed for
real-time networking systems [13, 21], they do not provide a
predictable bound on the worst-case end-to-end latency.

In the literature of weakly-hard real-time systems, there
exists only a small number of papers on tasks with data
dependencies. Hammadeh et al. [12] used the typical worst-
case analysis (TWCA) to derive the deadline miss mod-
els of weakly-hard systems with task dependencies. Their
work assumes that chains do not have shared tasks and all
chains execute on a single processor. In [25], a state-based
methodology is presented to model the performance of a
control application in terms of data freshness and weakly-hard
constraints, assuming that all tasks have the same periods.

III. SYSTEM MODEL

A. Task model

This paper considers a multi-core system where all CPU
cores run at the same fixed clock frequency. The system runs
a taskset (Φ) consisting of N periodic preemptible tasks. Each
task τi is characterized as follows:

τi := (BCi,WCi, Di, Ti, oi, πi)

• BCi: The best-case execution time of a job of τi
• WCi: The worst-case execution time of a job of τi
• Di: The relative deadline of τi (Di ≤ Ti)
• Ti: The period of τi

• oi: The initial release offset of τi
• πi: The priority of τi

Each task is statically allocated to one CPU core and does
not migrate at runtime. The j-th job of τi is denoted as
Ji,j . Task priorities can be assigned by any fixed-priority
assignment policies, e.g., Rate Monotonic.

If a job of a task misses the deadline, it is immediately
aborted (or descheduled) to prevent blocking of its next job
and wasting of CPU cycles. Note that this does not affect
the logical correctness of subsequent jobs since tasks can
either be stateless or recover their states with low-cost rollback
mechanisms developed for real-time systems [3, 8].

B. Chain model

A chain Γc of loosely-dependent tasks is denoted as below:

Γc := [τs, τm1 , τm2 , ..., τe]

• τs: The start task of a chain Γc.
• τm∗ : The intermediate task of a chain Γc.
• τe: The end task of a chain Γc.
The superscript c is the identifier of the chain Γc. We use Γc[i]
to denote the i-th task of the chain, e.g., Γc[1] = τs. Following
the model widely used in prior work [2, 5, 18], we assume
that all tasks in a chain use the read-execute-write semantics,
where a task reads input before the start of execution and
produces output at the end of execution, and inter-task data
communication is done via shared memory/registers at negli-
gible cost. The start task of a chain does not require input data,
e.g., sensing tasks, but all other tasks use the most recently
updated input data from their preceding tasks to generate valid
outputs, e.g., computation and control tasks.

Each chain represents one data flow path of tasks. Fig. 1
illustrates the example. Chains 1, 2, and 3 share τ1 as a mutual
(joint) start task. Chains 2 and 3 contain mutual tasks τ5 and
τ6 as an intermediate and an end task, respectively.

: Start task

: Data dependency

ଶ

𝜏

𝜏

: Intermediate task

: End task
଼ ଽ

: Chains

Chain 1 Chain 2

Chain 3

Chain 4 Chain 5
ସ

 𝜏

ଷ ଵ

𝜏

: Common task

ହ

ଵ

< Legend >

Fig. 1: Example of chains
It is worth noting that a conventional independent periodic

task with a hard real-time constraint can be represented as a
single-task chain. Then, our proposed scheduler and analysis
can guarantee the schedulability of such tasks.

Chain instance. A chain can instantiate multiple job-level data
flows at runtime. We use a chain instance Cc[k] to denote the
k-th instance of the chain Γc. Cc[k] includes jobs from the start
task to the end task of the corresponding chain, and Cc[k, j]
indicates the j-th job of Cc[k].

Fig. 2 illustrates the execution of three tasks, τ1, τ2, and
τ3, of a chain Γc = [τ1, τ2, τ3]. The instances of the chain are

𝜏ଵ

𝜏ଶ

𝜏ଷ

Jଵ,ଵ Jଵ,ଶ Jଵ,ଷ Jଵ,ସ Jଵ,ହ Jଵ, Jଵ, Jଵ,଼

Jଶ,ଵ Jଶ,ଶ Jଶ,ଷ Jଶ,ସ

Jଷ,ଵ Jଷ,ଶ Jଷ,ଷ

(a) Over-sampling

𝜏ଵ

𝜏ଶ

𝜏ଷ

Effective instance candidate Effective instance candidate
Effective instance

Jଵ,ଵ Jଵ,ଶ Jଵ,ଷ

Jଶ,ଵ Jଶ,ଶ Jଶ,ଷ Jଶ,ସ

Jଷ,ଵ Jଷ,ଶ Jଷ,ଷ Jଷ,ସ Jଷ,ହ Jଷ, Jଷ, Jଷ,଼

(b) Under-sampling

Fig. 2: Effective chain instances

indicated with dotted arrows. In Fig. 2a, jobs J1,1, J2,1, and
J3,2 form the first instance of Γc, i.e., Cc[1] = [J1,1, J2,1, J3,2].
Note that the job J3,1 cannot be part of Cc[1] because it
executes before valid input is ready.

In complex systems like automotive applications [17, 19],
chain instances may experience the over- or under-sampling
effects due to different periodicities of tasks [2]. In either case,
there is at least one mutual job among the candidate chain
instances that may produce the same valid output. For the
over-sampling case in Fig. 2a, the first three chain instances
starting with J1,1, J1,2, and J1,3, respectively, generate a single
final output because the end task job (J3,2) is commonly used.
For the under-sampling case in Fig. 2b, a mutual start job J1,1

is used by the first four chain instances (finishing with J3,2,
J3,3, J3,4, and J3,5) and their outputs are identical because
they all use the same data from J1,1. This means, once the
first instance generates an output, the completion of the latter
three instances does not yield any updated chain output.

Based on the above observations, we define an effective
chain instance among candidate instances as follows:

Def. 1. An effective instance of a chain Γc is the earliest
instance producing a valid and updated final output using the
most recently updated input data. The i-th effective instance
of Γc is denoted as Ec[i].

In Fig. 2a, effective instances are: Ec[1] = Cc[3] =
[J1,3, J2,2, J3,2] and Ec[2] = Cc[5] = [J1,5, J2,3, J3,3]. In
Fig. 2b, Ec[1] = Cc[1] = [J1,1, J2,1, J3,2] and Ec[2] =
Cc[5] = [J1,2, J2,3, J3,6] are effective instances. Since Ec[i]
is one of the chain instances, hereafter we will use Ec[i, j] to
denote the j-th job of the i-th effective instance.

Lemma 1. The end-to-end latency of an effective instance has
the minimum timespan among its candidates.

Proof: By Def. 1, the proof is obvious since an effective
instance is the earliest valid instance among its candidates and
uses the latest input data.

Algorithm 1 Synthesize chain instances
1: procedure FIND EFFECTIVE CHAIN INSTANCES(Γc,J ,Φ)
2: Γc: a chain c
3: Φ: a taskset
4: J : a set of released jobs of all tasks ∈ Γc during the

hyperperiod of the taskset Φ
5: Cc ← ∅; k ← 1
6: for each Ji,j ∈ J in ascending order of release time do
7: if τi = Γc[1] then
8: Cc[k, 1]← Ji,j
9: k ← k + 1

10: else
11: for each Cc[row] ∈ Cc do . All instances of Cc
12: col← τi’s column in Γc

13: if Cc[row, col] = ∅ and Cc[row, col− 1] 6= ∅ then
14: Cc[row, col]← Ji,j

15: for each Cc[row] ∈ Cc do . Discard ineffective instances
16: if Cc[row, |Γc|] = Cc[row + 1, |Γc|] then
17: Cc[row]← ∅
18: Ec ← all non-empty rows of Cc
19: end procedure

IV. CHAIN-BASED FIXED-PRIORITY SCHEDULING

This section presents our chain-based fixed-priority preemp-
tive scheduler, which consists of offline and runtime com-
ponents. The offline part generates effective chain instances
to capture job-level data dependencies among tasks, and the
runtime part governs the actual execution of each job.

A. Offline synthesis of effective chain instances

According to Def. 1, the execution of a job that does not
belong to an effective instance yields no benefit in chain
output and resource efficiency. Hence, we propose to statically
synthesize a set of effective chain instances for use in online
scheduling. In this approach, the inclusion of a job into a chain
instance is determined by its release time. This is because, as
we have observed J3,1 in Fig 2a, a job cannot be part of the
chain instance if its updated input data is not ready before the
start of execution and the release time is the earliest start time
of a job. The set of effective chain instances is constructed for
one hyperperiod and is revised in Sec. V if it contains a job
that is not guaranteed to meet the deadline.

Step 1. Initializing chain instances. A new chain instance
Cc[i] is initialized when there is a job released from the first
task of the chain Γc, i.e., if the job is Ju,w, Cc[i, 1] = [Ju,w].
If τj is a mutual task of multiple chains, a new chain instance
is initialized for each of these chains. It is worth noting that, in
the under-sampling case, the job may be part of later instances
of the same chain, but only the earliest instance is eligible to
be an effective chain instance.

Step 2. Building chain instances. If there is a job released
from the j-th task of a chain Γc (j 6= 1), it may be eligible
to be part of multiple chain instances. Hence, such a job is
added to all generated chain instances where Cc[i, j] is empty
but Cc[i, j − 1] is occupied.

Based on the above steps, one can find effective instances
Ec from all candidate instances of a given chain Γc. The
detailed procedure is given in Alg. 1. Here, Cc and Ec are

𝒕 = 𝟎 𝒕 = 𝟏𝟎

𝒞ଵ[1] Jଵ,ଵ Jଷ,ଵ Jଶ,ଵ

𝒕 = 𝟏𝟓

𝒕 = 𝟏6

𝜏ଵ (𝑇 = 5)

𝜏ଶ (𝑇 = 8)

𝜏ଷ (𝑇 = 10)

Jଵ,ଵ Jଵ,ଶ Jଵ,ଷ Jଵ,ସ Jଵ,ହ Jଵ, Jଵ, Jଵ,଼ Jଵ,ଽ Jଵ,ଵ

Jଷ,ଵ Jଷ,ଶ Jଷ,ଷ Jଷ,ସ

Jଶ,ଵ Jଶ,ଶ Jଶ,ଷ Jଶ,ସ Jଶ,ହ Jଶ,

Time

Jଷ,ହ

𝒕 = 5
𝒞ଵ[2] Jଵ,ଶ

𝒕 = 8
 Jଵ,ଶ Jଶ,ଶ

 Jଵ,ଷ

 Jଵ,ଶ Jଷ,ଶ Jଶ,ଶ

 Jଵ,ସ

 Jଵ,ଷ Jଶ,ଷ

 Jଵ,ସ Jଶ,ଷ

 Jଵ,ହ

 Jଵ,ସ Jଷ,ଷ Jଶ,ଷ

 Jଵ,ଷ Jଷ,ଷ Jଶ,ଷ

𝒕 = 𝟐𝟎

𝒕 =24

 Jଵ,ହ Jଶ,ସ

𝒕 = 𝟐𝟓

 Jଵ,

𝒕 = 𝟑𝟎

 Jଵ,

 Jଵ,ହ Jଷ,ସ Jଶ,ସ

𝒕 = 𝟑𝟐

𝒕 = 𝟑5

 Jଵ,଼

 Jଵ, Jଶ,ହ

 Jଵ, Jଶ,ହ

 Jଵ,ଽ Jଷ,ହ Jଶ,

 Jଵ,଼ Jଷ,ହ Jଶ,

 Jଵ, Jଷ,ହ Jଶ,ହ

 Jଵ, Jଷ,ହ Jଶ,ହ

𝒕 = 𝟒𝟎

𝒞[𝑖]

: 𝑖 –th Chain instance

: Job assignment

𝒕 : Time : Effective instance

𝒞ଵ[2]

𝒞ଵ[2]

𝒞ଵ[3]

𝒞ଵ[4]

𝒞ଵ[4]

𝒞ଵ[3]

𝒞ଵ[3]

𝒞ଵ[4]

𝒞ଵ[5]

𝒞ଵ[5]

𝒞ଵ[6]

𝒞ଵ[5]

𝒞ଵ[7]

𝒞ଵ[6]

𝒞ଵ[7]

𝒞ଵ[8]

𝒞ଵ[8]

𝒞ଵ[7]

𝒞ଵ[6]

𝒞ଵ[9]

Taskset (𝚽)

Fig. 3: Synthesis of chain instances and effective instances for the taskset (Φ)

treated as two-dimensional arrays, e.g., a job of the j-th task
(column) of the k-th instance (row) is stored in Cc[k, j]. All
released jobs from the tasks of Γc during a hyperperiod of the
entire taskset are sorted in ascending order of release times in
line 4 so that chain instances can be built in a chronological
order. A job of the start task of the chain initiates a chain
instance from line 7 to 10, while the other jobs are allocated
from line 11 to 14, as described in the above steps. Once all
chain instances are generated, effective instances are found
from line 15 to 18. If multiple instances have the same end
job, the algorithm chooses the last one as the effective instance
because that uses the latest update data, following Def. 1.

Fig. 3 illustrates the sequence of synthesizing chain in-
stances for a given taskset (Φ). Suppose that the taskset has a
chain Γ1 = [τ1, τ2, τ3]. Chain instances are built using all the
jobs released during one hyperperiod t = 40. In this example,
8 chain instances are generated and 4 of them are found
to be effective instances, e.g., Cc[1], Cc[2], Cc[4], and Cc[5]
become Ec[1], Ec[2], Ec[3], and Ec[4], respectively. Those
chain instances will be repeated in the next hyperperiod.

It is possible that some jobs of the generated instances may
turn out to miss their deadlines. In Sec. V, we will revisit this
issue and present a method to revise effective instances based
on the analysis results.

B. Runtime scheduling with the release-and-ready policy

At runtime, the release-and-ready (RNR) policy of the
chain-based scheduler prevents unnecessarily early start of job
execution. This is done by introducing two-step phases to each
job: release and ready. The release phase occurs when a job
is released according to its period, and the job in the release
phase cannot start execution. The transition to the ready phase
occurs when its previous jobs of the same chain instance(s)
have completed their execution. Then, all jobs in the ready
phase are scheduled based on their task priorities.

From the perspective of effective chain instances, each job
can be in one of the three different categories: (1) a job is only
placed in a single effective instance, (2) a job is involved in
multiple effective instances of different chains, or (3) a job is
not part of any effective instance. The following rules of the
RNR policy indicate how the ready phase is carried out for
the job in different categories.

Rule 1. Job in a single chain instance. Consider a job Ec[i, j]
of a single effective instance. If j 6= 1, the job turns into
the ready phase when the immediately previous job of the
same instance (Ec[i, j − 1]) completes its execution. If j = 1
(the start job of the instance), the job Ec[i, j] switches to the
ready state when the most recent job of the previous effective
instance (Ec[i−1]) assigned to the same CPU core as Ec[i, j]
has completed its execution.
Rule 2. Job in multiple instances. A job that belongs to
the multiple effective instances of different chains can only
switch to the ready phase when Rule 1 is satisfied for all of
its effective instances.
Rule 3. Job not in effective instances. A job that does not
belong to any effective instance is dropped (skipped) by the
chain-based scheduler at runtime.

Lemma 2. For a system with independent periodic hard real-
time tasks, the proposed chain-based scheduler is equivalent to
the conventional chain-unaware fixed-priority schedulers that
solely determine task execution order by priorities.

Proof: In the chain-based scheduler, any job of hard real-
time tasks is not affected by the runtime rules 1-3 because
each hard real-time task is modeled as a single-task chain
(see Sec. III) and each job of that task forms an effective
instance. Therefore, the chain-based scheduler yields the same
scheduling decisions as the chain-unaware schedulers.

One may expect that the RNR policy would introduce
additional interference to lower-priority tasks since it causes
a self-suspension effect [7, 24] to the job waiting in the
release phase for its predecessor’s completion. We will show in
Sec. V that our proposed analysis takes into account such self-
suspending behavior by safely capturing the start and finish
time of each job of a task.

V. END-TO-END LATENCY ANALYSIS

This section presents the end-to-end latency analysis of
tasks with data dependency under chain-based scheduling. We
first derive the start and end time of individual jobs of effective
chains without preemptions, and then analyze the amount of
interference due to preemptions during a given time interval
of job execution. By using these, we finally analyze the end-
to-end latency of effective chains in an iterative manner.

Chain instance (Eୡ[i])

𝜏ଶ

(CPU 1)

Chain instance (Eୡ[i + 1])

Jଵ,ଵ Jଵ,ଶ

Jଶ,ଵ Jଶ,ଶ

Jଷ,ଵ Jଷ,ଶ

𝒮(𝑖 + 1, 1)
𝜏ଵ

(CPU 1)

𝜏ଷ

(CPU 1)
𝒮[𝑖 + 1,2]

𝜏ଶ

(CPU 1)

Jଵ,ଵ Jଵ,ଶ

Jଶ,ଵ Jଶ,ଶ

Jଷ,ଵ
Jଷ,ଶ

𝜏ଵ

(CPU 1)

𝜏ଷ

(CPU 2)

Single core Multi core

𝒮[𝑖, 𝑗] : start-time of first job of Eୡ[i, j]

ℱ[𝑖, 𝑗] : finish-time of first job of Eୡ[i, j]

ℱ[𝑖, 3]

𝒮(𝑖 + 1, 1)

𝒮[𝑖 + 1,2]

ℱ[𝑖, 2]

Fig. 4: Start time of a job (single vs. multi-core system)

A. Job start and finish time with no preemption

Assume there is no preemption from higher-priority tasks of
other chains. With this assumption, the only factors affecting
the start and finish time of a job are its own execution time and
the delay introduced by the runtime chain-based scheduler.

Lower bound on job start time. To capture the maximum
timespan of job execution, we need to find the earliest (lower
bound) starting time of a job. Depending on the job’s position
within the chain instance, the analysis of start time can be
done considering the following two cases: the job being the
first job of the chain instance or not.

Lemma 3. Consider the j-th job in the i-th effective instance
of the chain Γc, denoted as Ec[i, j]. The lower bound on the
start time of Ec[i, j] is given by:

Sc[i, j] =

{
max{r,Fc[i, j − 1]} , if j 6= 1

max{r, max
∀k:Γc[k]∈P

{Fc[i− 1, k]}} , if j = 1

(1)
where r is the release time of Ec[i, j] and P is the CPU core
that a task Γc[j] is allocated. Fc[i, j] is the lower bound on
the finish time of Ec[i, j] and will be derived by Equation 4.

Proof: If j 6= 1, the job Ec[i, j] can be executed only
after the completion of the preceding job Ec[i, j − 1] within
the same effective instance (Rule 1 in Section IV). Hence,
a lower bound on the start time of Ec[i, j] can be obtained
by taking a higher value between the release time and the
earliest finishing time of Ec[i, j − 1]. If j = 1, the start time
of Ec[i, 1] depends on the completion time of the other job
from the previous chain instance Ec[i − 1] executing on the
same CPU (Rule 1). This is exactly captured by the inner max
term in Equation 1. Thus, the proof is done.

Figure 4 illustrates how the start time of a job (when j = 1)
behaves differently in a single core and a multi-core system.
In a single-core system, J1,2 only starts after the completion
of J3,1, which is the last job of the previous chain instance.
However, in a multi-core system, J1,2 can start after the
completion of J2,1 because it is the last job of the previous
chain instance to be completed on CPU 1.

Upper bound on job finish time. We also need to find
the latest (upper bound) finish time of a job to capture the
maximum timespan of job execution at runtime. Likewise, the
upper bound of finish-time of a job can be done considering
two cases as follows.

Lemma 4. The upper bound on the finish time of a job Ec[i, j]
is given by:

Fc[i, j] =

max{r,Fc[i, j − 1]}+WC , if j 6= 1

max{r, max
∀k:Γc[k]∈P

{Fc[i− 1, k]}}+WC , if j = 1

(2)
where WC is the worst-case execution time of the job Ec[i, j].

Proof: In Lemma 3, we found the job that affects the
start time of Ec[i, j]. Let’s denote it as JE . Then, by Rule 1
in Sec. IV, an upper bound on the finish time of Ec[i, j] can
be reached by adding the worst-case execution time of Ec[i, j]
to the latest finishing time of JE . Thus, it is proved.

Using Lemmas 3 and 4, an upper bound on start time,
Sc[i, j] and an lower bound on finish time, Fc[i, j], can be
trivially derived as follows:

Sc[i, j] =

max{r,Fc[i, j − 1]} , if j 6= 1

max{r, max
∀k:Γc[k]∈P

{Fc[i− 1, k]}} , if j = 1
(3)

Fc[i, j] =

{
max{r,Fc[i, j − 1]}+BC , if j 6= 1

max{r, max
∀k:Γc[k]∈P

{Fc[i− 1, k]}}+BC , if j = 1

(4)
where BC is the best-case execution time of Ec[i, j].

B. Interference on job execution

Now we consider interference caused by preemptions of
higher-priority tasks. The following lemma holds due to the
RNR policy of the chain-based scheduler.

Lemma 5. A job Jt,i of a higher-priority task τt in a chain
Γc
′

does not interfere (preempt) a lower-priority task τj in
another chain Γc, if and only if, the higher-priority task τt is
also part of the chain Γc and its job Jt,i belongs to one of the
effective instances of Ec, i.e., τt ∈ Γc

′ ∧ τt ∈ Γc ∧ Jt,i ∈ Ec.

Proof: Suppose that we compute interference imposed on
a job of τj in a chain Γc. If a higher-priority task τt (πt > πj)
of another chain Γc

′
is also involved in Γc, three possible cases

arise: (i) a job of τt belongs only to an effective instance of Γc
′
,

(ii) it belongs only to an effective instance of chain Γc, and (iii)
it is a mutual job of effective instances of both chains. For the
first case, such a job needs to be considered as an interference
source because its execution is independent of the chain Γc.
For the last two cases, the execution of such a job is taken
into account in the start time of τj by Rule 1 and 2 in Sec. IV.
Thus, the proof is done.

Based on this lemma, we analyze the interference imposed
on a job by a single higher-priority task of a different chain.
Note that below assumes that the start and finish time of
higher-priority jobs are known. We will show in the next
subsection how these are derived in an iterative fashion.

Interference from a single higher-priority task. At first, we
give Alg. 2 that finds out all jobs of a given higher-priority
task τk from a different chain Γc

′
that overlap with a given

execution time window t = [s, f] of a lower-priority job under

Algorithm 2 Interference from a higher-priority task τk

1: function I TASK(t,τk,Γc′ ,Ec)
2: t = [s, f]: a given time window of a victim job of Ec

3: τk: a higher-priority task causing interference
4: Γc′ : a chain that contains τk
5: j ← τk’s position in Γc′

6: J ← ∅
7: for each effective instance Ec′ [i] of Γc′ do
8: if Ec′ [i, j] /∈ Ec then
9: finish← Fc′

[i, j]

10: start← Sc′ [i, j]
11: if [s,f] ∩ [start, finish] then
12: J ← J ∪ Ec′ [i, j]

13: return J . a set of jobs of τk that overlap with the t
14: end function

analysis. The algorithm iterates over all effective instances that
the higher priority task is involved (line 7). Then it obtains the
maximum timespan of a job of τk (Ec

′
[i, j]) using its latest

finish time F and the earliest start time S. If the execution of
this job overlaps with t, then Ec

′
[i, j] is inserted to the set J

that is returned at the end of the algorithm.

Lemma 6. The maximum temporal interference imposed on a
job of a chain Γc by a single higher-priority task τk during a
given time window t is upper-bounded by:
W c(t, τk) =
0 , if τk∈Γc∧

c′ 6=c:τk /∈Γc′∣∣∣∣ ⋃
∀c′:c′ 6=c∧
τk∈Γc′

I TASK(t, τk,Γ
c′ , Ec)

∣∣∣∣×WCk , o.w.

(5)
where I TASK(t, τk,Γ

c′) is given in Alg. 2.

Proof: If a higher-priority task τk is only engaged in the
chain Γc which involves the target job Ec[i, j], preemption
cannot happen by Lemma 5, thus, interference is 0. Otherwise,
all other chains that includes τk, except the chain Γc, need to
be considered to capture the maximum interference imposed
on a job of Γc. By using Alg. 2, we can find all the jobs of τk in
the chain Γc

′
that overlap with the execution of the victim job.

Taking the union of all such jobs eliminates redundant jobs that
are involved in multiple chain instances. Then, the maximum
temporal interference can be upper-bounded by multiplying
WCk by the number of elements in the union set.
Job execution with interference. By considering interference
from each of higher-priority tasks, we derive an upper bound
on the maximum execution timespan of a job from the start
of execution to the end of execution.

Theorem 1. The maximum execution timespan Il of a job
Jl = Ec[i, j] with interference from higher-priority tasks is
upper bounded by the following recurrence:

Im+1
l ←WCl +

∑
∀τk:πk>πl∧τk∈P

W c([s, s+ Iml], τk) (6)

where s is the start time of the job under analysis (s =
Sc[i, j]), WCl is the worst-case execution time of Ec[i, j],

Algorithm 3 Bound start and finish time of jobs

1: procedure BOUND START FINISH(Φ,S,F ,S,F , E)
2: repeat
3: flag ← false
4: Vprev ← (S,S,F ,F) . Store previous values
5: for each Γc ∈ Γ do
6: for each Ec[i] ∈ Ec do
7: for each Ec[i, j] ∈ Ec[i] do
8: . Based on Eqs. (1), (2), (3), and (4),
9: Update Sc[i, j], Sc

[i, j], Fc[i, j], and Fc
[i, j]

10: . Using Il in Eq. (6) with I0l = Fc
[i, j]− Sc[i, j],

11: Fc
[i, j]← Sc

[i, j] + Il
12: if Fc

[i, j] > absolute deadline then
13: Fc

[i, j]← absolute deadline
14: Mark this job unschedulable
15: if Vprev 6= (S,S,F ,F) then
16: flag ← true . Continue until converge
17: until flag = true
18: end procedure

and P is the CPU core Ec[i, j] is assigned to.

Proof: Obvious from Lemma 6.

C. Job start and finish time with preemption

Our analysis so far has assumed that there is no interference
when deriving the start and finish time of a job (Sec. V-A) or
the start and finish time is known when analyzing interference
from higher-priority tasks (Sec. V-B). We now present Alg. 3
that bounds the start and finish time of each job in effective
instance with interference.

Alg. 3 iteratively applies the equations provided in the
previous subsections until the start and finish time of all jobs
converge (lines 2-17). For each chain, effective instances and
jobs within each instance are checked in chronological order.
First, the start and finish time of each job is updated in line 9
based on the equations in Sec. V-A. This is to capture the
results of preceding instances and jobs of the same chain.
Then, in line 11, the upper bound on finish time is recalculated
by the sum of Sc[i, j] and Il, where Il is to capture interference
due to the increased job timespan of I0

l = Fc[i, j]− Sc[i, j].
Based on Fc, the algorithm checks if the job is not guaranteed
to meet the deadline (line 12). Since a deadline-missing job
is descheduled at runtime (see Sec. III), the job’s finish time
is capped to the absolute deadline and marked unschedulable.

D. End-to-end latency of effective instance

Since job-level dependencies are identified in Sec. IV-A, the
maximum end-to-end latency Lc of a chain Γc is given by:

Lc = max
∀i
Fc[i,Nc]− Sc[i, 1] (7)

where Nc is the number of tasks in Γc and i is the index of
effective chain instances of Γc.

Inter-chain distance. In addition to the end-to-end latency,
it is often important to assess how often new, updated chain
outputs are generated. Hence, we define the inter-chain dis-
tance of a chain as the distance between the completions of

Jଵ,ସ Jଵ,ହ Jଵ,

Jଶ,ଷ

𝜏ଵ

𝜏ଶ

𝜏ଵ

𝜏ଶ

Jଵ,ଵ Jଵ,ଶ Jଵ,ଷ Jଵ,ସ Jଵ,ହ Jଵ, Jଵ, Jଵ,଼

Jଶ,ଵ Jଶ,ଷ Jଶ,ସ Jଶ,ହ Jଶ, Jଶ,ଶ

Jଵ,ସ Jଵ,ହ Jଵ, Jଵ,

Jଶ,ଷ Jଶ,ସ Jଶ,ହ

𝝉𝟏 𝝉𝟐

2 1

3 2

4 3

Step 1. Find all chain instances

Step 2. Discard ineligible chain instances

Step 3. Find possible
effective instances.

Discard (case 1)

Jଶ,ଶ

Discard (case 2)

𝝉𝟏 𝝉𝟐

1 1

2 1

2 2

3 2

4 2

4 3

Chain instance

Effect. instance

…

Fig. 5: Effective chain instances in chain-unaware scheduling

two adjacent effective instances. The maximum inter-chain
instance Dc of Γc is bounded by:

Dc = max
∀i
Fc[i,Nc]−Fc[i− 1, Nc] (8)

Revising effective instances. If any job of an effective in-
stance is marked unschedulable, we revise the corresponding
instance by substituting with another job of the same task,
which is not a part of other effective instances of the same
chain. If no other job can replace the deadline non-guaranteed
job, that instance is marked as unschedulable and will not be
considered for end-to-end analysis. However, if all effective
instances of the chain are marked unschedulable, we try
regenerating at least one effective instance that contains only
the jobs guaranteed to meet the deadline. In this case, effective
instances of other chains are also regenerated and Alg. 3 is
ran again to capture interference correctly.

E. End-to-end latency of chain-unaware schedulers

Our analysis framework can be adapted for conventional
chain-unaware schedulers with small modifications as below.
Part 1. Bounding job start and finish time. The start time
of a job is bounded by taking the maximum among the release
time of the job and the finish time of higher-priority jobs with
execution overlaps. The finish time of a job is captured by
considering the maximum interference from all higher-priority
tasks. Then, these procedures are iterated until all start and
finish time of individual jobs converge, as done in Alg. 3.

Part 2. Finding possible effective instances. Since chain-
unaware schedulers do not respect job-level dependency, we
find out all effective chain instances that can possibly happen
at runtime. The high-level idea is depicted in Fig. 5. Among
all chain instances where preceding and successor jobs have
partial overlaps (Step 1), we discard obviously ineligible ones
(Step 2), e.g., the start time of a preceding job greater than
the finish time of a successor job. Then, the remainders are
considered effective instances in our analysis (Step 3).

VI. EVALUATION

We first evaluate the impact of execution time variations
on end-to-end latency bounds under our analysis. We then
compare our work against the start-of-the-art schemes, and
explore the performance characteristics of the chain-based
scheduler in a multi-core environment.

Taskset generation. We use randomly-generated tasksets
for the evaluation. Based on the timing parameters of au-
tomotive benchmarks in [19], task period is chosen from
{1, 2, 5, 10, 20, 50, 100, 200} ms, with an associated probabil-
ity of {0.04, 0.03, 0.03, 0.32, 0.32, 0.04, 0.21, 0.01} for each
period. For each taskset, task utilization is obtained by the
UUniFast algorithm [6], then multiplied by the chosen period
to obtain the worst-case execution time. The evaluation uses
tasksets schedulable by RM because the latest work [2, 5]
compared with our work assumes all tasks meet the deadlines.
Varying execution time. The difference between the best-
case and the worst-case execution times (BC and WC) of a
task can affect the tightness of analysis because these values
are used to compute the range of start and finish time of
each job. Thus, we evaluate the impact of varying BC under
the chain-based scheduler (CBS) and the conventional chain-
unaware RM scheduler with our analysis method (SFA-RM).
We use 500 tasksets for each setting. The number of tasks N
per taskset is selected from {3, 5, 7} and each taskset has a
single randomly-ordered chain including all N tasks.

BC=0 BC=0.25 WC BC=0.5 WC BC=0.75 WC BC=WC
Best-case execution time (BC)

0

50

100

150

200

250

300

M
ax

.
en

d
-t

o
-e

n
d
 l

at
en

cy
 (

M
ea

n
)

N=3(SFA-RM)

N=5(SFA-RM)

N=7(SFA-RM)

N=3(CBS)

N=5(CBS)

N=7(CBS)

Fig. 6: End-to-end latency by best-case execution time

Fig. 6 shows the average of the maximum end-to-end
latency with different BCs. As BC decreases (moving left
on the x-axis), the bounded range of start and finish time of
each job increases, resulting in increased timespan of chain
instances. This result indicates that a tighter end-to-end bound
can be achieved when the execution time is more deterministic
and less varying. In the rest of this section, we choose BC=WC
for the ease of analysis and simulation-based experiments.
Comparison with the state-of-the-art. We now compare our
work with the latest approaches proposed for conventional
chain-unaware scheduling [2, 5]. Below summarizes the list
of methods used:
• Abdullah et al. [2]: the analysis of reaction latency of

cause-effect chains in fixed-priority preemptive scheduling
• Becker et al. [5]: the analysis of end-to-end latency of

cause-effect chains with specified job-level dependencies
• SFA-RM: Start- and Finish-time based Analysis under

chain-unaware Rate Monotonic scheduling (our work)
• CBS: the proposed analysis framework under Chain-Based

Scheduler (our work)
The comparison is carried out under two different chain

setups: a single chain, and multiple chains with a mutual task.
Since Abdullah et al. [2] assume preceding tasks in a chain
should have lower priority than succeeding tasks in a multi-
core system, we limit the comparison to a uniprocessor system.

0.4 0.5 0.6 0.7 0.8 0.9Utilization
0

50

100

150

200

250

300
M

ax
. e

nd
-to

-e
nd

 la
te

nc
y

(M
ea

n)
N=3 (Abdullah)
N=3 (Becker)
N=3 (SFA-RM)
N=3 (CBS)

N=5 (Abdullah)
N=5 (Becker)
N=5 (SFA-RM)
N=5 (CBS)

N=7 (Abdullah)
N=7 (Becker)
N=7 (SFA-RM)
N=7 (CBS)

Fig. 7: End-to-end latency of a chain that consists of N tasks

We use 500 tasksets with 7 tasks each for each utilization
level. Each taskset has a chain with N tasks, and tasks that
do not belong the chain are hard real-time tasks, which are
modeled as single-task chains in CBS. Fig. 7 shows the
average of the maximum end-to-end latency for the chain
with N tasks under the four approaches. As expected, we
can observe the overall latency rises as N or the utilization
increases. For CBS, the latency at N = 5 is higher than
N = 7 because all jobs of higher-priority single-task chains
are regarded as interference. Nonetheless, the results under
our two approaches significantly outperform the others. In
particular, when the utilization is 0.9 with N = 7, CBS yields
43 in the end-to-end latency while Abdullah et al. and Becker
et al. have 251 and 257, respectively, i.e., CBS achieves up to
83% reduction in the end-to-end latency.

Chain set 1 Chain set 2 Chain set 3
0

50

100

150

200

M
ax

. e
nd

-to
-e

nd
 la

te
nc

y
(M

ea
n) !

1(Abdullah)
!

1(Becker)
!

1(SFA-RM)
!

1(CBS)
!

2(Abdullah)
!

2(Becker)
!

2(SFA-RM)
!

2(CBS)

Fig. 8: Latency of multiple chains including a mutual task

Fig. 8 shows the average maximum latency for multiple
chains that include a mutual task. Each taskset has the uti-
lization of 0.8 with 9 tasks that form two chains. In order to
identify the effect of the mutual task’s position in a chain, three
types of chain sets are considered. In chain sets 1 and 2, the
two generated chains for each taskset share the start and the
end task, respectively, and in chain set 3, an intermediate task
is shared. As expected, we observe that our two approaches
significantly outperform the others for all chain sets.
Maximum inter-chain distance. We now evaluate the max-
imum distance between chain instances under SFA-RM and
CBS. For a comparison with simulation results, we use a
smaller number of tasksets with specific parameters: 100
tasksets, each with utilization of 0.8 and 4 tasks. Task period
is uniformly distributed in the range of [1, 20].

Fig. 9 shows the results of the experiment (lower is better).
Since our analysis considers all possible chain instances for
SFA-RM, it cannot analytically bound inter-chain distance.
Hence, we report only the maximum observed inter-chain

SFA-RM(simulation) CBS(simulation) CBS(analysis)
0

10

20

30

40

50

M
ax

.
in

te
r-

ch
ai

n
 d

is
ta

n
ce

 (
M

ea
n

)

45.09
43 43.3645.09
43 43.3645.09
43 43.36

Fig. 9: Inter-chain distance under SFA-RM and CBS

distance in simulation. On the other hand, CBS can find the
maximum inter-chain instance by using Eq. (8) and the results
from both simulation and analysis are reported. As can be
seen, CBS gives a smaller inter-chain distance than SFA-RM,
meaning that updated end-to-end outputs are more frequently
produced under CBS. This is interesting given that CBS skips
some jobs that do not belong to effective instances.

SFA-RM(simulation) SFA-RM(analysis) CBS(simulation) CBS(analysis)
0

10

20

30

40

50

M
ax

.
en

d
-t

o
-e

n
d
 l

at
en

cy
 (

M
ea

n
)

39.42 40.63

26.16 26.36

39.42 40.63

26.16 26.36

39.42 40.63

26.16 26.36

39.42 40.63

26.16 26.36

Fig. 10: Latency under SFA-RM and CBS

Fig. 10 shows the maximum end-to-end latency under the
same experimental setting as the above. We observe that CBS
outperforms SFA-RM in end-to-end latency and the pessimism
of our analysis is very small for both SFA-RM and CBS.
End-to-end latency in multi-core processors. Lastly, we
consider end-to-end latency in multi-core systems. We use
500 tasksets that are generated in the same way as in Fig 6
except that each taskset consists of 9 tasks with utilization
of 0.9. In addition, each taskset has of two chains: Γ1 =
[τ5, τ9, τ4, τ1, τ6] and Γ2 = [τ7, τ2, τ8, τ3]. For task-to-core
allocation, the worst-fit decreasing heuristic is used to balance
load across cores.

Fig. 11 shows the maximum end-to-end latency of two
chains in various multi-core settings. The latency of each chain
reduces as the number of cores increases, because each core
is less contended for by tasks. After all tasks are assigned
to individual cores (N = 9), the end-to-end latency does not
reduce any more. Based on all these experiments, we conclude

Uniprocessor 2 CPUs 4 CPUs 8 CPUs 9 CPUs 10 CPUs
0

20

40

60

80

100

120
M

ax
.

en
d

-t
o

-e
n

d
 l

at
en

cy
 (

M
ea

n
) 108.877

47.2874

49.767

26.3651

29.4276

20.4291

24.1018

18.4363

23.9813

18.4051

23.9813

18.4051

Chain 1
Chain 2

Fig. 11: End-to-end latency in uni- and multi-core systems

that our chain-based scheduler yields significant benefit in end-
to-end latency of chained tasks without sacrificing the update
rate of chain output.

VII. CONCLUSION

In this paper, we presented chain-based fixed-priority pre-
emptive scheduling of tasks with loose data dependency. The
proposed scheduler consists of offline and runtime parts. The
offline part makes use of the notion of effective chain instances
to capture job-level data dependency. At runtime, the scheduler
governs the actual execution of each job based on the release-
and-ready policy to improve the end-to-end latency of a chain.
Our analysis framework bounds the end-to-end latency by
analyzing the start and finish time of each job of effective
instances in an iterative manner. Furthermore, it has been
shown that our analysis can be easily adapted for chain-
unaware schedulers. The evaluation results have demonstrated
that our chain-based scheduler outperforms the state-of-the-
art, achieving up to 83% of reduction in end-to-end latency,
and yields a shorter update rate of chain output. For future
work, we plan to apply the proposed scheduling approach to
robotic platforms and weakly-hard real-time systems since our
work can bring significant benefit to such systems. We are also
interested in investigating the timing unpredictability caused
by shared memory resources such as caches, memory buses,
and DRAM banks, in multi-core platforms.

ACKNOWLEDGMENT

We gratefully acknowledge the support from the Office of
Naval Research (ONR) grant N00014-19-1-2496.

REFERENCES
[1] Apollo autonomous driving. http://apollo.auto, accessed May 2019.
[2] J. Abdullah, G. Dai, and W. Yi. Worst-case cause-effect reaction latency

in systems with non-blocking communication. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2019.

[3] M. Asberg et al. Resource sharing using the rollback mechanism in
hierarchically scheduled real-time open systems. In IEEE Real-Time
Technology and Applications Symposium (RTAS), 2013.

[4] O. Ayan et al. Age-of-information vs. value-of-information scheduling
for cellular networked control systems. In ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), 2019.

[5] M. Becker et al. Synthesizing job-level dependencies for automotive
multi-rate effect chains. In IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2016.

[6] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[7] J.-J. Chen et al. Many suspensions, many problems: a review of self-
suspending tasks in real-time systems. Real-Time Systems, 55(1):144–
207, 2019.

[8] H. Choi and H. Kim. Work-in-progress: A unified runtime framework for
weakly-hard real-time systems. In Brief Presentation Session of IEEE
Real-Time Technology and Applications Symposium (RTAS), 2019.

[9] H. Choi, H. Kim, and Q. Zhu. Job-class-level fixed priority scheduling
of weakly-hard real-time systems. In IEEE Real-Time Technology and
Applications Symposium (RTAS), 2019.

[10] A. Davare et al. Period optimization for hard real-time distributed
automotive systems. In Design Automation Conference (DAC), 2007.

[11] J. Goossens. (m, k)-firm constraints and dbp scheduling: impact of
the initial k-sequence and exact schedulability test. In International
Conference on Real-Time and Network Systems (RTNS 2008), 2008.

[12] Z. A. Hammadeh et al. Bounding deadline misses in weakly-hard real-
time systems with task dependencies. In Design, Automation Test in
Europe Conference Exhibition (DATE), 2017.

[13] S. Han et al. Online scheduling switch for maintaining data freshness
in flexible real-time systems. In IEEE Real-Time Systems Symposium
(RTSS), 2009.

[14] S. Heo et al. RT-IFTTT: Real-time iot framework with trigger condition-
aware flexible polling intervals. In IEEE Real-Time Systems Symposium
(RTSS), 2017.

[15] S. Kato et al. Autoware on board: Enabling autonomous vehicles with
embedded systems. In ACM/IEEE International Conference on Cyber-
Physical Systems (ICCPS), 2018.

[16] S. Kaul, R. Yates, and M. Gruteser. Real-time status: How often
should one update? In IEEE International Conference on Computer
Communications (INFOCOM), 2012.

[17] J. Kim et al. Parallel scheduling for cyber-physical systems: Analysis
and case study on a self-driving car. In ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), 2013.

[18] T. Kloda, A. Bertout, and Y. Sorel. Latency analysis for data chains of
real-time periodic tasks. In IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 360–367, 2018.

[19] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive
benchmarks for free. In International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[20] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys
(CSUR), 31(4):406–471, 1999.

[21] N. Lu, B. Ji, and B. Li. Age-based scheduling: Improving data freshness
for wireless real-time traffic. In ACM International Symposium on
Mobile Ad Hoc Networking and Computing (Mobihoc), 2018.

[22] J. Palencia and M. Harbour. Schedulability analysis for tasks with static
and dynamic offsets. In IEEE Real-Time Systems Symposium (RTSS),
1998.

[23] J. Palencia and M. Harbour. Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. In IEEE Real-
Time Systems Symposium (RTSS), 1999.

[24] P. Patel, I. Baek, H. Kim, and R. Rajkumar. Analytical enhancements
and practical insights for MPCP with self-suspensions. In IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2018.

[25] P. Pazzaglia et al. Beyond the weakly hard model: Measuring the
performance cost of deadline misses. In Euromicro Conference on Real-
Time Systems (ECRTS), 2018.

[26] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. ROS: an open-source robot operating system.
In ICRA Workshop on Open Source Software, 2009.

[27] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill. Parallel
real-time scheduling of DAGs. IEEE Transactions on Parallel and
Distributed Systems, 25(12):3242–3252, 2014.

[28] J. Schlatow and R. Ernst. Response-time analysis for task chains in
communicating threads. In IEEE Real-Time Technology and Applica-
tions Symposium (RTAS), 2016.

[29] Y. Sun and M. D. Natale. Weakly hard schedulability analysis for fixed
priority scheduling of periodic real-time tasks. ACM Transactions on
Embedded Computing Systems (TECS), 16(5s):171, 2017.

[30] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff.
Update or wait: How to keep your data fresh. IEEE Transactions on
Information Theory, 63(11):7492–7508, 2017.

[31] Y. Xiang and H. Kim. Pipelined data-parallel CPU/GPU scheduling for
multi-DNN real-time inference. In IEEE Real-Time Systems Symposium
(RTSS), 2019.

http://apollo.auto

	Introduction
	Related Work
	System Model
	Task model
	Chain model

	Chain-based Fixed-priority Scheduling
	Offline synthesis of effective chain instances
	Runtime scheduling with the release-and-ready policy

	End-to-end latency analysis
	Job start and finish time with no preemption
	Interference on job execution
	Job start and finish time with preemption
	End-to-end latency of effective instance
	End-to-end latency of chain-unaware schedulers

	Evaluation
	Conclusion

