
Know the Unknowns: Addressing Disturbances and
Uncertainties in Autonomous Systems

Invited Paper

Qi Zhu1, Wenchao Li2, Hyoseung Kim3, Yecheng Xiang3, Kacper Wardega2, Zhilu Wang1,
Yixuan Wang1, Hengyi Liang1, Chao Huang1, Jiameng Fan2, Hyunjong Choi3

1 Northwestern University 2 Boston University 3 University of California, Riverside

ABSTRACT
Future autonomous systems will employ complex sensing, com-
putation, and communication components for their perception,
planning, control, and coordination, and could operate in highly
dynamic and uncertain environment with safety and security as-
surance. To realize this vision, we have to better understand and
address the challenges from the “unknowns” – the unexpected dis-
turbances from component faults, environmental interference, and
malicious attacks, as well as the inherent uncertainties in system
inputs, model inaccuracies, and machine learning techniques (par-
ticularly those based on neural networks). In this work, we will
discuss these challenges, propose our approaches in addressing
them, and present some of the initial results. In particular, we will
introduce a cross-layer framework for modeling and mitigating
execution uncertainties (e.g., timing violations, soft errors) with
weakly-hard paradigm, quantitative and formal methods for en-
suring safe and time-predictable application of neural networks in
both perception and decision making, and safety-assured adapta-
tion strategies in dynamic environment.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems.

KEYWORDS
Autonomous systems, uncertainty, disturbance, weakly-hard, neu-
ral networks, safety verification, adaptation

1 INTRODUCTION
At the heart of future autonomous systems is their ability to per-
ceive the environment, reason about the situation, and make deci-
sions accordingly. This is a highly challenging process, given the
many unknowns involved – from unexpected disturbances (e.g.,
environmental interference, adversarial attacks, component faults),
to inherent uncertainties (e.g., uncertain environment input, ran-
domness in software and hardware operations), and to the lack of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415768

understanding (e.g., inaccuracies in physical process models, un-
predictability of neural network output). To ensure safe, secure,
robust, and efficient operation of these autonomous systems, it is
critical to know the unknowns, i.e., to model the various uncertain-
ties mathematically, analyze their impact on system properties, and
design mitigation strategies that can either directly accommodate
the uncertainties or adapt the system configuration to address them,
such as lead the system to a fail-operational or fail-safe mode.

Consider the example of a self-driving vehicle. During its op-
eration, there is often constant interference (noise) on its sensing
of the environment and communication with other vehicles and
infrastructures. There could be security attacks from a variety of
interfaces [9, 46], and faults of cyber and physical components that
are either transient or permanent. There is significant uncertainty
in sensing input, with the vehicle operating in a highly dynamic
environment under different road, weather, and traffic conditions.
The wide adoption of deep neural networks (DNNs) in perception
and to some extent in prediction, navigation, planning and control,
together with the lack of full understanding of those DNNs’ behav-
ior, further increases the uncertainty in vehicle’s response. There
are also broad usage of model-based methods for control and deci-
sion making in general, where models of the physical environment
and mechanical components are built for analysis and optimization.
However, given the complexity of most physical processes, creating
physical models that are both accurate and sufficiently efficient for
runtime control remains a challenging task.

Given this broad range of unknown factors and the safety-critical
and mission-critical nature of many autonomous systems, it is clear
that new uncertainty-aware methodologies, algorithms, and tools
are needed in the design and operation of autonomous systems. In
this paper, we will discuss in-depth the challenges from some of
those uncertainties and present our approaches in addressing them.
Note that for simplicity, we will use the term uncertainty here to
generally refer to the various unknown factors that may be caused
by external disturbances, inherent uncertainties/randomness, or
the lack of understanding in current methods.

In the rest of the paper, we will discuss several specific types of
uncertainties, and introduce our approaches in modeling, analysis
and mitigation of them. In particular, in Section 2, we will consider
execution uncertainties that may be captured by the weakly-hard
constraints, and present a cross-layer framework that we have
been developing to address them, including formal methods at the
functional layer, co-design algorithms across functional and soft-
ware layers, and scheduling methods at the OS layer. In Section 3,
we will focus on the uncertainties that arise from the adoption of
neural networks in perception and decision making, and present

https://doi.org/10.1145/3400302.3415768

our approaches for addressing them. These include timing uncer-
tainty in DNN inference tasks and our DART framework that offers
deterministic and bounded response time analysis of those tasks;
uncertainty from adversarial input attacks and our approach that
provides bounded output range analysis of neural networks for a
potentially-perturbed input space; and uncertainty in the behavior
of neural-network controlled systems (NNCSs) and our ReachNN*
tool that performs reachability analysis and safety verification of
NNCSs. In Section 4, we will introduce our safety-assured adapta-
tion methods that adapt the system under disturbances or other
changing requirements. We offer concluding remarks and future
directions in Section 5.

2 MITIGATING EXECUTION UNCERTAINTY
WITHWEAKLY-HARD PARADIGM

One major type of uncertainty during the operation of autonomous
systems is timing uncertainty in the execution of system functions,
i.e., how much time it takes for certain function to complete and
whether that meets the deadline. Traditionally, there are two main
approaches to manage such uncertainties. In hard real-time systems,
designers remove the consideration of all timing uncertainties in
execution through exhaustive modeling to achieve strict bounds on
the timing behavior of the system, and do not allow any deadlines
to be missed. Soft real-time systems, on the other hand, permit the
system to arbitrarily violate bounds and miss deadlines; in this case,
system designers can achieve at best probabilistic guarantees on
the system’s behaviors. However, only using hard deadlines often
leads to over-pessimistic designs or over-provisioning of system
resources, while soft deadlines cannot provide the safety guarantees
needed by many autonomous systems.

To address these challenges, we advocate to develop systems
with a cross-layer weakly-hard paradigm, where deadline misses
are allowed in a bounded manner [6]. This is motivated by the
fact that many system components can tolerate a certain degree of
timing uncertainties and deadline violations and still satisfy their
functional and extra-functional properties such as safety, stabil-
ity and performance, as long as those violations are bounded and
properly managed. Fig. 1 highlights the concept of our cross-layer
weakly-hard system design. At the functional layer, verification and
validation of functional properties, such as correctness, safety and
stability, are conducted with consideration of potential deadline
misses. At the software layer, system functionalities are synthe-
sized into the form of software tasks and their communication
mechanisms, while the weakly-hard timing behavior (e.g., deadline
miss pattern) is analyzed and evaluated against the requirements
at the functional layer. At the OS layer, scheduling algorithms and
runtime mechanisms are provided to ensure correct execution of
weakly-hard tasks in the presence of deadline misses.

Previous works in weakly-hard systems focus on either schedu-
lability analysis at the software layer or control stability analysis
at the functional layer. We believe that, however, it is important to
take a cross-layer approach and address functional properties, soft-
ware implementation, and OS support in a holistic framework, as
the weakly-hard constraints set for managing timing uncertainties
have to ensure that 1) functional properties can indeed be satisfied

under the allowed deadline misses, and 2) software implementation
and OS support can bound the deadline misses as specified.

Functional
Layer

Software
Layer

OS Layer

Functional property
verification under
deadline misses

Software synthesis and
codesign with weakly-hard

constraints

Guarantee OS support
for weakly-hard

execution

τ1 m1 τ3

τ2 m2 τ4

m3

m4

τ5

τ6

m5

m6

τ 7

Figure 1: Overview of our cross-layer weakly-hard design
framework for the modeling, analysis and mitigation of ex-
ecution uncertainties.

Note that our framework can be applied to other types of execu-
tion uncertainties beyond timing violations. For instance, the most
common form of weakly-hard constraints is the (𝑚,𝐾) model [6,
27], which simply specifies that among any 𝐾 consecutive execu-
tions, at most𝑚 instances can miss their execution deadlines. In
our framework, such misses may be caused by timing uncertainties,
or are the results of soft errors [44], or are proactively decided by
the system (i.e., the executions are skipped [33, 34]).

2.1 Functional Analysis and Verification under
Weakly-Hard Constraints

At the functional layer, the key issue for leveraging weakly-hard
paradigm is to evaluate precisely to what degree the systems can
tolerate deadline misses, e.g., as described by the (𝑚,𝐾) model. We
will model and analyze various functional properties, such as safety,
stability, and performance under such weakly-hard constraints.
Safety. One of the most important functional properties is safety. In
our weakly-hard framework, we consider whether the system with
(𝑚,𝐾) constraints will ever enter a pre-specified unsafe state set.

In literature, the work in [23] models a weakly-hard system with
linear dynamic as a hybrid automaton, whose reachability is then
verified by SpaceEx [24]. In [17], the behavior of a linear weakly-
hard system is transformed into a program, and whether its unsafe
specification can be met is checked by program verification tech-
niques such as abstract interpretation and SMT solvers. The work
in [61] considers discrete-time systems described as labelled transi-
tion systems, and explores logical relationships among weakly-hard
constraints with various𝑚 and 𝐾 values. The approach improves
the verification efficiency by only checking the satisfaction bound-
ary, rather than the whole configuration space of (𝑚,𝐾).

Our framework addresses the safety of nonlinear weakly-hard
systems for the first time in literature. In [32], our approach derives
a safe initial set for any given (𝑚,𝐾) constraint, that is, starting
from any initial state within such set, the system will always stay
within the same safe state set under the given weakly-hard con-
straint. Specifically, we first convert the infinite-time safety problem

2

into a finite one by finding a set satisfying both local safety and
inductiveness. Local safety ensures that the system stays in the safe
region within𝐾 steps, and inductiveness guarantees that the system
will go back to the initial set after𝐾 steps. Thus the set that satisfies
both local safety and inductiveness is theoretically guaranteed to
be a safe initial set. To make estimating such a set tractable, we
make two assumptions – exponential stability of the system with-
out deadline misses and Lipschitz continuity of system dynamics –
to help bound the system behavior under different situations. Then
we can abstract the problem as a one-dimensional problem and use
linear programming (LP) to obtain a certified safe initial set.

We observe that in practice, the assumptions in [32] are some-
times hard to satisfy and the parameters of exponential stability are
difficult to obtain. Moreover, while the scalar abstraction provides
high efficiency, experiments indicate that the estimation is often
overly conservative. Thus, we further relax the aforementioned
assumptions by leveraging state space discretization and graph the-
ory in [29]. Sepcifically, we first discretize the safe state set 𝑋 into
grids, and then try to find the grid set that satisfies both local safety
and inductiveness. For each property, we build a directed graph,
where each node corresponds to a grid and each directed edge
represents the mapping between grids with respect to reachability.
We are then able to leverage dynamic programming and inverse
search algorithms to construct the initial safe set. This approach is
implemented in an open-source tool called SAW 1.
Control stability and performance. From the perspective of system
resilience, we canmeasure a system’s ability to tolerate disturbances
in terms of weakly-hard constraints, e.g., under what kind of (𝑚,𝐾)
constraints the system controllers can remain stable and how much
their performance is affected. For instance, in literature, the work
in [25] provides an analytical bound for the deadline miss ratio
that can ensure the stability of a distributed embedded controller.
The work in [48] presents a more general framework to analyze
the control performance with respect to a specific sequence of
deadline miss pattern. The work in [57] studies the worst-case
control performance of an LQR controller under deadline misses.

In our framework, we consider linear time-invariant (LTI) sys-
tems implemented in Logical Execution Time (LET) paradigm [28].
In [45], we quantify control performance as the capability of a
controller to bring the system back to the equilibrium state after
a disturbance. Assuming that a zero control input is applied if the
control task misses its deadline, we model the closed-loop system
as a switched system depending on the deadline hit/miss pattern.
The stability of the switched system is checked by finding whether
the eigenvalues of the transition matrix of a hyper-period lie in-
side the unit circle. In [44], we use the typical worst-case analysis
(TWCA) [63] to bound the number of deadline misses in the pres-
ence of transient fault and approximate control performance by
exploring valid deadline hit/miss patterns. We also build an event-
based simulator to capture the exact deadline hit/miss pattern and
use it to obtain the worst-case control performance.
Network properties. Many safety-critical wireless networked sys-
tems such as those in the industrial wireless, connected vehicles,
and infrastructure monitoring domains are subject to difficult-to-
model external disturbances and internal uncertainties [33, 66]. For
1https://github.com/551100kk/SAW.git

example, transient communication faults can occur due to radio
interference, mobile units changing the network topology, nodes
locally deciding to shut off their radios to conserve energy or per-
form other tasks, or malicious network attacks such as jamming
and flooding. Furthermore, wireless communication protocols typi-
cally need to manage a tradeoff between the real-time performance
and the resource usage of communication. Taken together, it be-
comes clear that the hard real-time analysis of a wireless networked
system would be infeasible. In [33], we motivate the weakly-hard
paradigm to model disturbances and uncertainties in wireless net-
worked systems as a promising tool to obtain the deterministic
guarantees required to prove safety and liveness properties. Our
first attempt at such an analysis considers real-time applications
such as environmental monitoring and industrial control applica-
tions running on wireless networked systems [59]. Each inter-task
message that needs to be sent over wireless medium is treated as
a task in its own right; each message is transmitted by one-to-all
Glossy floods as part of a statically-scheduled low-power wireless
bus round [21, 22]. The parameters of the underlying Glossy flood
for a given message determine the weakly-hard behavior, the dura-
tion, and the power consumption of a given message transmission
task. We provide a scheduler that determines not only task release
times, but also the required Glossy flood parameters, in order to
meet the real-time constraints.

2.2 Software Synthesis and Codesign with
Weakly-Hard Constraints

At the software layer in our framework, the key issue is to an-
alyze the weakly-hard behavior of software implementations for
system functionalities (e.g., deadline miss patterns in their execu-
tion) based on schedulability analysis that will be introduced later
in Section 2.3, and then evaluate whether such weakly-hard be-
havior can meet the requirements on functional properties using
the techniques introduced above in Section 2.1. For instance, for
a control function, we will analyze the deadline miss pattern of
its software implementation, i.e., what (𝑚,𝐾) constraints it can
satisfy, considering execution resources and other software tasks in
schedulability analysis. We will then evaluate whether such (𝑚,𝐾)
constraints can ensure the safety, stability, and performance require-
ments of this control function. Moreover, based on such cross-layer
analysis, we will explore the various software implementation op-
tions (i.e., perform software synthesis) in a codesign process, with
holistic consideration of functional properties (e.g., safety, stability,
performance, security, fault tolerance) and platform properties (e.g.,
schedulability, energy consumption).

In our prior work [70], we have presented a series of codesign
methods for traditional hard real-time systems, exploring the design
space in a quantitative and automated manner. Our weakly-hard
design framework introduced in Fig. 1 extends this vision and par-
ticularly focuses on leveraging the additional slack from allowed
deadline misses to improve various system objectives. For instance,
in [45], we develop a codesign approach for adding security moni-
toring tasks to resource-limited automotive electronic systems by
finding feasible weakly-hard constraints on existing control tasks
and exploring the allocation, priority, and period assignment of

3

https://github.com/551100kk/SAW.git

added security monitoring tasks. Intuitively, adding more moni-
toring tasks and running them more frequently (i.e., with smaller
periods) can help improve the system security level, but may lead
to more deadline misses for the existing control tasks. Therefore,
our codesign approach quantitatively trades off between security
and control performance, while ensuring that the deadline misses
will not lead to instability of the control functions.

In [44], we similarly find feasible weakly-hard constraints on cer-
tain control tasks, and leverage their execution slacks to add fault
tolerance techniques [65] for soft error detection and correction
(e.g., by embedding detection techniques in tasks or applying redun-
dant task execution). We develop a codesign approach that trades
off between system control performance and error coverage, while
ensuring the stability of control tasks. Our results demonstrate that
leveraging weakly-hard paradigm can significant improve the error
coverage over traditional hard deadlines.

2.3 OS Support for Weakly-Hard Paradigm

For practical use and general acceptance of the weakly-hard
paradigm, we need system software and OS-level support to main-
tain functional and temporal correctness at runtime. Research on
new systems mechanisms and algorithms is sought for the efficient
and reliable execution of weakly-hard tasks, including schedul-
ing policies leveraging weakly-hard models for better resource
utilization and predictability, runtime mechanisms for handling
deadline-missed jobs for safe and robust operations, and support
for multi-core architectures for scalability.

Scheduling algorithms.Task schedulingwith given (𝑚,𝐾) constraints
has been conducted extensively, starting with Bernat et al. [6] un-
der traditional task-level fixed-priority scheduling. Extensions of
this schedulability work have been studied, such as for bi-modal
execution [7, 51] and non-preemptive tasks [43], by making strong
assumptions on task timing behavior, e.g., fixed initial release offset
and fixed period with no release jitter. However, we believe that
such assumptions limit their applicability to recent CPS applica-
tions, especially autonomous systems that require flexibility and
adaptability. Recent work [54, 63] relaxes some of these assump-
tions but at the expense of high analysis complexity, making them
difficult to use at runtime for online admission control in adaptive
systems. Moreover, existing scheduling policies cannot take full
advantage of the flexibility allowed by weakly-hard constraints.

J0

J0 J1 J2

Possible routes at deadline meet
Possible routes at deadline miss

Classification rule

Missed
Met New arriving job

…

3 4 5

1 2

6 7 98 0

Ancestors
(depth 1)

Children
(depth K)

Job-class-level scheduler Analysis framework

Classify a new
 job by rule

Time

Job-class
(High priority)

Job-class
(Low priority)

Job-class

Step 1: Worst-case response time (WCRT)

Step 2: Reachability tree

WCRT Deadline WCRT Deadline

Check possible patterns w.r.t. (m,K)

WCRT D: node 1,4 WCRT D: node 2,3,5

J0 J1 J2

Figure 2: Job-class-level scheduling for weakly-hard tasks.

As an effort to address these issues, we have developed new
scheduling algorithms for weakly-hard systems. In [13], we pro-
posed job-class-level scheduling, which significantly improves the
scheduling efficiency and flexibility of weakly-hard real-time tasks.
The key to this work is in the classification of jobs of each task,
called job-classes, and the assignment of priority to each class of
jobs (Fig. 2). Unlike traditional task-level priority scheduling, a
task can have as many priority levels as the number of job-classes
it has, and the priority of each job is determined by the priority
of its corresponding job-class. This approach also enables decom-
posing the complex weakly-hard schedulability problem into two
sub-problems that are easier to solve: (i) analysis of the worst case
response time for individual job-classes, and (ii) finding all possible
scheduling patterns, which can be modeled as a reachability tree.
Based on experiments, this new scheduler outperforms prior work,
with as much as 56% higher taskset schedulability on a single pro-
cessor. The analysis running time under our new scheduler is much
faster than that under conventional fixed-priority schedulers [54],
thereby making it applicable to runtime admission control.

Deadline miss handling. Resource efficiency and design flexibility of
a system can vary depending how deadline missed-jobs are handled.
Various assumptions have been made in the literature of weakly-
hard systems, but their effects have not been comparably studied.
In [12], we classified possible deadline handling schemes into four
categories: (1) job abort terminates a job immediately when the job
misses its deadline, (2) delayed completion allows a deadline-missed
job to continue to run until it completes, (3) job pre-skip determines
whether to execute a job or not at its release time, based on available
slack time or predetermined patterns, and (4) job post-skip allows
a deadline-missed job to continue over the period but skips the
next job. Based on this classification, we developed a unified run-
time framework that supports all these schemes. Although it was
originally implemented in the Linux kernel, the framework design
is easily applicable to other OSs, and analyzing the four schemes
under various conditions is an interesting research direction.

Multi-core support. Despite the popularity of multi-core processors
in recent embedded platforms, studies for weakly-hard systems are
still in their early stages. Task scheduling in multi-core systems is
typically classified into partitioned, semi-partitioned, and global
scheduling. Among them, partitioned scheduling allows direct ap-
plication of existing single-core schedulers to multi-core platforms
on a per-core basis, but it may not be able to efficiently utilize the
slack made available by weakly-hard tasks. On the other hand, semi-
partitioned and global scheduling have the potential to improve
resource utilization without sacrificing the safety of weakly-hard
systems. We are extending our job-class-level scheduler [13] with
the semi-partitioned approach. The end-to-end latency of a chain
of tasks executing across multiple CPU cores is also an important
topic. In our recent work [11], we presented a chain-based scheduler
for multi-core platforms, which improves end-to-end latency by tak-
ing advantage of permissible deadline misses of intermediate tasks.
Lastly, shared memory resources, such as caches, memory buses,
and DRAM banks, are critical sources of timing unpredictability
in recent multi-core platforms [3, 37, 39], but to the best of our
knowledge, no prior work has studied these issues for weakly-hard
systems. Addressing these issues is part of our future work.

4

3 ADDRESSING UNCERTAINTY FACING
NEURAL NETWORKS

Neural networks have been widely applied in autonomous systems,
both in perception and decision making. Fig. 3 shows a typical
example. The physical plant describes the system behavior and
is represented by an ordinary differetial equation (ODE). At each
sampling instant 𝑡 , raw data is sampled from various sensors, e.g.
camera, Lidar, Radar. Then the perception module runs a convo-
lutional neural network to extract the state information from the
raw data. The following decision making module computes the
control input based on the system state by a fully-connected neural
network. Finally the control input is actuated in the next period to
drive the system evolution.

Decision Maker

ActuateSense

State: 𝑥 Input: 𝑢

Physical Plant
𝑑𝑥
𝑑𝑡 ൌ 𝑥 െ 𝑥ଶ 𝑢

Perception
Raw data: 𝐷

Figure 3: Illustration of a neural-network involved system.

Due to the high complexity and numerous parameters, neural
networks bring inherent uncertainties to the modern autonomous
systems. In this section, we introduce our recent works on address-
ing the uncertainties of neural networks across both perception
and decision making components.

3.1 Runtime System for Time-Predictable DNN

While DNNs have been widely applied in autonomous systems
and much research has been conducted to optimize their structure,
limited attention has been given to mitigating the timing uncer-
tainties of executing multiple DNNs, specifically when they are
integrated into resource-constrained heterogeneous platforms. For
instance, existing modern DNN frameworks, such as TensorFlow
and PyTorch, only provide sequential execution patterns with no
priority support. Those frameworks do not take into account timing
interference among different DNN tasks due to the contention on
shared computing resources. Thus, response time of those tasks
may become unpredictably long in the worst case while leaving
system resources underutilized. Researchers have proposed several
frameworks such as S3DNN [67], Neurosurgeon [36] and Deep-
Mon [35] that target on lowering the DNN inference latency. How-
ever, none of those frameworks bound or mitigate the inference
time uncertainty. In other words, they are not amenable to real-time
schedulability analysis and do not offer deterministic guarantees
on the response time of DNN tasks.

To address those limitations, we developed DART [62] as shown
in Fig. 4, a real-time DNN framework that offers deterministic and
bounded response time to real-time DNN inference tasks and con-
current execution of various types of DNNmodel on heterogeneous
multi-core and GPU-integrated platforms. DART introduces new

 Balancing computing loads while meeting
real-time constraints

 Reducing time complexity through DP
algorithms

Resource Management

Computing Node
Configurations

DNN Workload
Partitioning

Misc. Components

Layer Execution
Time Profiling

Admission Control

Task Run-time
Enforcement

Scheduling Architecture

Inter-node Pipelining Intra-node Data Parallelism Multi-class Task Support

Node 1 𝜏ோ் 𝜏ோ்
GPU

CPU 2
CPU 3

Node 2

Time

ex
ec

 ti
m

e

of CPUs
1 2 3

Layer 1
(L1)5

3

1

of CPUs
1 2 3

Layer 2
(L2)10

5

ex
ec

 ti
m

e

Profile

Figure 4: Real-time DNN execution framework for heteroge-
neous embedded platforms.

abstractions to deal with the different resource requirements of
individual layers of DNNs and to facilitate the co-utilization of CPU
and GPU in inference job execution. Specifically, it (i) creates the
pipeline stages of each task in a way to balance the contention
across a given set of processors, (ii) configures a set of computing
nodes considering heterogeneity and parallelism levels, and (iii)
allocates computing resources to meet timing constraints and to
minimize task response time. In addition, the design of DART en-
ables a systematic formulation of the real-time DNN scheduling
problem into a distributed acyclic scheduling problem. Our anal-
ysis captures DNN job execution over the proposed abstractions
of stages, nodes, and workers, and takes into account system over-
heads including inter-node communication, GPU preemption, and
data copy time. DART has demonstrated its ability to bound and
mitigate the execution time uncertainties on both popular ARM
and x86 platforms. Our experimental results indicate that DART sig-
nificantly outperforms existing frameworks, by up to 98.5% shorter
worst-case response time for real-time tasks while simultaneously
achieving up to 17.9% higher throughput for best-effort tasks.

There are several research directions that can be built upon
DART. First, distributed IoT devices can be modeled as nodes of the
DART pipeline to offload workloads and mitigate uncertainties. Sec-
ond, sophisticated real-time GPU schemes [38, 47] can be applied
for better resource utilization and other types of hardware accelera-
tors, such as FPGAs, can be co-used for larger DNNs. Third, shared
memory resources and their timing interference [55] are worth
investigating to minimize timing uncertainties and provide better
performance isolation between real-time and best-effort DNNs.

3.2 Adversarial Attacks and Output Range
Analysis for Neural Networks

With the rising use of emerging DNN applications in safety-
critical systems, much attention has been given to the reliability
and trustworthiness of DNN inference output against disturbances
such as malicious adversarial attacks. Adversarial examples were
first founded in [56]. Intuitively, an adversarial example could cause

5

the network to make a false prediction with small perturbations
that are unrecognizable by humans. To achieve better robustness
against adversarial examples, adversarial training and output range
analysis are two main topics studied recently.

Dependability against adversarial attacks. As the output of DNNs
is determined by input data, trained weights, and intermediate
results stored in memory, adversarial fault data injection attacks
such as physical laser beam [8] and row hammer attacks [50] can
easily manipulate these parameters and have DNNs to generate
different output. Fig. 5 shows an example adversarial DNN attack.
The model is expected to infer red traffic light and stop sign from
the driving scene. However, malicious attacker can launch a fault
injection attack that alters the critical model parameters and in-
termediate computation results of DNNs running in an untrusted
and/or uncertified software environment, which in turn leads to a
false classification result and threatens the safety of the system. For
dependable DNN execution, it is imperative to protect the parame-
ters critical to output correctness frommalicious data modifications.
The leakage of the critical parameters including data structures and
location in memory should also be prevented because such informa-
tion is required by fault injection attacks to analyze the weakness
of DNN models. Even if attacks happen, the degree of faulty output
should be contained within an acceptable and predictable range.

False classification

Untrusted/uncertified OS

DNN
framework

GPU/Accel.
drivers

Stealthy fault injectionCritical model params
& intermediate results

Figure 5: Adversarial fault injection attacks to DNNs.

Recently much work has focused on the implications of external
disturbances to the outputs of DNNs and tried to guide protection
strategies. TensorFI [42], BinFI [10], and Ares [52] are fault injection
tools that analyze DNN models and identify critical bits, and they
are useful not only to assess the impact of soft errors but also
to identify weaknesses. However, those studies does not provide
a concrete protection mechanism for a variety of fault injection
attacks. There are also studies [18, 26, 40] on improving the privacy
of DNN inference by executing the entire DNN model inside Intel
SGX enclaves, but due to the performance limitations of SGX, those
approaches are not suitable for real-time applications.

We are currently investigating to address these limitations and
to achieve dependable real-time DNN execution environment. Our
on-going work leverages secure SGX enclaves but protects only
the critical part of real-time DNN tasks which are vulnerable to
potential fault injection attacks. In order to choose the right set of
layers for protection while satisfying real-time requirements, we are
developing a dynamic-programming based approach to find a layer
protection configuration for each task based on layer-wise DNN
time and SDC (Silent Data Corruption) profiling mechanisms. We

utilize a machine-learning based SDC prediction method to reduce
the time for estimating SDC rates for all possible layer protection
configurations. Our approach is not limited to SGX; with additional
integrity checks, it can be applied to trusted hypervisors [16] and
other hardware security extensions, e.g., ARM TrustZone.

Bounding output range for certifiable DNNs.Beyond adversarial pro-
tections, output range analysis provides the certified bound of a
neural network with a given input space, which theoretically eval-
uates the robustness of a neural network.

Specifically, output range analysis solves the following problem:
given a neural network 𝑓 and the input range X, compute the
output range of 𝑓 (X). Due to the highly nonlinearity of neural
networks, it is generally difficult to compute the exact range. Inmost
cases, we use an overapproximation Y such that 𝑓 (X) ⊆ Y. Such
overapproximation can provide an explicit bound for determining
whether the neural network output falls into an unwanted region.
In the context of adversarial robustness, for a data point 𝑥 with
the concerned error bound 𝜖 , we can define the input space as the
small 𝐿∞-norm box [𝑥 − 𝜖, 𝑥 + 𝜖] and estimate the output range as
[̄𝑙1, 𝑙1] × · · · × [̄𝑙𝑔 , 𝑙𝑔] · · · × [̄𝑙𝑛, 𝑙𝑛] for 𝑛 labels, where ¯𝑙𝑔 (𝑙𝑔) denotes
the lower (upper) bound of the output in terms of the ground truth.
If ¯𝑙𝑔 ≥ 𝑙𝑖 , for 𝑖 = 1, · · · , 𝑛, we can safely say the the neural network
is locally robust on 𝑥 with respect to the perturbation 𝜖 .

In our work [31], we propose a layer-wise refinement method
that bridges propagation-based methods with mixed-integer linear
programming (MILP) by using sliding windows. Specifically, we
use a convex polygonal relaxation (over-approximation) of the acti-
vation functions to cope with the nonlinearity. This allows us to
encode the relaxed problem into a mixed integer linear program
(MILP), and control the tightness of the relaxation by adjusting
the number of segments in the polygon. Starting with a segment
number of 1 for each neuron, which coincides with a linear program-
ming (LP) relaxation, our approach heuristically selects neurons
layer by layer to iteratively refine this relaxation. To tackle the
increase of the number of integer variables with tighter refinement,
we bridge the propagation-based method and the programming-
based method by dividing and sliding the layer-wise constraints:
given a length of sliding window 𝑠 , for the neuron in layer 𝑙 , we
only encode the constraints of the layers between 𝑙 − 𝑠 and 𝑙 . With
these methods, we can effectively manage the size of MILP and
handle deep networks.

3.3 Reachability Analysis and Safety
Verification of NNCSs

Neural networks are not only widely used for perception, but
have been increasingly applied to control and general decision
making. Learning-enabled autonomous systems, especially neural-
network controlled systems (NNCSs) have recently become the
subject of intense research and demonstrated great promises. An
NNCS is essentially a closed-loop system controlled by a neural
network. Unlike the output range analysis, verification of an NNCS
will need to capture not only the behavior of the neural-network
controller but the interaction between system dynamics and the
neural-network controller. In [30], we propose a new reachabil-
ity analysis approach, ReachNN, to verify NNCSs via Bernstein

6

polynomial approximation. Specifically, given an input state space,
ReachNN constructs an error-bounded approximation based on
Bernstein polynomial for the neural-network controller and casts
the NNCS into a tractable closed-loop system. This allows us to
verify properties of the NNCS’s reachable space by using existing
reachability tools and handle general neural networks. One advan-
tage of using a Bernstein polynomial-based approximation is that
it allows us to establish a bound on the approximation error based
on the Lipschitz constant of the neural network.

-1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Output Range Analysis
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) ReachNN*

Figure 6: Reachability analysis result computed by output
range analysis only and by ReachNN* on an NNCS. The con-
troller is a heterogeneous neural network that has ReLU
and tanh activation functions. The red curves are simulation
traces. The green boxes represent the reachable sets and the
blue box is the target region.

We implement this technique as an open-source tool called
ReachNN* [20] 2, with enhanced efficiency and scalability by GPU
acceleration in the error estimation, which brings about 7× to 422×
performance improvement. In Fig. 6, we show that applying only
output range analysis techniques to verify NNCSs can result in rapid
growth of the reachable set overapproximation. On the other hand,
ReachNN* can provide a much tighter estimation for all control
steps and successfully prove the reachability property.

In the ReachNN* work, we also observe that Lipschitz continuity
of a neural network plays a major role in the construction of reach-
able sets for NNCSs. Larger value of the Lipschitz constant leads to
higher computational cost and looser reachable set overapproxima-
tions. This observation inspires us to further explore approaches
that ease the verification through training. Our work [19] develops
a novel verification-aware knowledge distillation (KD) framework
that transfers the knowledge of a trained network to a new and
easier-to-verify network by reducing the value of Lipschitz con-
stant. We form a two-objective optimization problem that considers
knowledge distillation and the value of Lipschitz constant jointly.
We show that our technique enables state-of-the-art verification
tools for NNCSs to achieve tighter reachable sets and reduce their
computation time. This work opens up the possibility of reducing
verification complexity by influencing how a system is trained.

4 SAFETY-ASSURED ADAPTATION IN
DYNAMIC ENVIRONMENT

Autonomous systems are often deployed in highly dynamic and
uncertain environment that could put changing requirements on

2https://github.com/JmfanBU/ReachNNStar

system objectives. For instance, a robot may need to strengthen
its security protection in an adversarial environment, to improve
soft error tolerance in radioactive surroundings, or to enhance
control performance in difficult-to-navigate terrains. To address
these changing scenarios, intelligent and safe adaptation of the
system is needed.

In the literature, safe learning, i.e., the additional consideration
of safety requirements during training or deployment of machine
learning components, has garnered attention from multiple re-
search communities [1, 2, 14, 69]. From a system’s point of view,
a well-known approach to ensure safety at runtime is the Simplex
architecture [53]. In this architecture, a safety controller is used to
ensure stabilization of the physical system in a known domain of
the system state space, in addition to a baseline controller and an
advanced controller. Recently, [49] extends this idea to autonomous
systems, where a neural or AI controller is used as the advanced
controller to generate high-performance control actions. Frequent
and intermittent switching between the safety controller and the
neural controller, however, can lead to undesirable behavior and
reduced performance. The authors in [68] propose to reduce such
control switching by repairing the neural controller, i.e., making it
safe in states that would have required the safety controller to in-
tervene, by using control actions generated by the safety controller
at runtime.

In ourwork, we have been focusing on safe adaptation and switch-
ing among multiple controllers or multiple modes. For instance, a
simple controller may only handle a portion of the possible scenar-
ios and fail for the rest, while a robust controller may be able to
handle more scenarios but is too expensive or excessive for those
simple scenarios. By considering both the performance and the
efficiency, adaptively selecting a proper controller under different
scenarios may greatly benefit the system [4]. Traditional adaptive
control algorithms dynamically adjust the parameters of the feed-
back controller for better control performance. For instance, gain
scheduling [41] selects different control parameters at different
operation points to eliminate the uncertainty introduced by lin-
earization. Model reference adaptive control (MRAC) [5] attempts to
minimize the error between the actual system output and a desired
one generated by a reference model. Dual adaptive control [60] not
only provides good control performance, but also minimizes the
uncertainty of the model parameter estimation. Such an idea can be
extended to multiple control modes in autonomous systems. For in-
stance in [15], a shorter sampling period (fast mode) in control loops
can make faster response to external disturbances while consume
more computation/control resource than a longer sampling period
(slow mode). Adaptation between these two modes is promising
for stability and resource saving. While these adaptive control laws
are designed to tackle the disturbance and uncertainty, the control
performance is usually the design objective under the constraint of
stability. However, the disturbance may cause the stable controller
entering unsafe state space.

Our approach considers an autonomous system that is equipped
with multiple controllers to handle different situations, and differ-
ent from most methods in the literature, ours formally guarantees
system safety during adaptation. At a sampling instant, to meet the
system objectives at the time, an adapter can choose an appropriate
controller to compute the control input, or skip the control input

7

computation and apply zero input. A key issue here is how to design
the adapter to guarantee the system safety while identifying the
best controller to choose for the objectives. In [34], we make the
first attempt, where we consider the adaptation between a model-
based controller (e.g., model predictive control) and zero input for a
dynamical system under disturbance. To guarantee safety, we first
compute a strengthened safe set based on the notion of robust control
invariant and backward reachable set of the underlying safe con-
troller. Intuitively, the strengthened safety set represents the states
at which the system can accept any control input at the current
step and be able to stay within safe states, with the underlying safe
controller applying input from the next step on. We then develop a
monitor to check whether the system is within such strengthened
safe set at each control step. Whenever it is found that the system
state is out of the strengthened safe set, the monitor will require
the system to apply the underlying safe controller for guaranteeing
system safety. To achieve a better control performance, we leverage
a deep reinforcement learning (DRL) approach to learn the map-
ping from the current state and the historical characteristics to the
skipping choices, which implicitly reflects the impact of specific
operation context and environment that denoted by disturbance.

In [58], we extend the approach from [34] to handle systems
equipped with multiple neural-network controllers, which can be
generated by different design methods or design hyper-parameters.
In this work, the system safety is ensured by control invariant,
which differs from [34]. Specifically, we first approximate each con-
troller by Bernstein polynomials, which follows the idea in [30],
but with state space partitioning to obtain a more precise hybrid
controller. Combining the hybrid controllers with the dynamical
system, we obtain a hybrid system with bounded disturbance as
an over-approximation of the original system. Then the robust
invariant set for each controller is obtained via semi-definite pro-
gramming [64]. Intuitively, the invariant is a safe set that ensure
every possible controlled trajectory starting from it will never leave
it. The union of these invariant sets then build a safe configuration
space, within which we design a DRL agent to learn a run-time
switching strategy with with a safe guard rule. Experiments show
that our approach can ensure system safety while significantly
reduce the overall energy consumption.

Our ongoing work extends the idea of safety-assured adaptation
to a cross-layer framework, as illustrated in Fig. 7. We consider
architecture platforms where the software implementations of mul-
tiple functions are scheduled to share computation and commu-
nication resources. During runtime adaptation, resources may be
re-allocated from certain tasks (e.g., by reducing their execution
periods, skipping their execution instances as in [34], or choosing
more efficient controllers for them as in [58]) to other tasks that
are more in need at the time. The key is to ensure that under such
adaptation, functions meet their functional layer requirements such
as safety, stability, and performance; and their implementations
on the architecture layer satisfy constraints on schedulability, re-
source usage, energy consumption, etc. We address such adaptation
by formulating it as a multi-objective optimization problem with
constraints on safety, schedulability, and other functional and ar-
chitectural constraints. The objectives may include saving control
energy consumption (same as in [34] and [58]), optimizing the con-
trol performance, improving the performance of other functions

Architecture layer

ECU 1

𝜏1 𝜏2 ... 𝜏𝑛𝜏3...
ECU m

Message bus

Cross-layer

Adapter

Plant

output

control signal

disturbance

Schedulability

Functionality

Adaptation

choice

Functional layer

Controller

Controller 2Controller 1
Controller N

Figure 7: Cross-layer adaptation framework. The adapter
cuts across the functional layer and the architecture layer.
At the functional layer, control functions interact with their
corresponding physical plants (one control function with
multiple candidate controllers is shown). There could be
other types of functions as well (e.g., sensing functions; not
shown in the figure). At the architecture layer, multiple
software tasks implementing the functions are scheduled
to share computation and communication resource. During
runtime, the adapter may choose different controllers for
control functions at the functional layer, or adjust their soft-
ware implementations at the architecture layer, to meet the
system needs while ensuring safety.

(e.g., sensing functions), enhancing security with monitoring tasks
as in [45], or improving fault tolerance as in [44].

5 CONCLUDING REMARKS
Dependable operation of autonomous systems requires proper han-
dling of external disturbances and inherent uncertainties. In this
paper, we lay out various aspects of this challenge and potential so-
lutions, from uncertainty modeling and mitigation using a weakly-
hard paradigm, to formal verification, robust execution, and intelli-
gent adaptation of neural network based components. We posit that
a cross-layer approach that cuts across functional, software and
OS layers is essential to mitigate and manage uncertainties. Initial
results from domains such as connected and autonomous vehicles
demonstrate the effectiveness of our approaches in coping with
uncertainties that arise in a variety of scenarios, and adapting the
system for better resource usage while preserving safety. Several
future directions such as predictive monitoring and runtime adap-
tation can be explored to further the capabilities of autonomous
systems in dealing with uncertainties, and we believe such efforts
can be built upon our initial endeavor presented in this paper.

ACKNOWLEDGMENTS
We gratefully acknowledge the support fromNational Science Foun-
dation (NSF) grants 1646497, 1834701, 1834324, 1839511, 1724341,
and Office of Naval Research (ONR) grant N00014-19-1-2496.

8

REFERENCES
[1] J. Achiam et al. Constrained policy optimization. In International Conference on

Machine Learning, 2017.
[2] M. Alshiekh et al. Safe reinforcement learning via shielding. In Thirty-Second

AAAI Conference on Artificial Intelligence, 2018.
[3] B. Andersson et al. Schedulability analysis of tasks with corunner-dependent

execution times. ACM TECS, 17(3):1–29, 2018.
[4] K. Åström and B. Wittenmark. Adaptive Control: Second Edition. Dover Books on

Electrical Engineering. Dover Publications, 2013.
[5] I. Barkana. Simple adaptive control – a stable direct model reference adaptive

control methodology – brief survey. International Journal of Adaptive Control
and Signal Processing, 28(7-8):567–603, 2014.

[6] G. Bernat et al. Weakly hard real-time systems. IEEE transactions on Computers,
50(4):308–321, 2001.

[7] G. Bernat and R. Cayssials. Guaranteed on-line weakly-hard real-time systems.
In IEEE Real-Time Systems Symposium (RTSS), 2001.

[8] J. Breier et al. Deeplaser: Practical fault attack on deep neural networks. arXiv
preprint arXiv:1806.05859, 2018.

[9] S. Checkoway et al. Comprehensive experimental analyses of automotive attack
surfaces. In USENIX Conference on Security, 2011.

[10] Z. Chen et al. BinFI: an efficient fault injector for safety-critical machine learning
systems. In SC, pages 1–23, 2019.

[11] H. Choi et al. Chain-based fixed-priority scheduling of loosely-dependent tasks.
In IEEE International Conference on Computer Design (ICCD), 2020.

[12] H. Choi and H. Kim. Work-in-progress: A unified runtime framework for weakly-
hard real-time systems. In Brief Presentations of RTAS, 2019.

[13] H. Choi et al. Job-class-level fixed priority scheduling of weakly-hard real-time
systems. In IEEE RTAS, 2019.

[14] Y. Chow et al. A lyapunov-based approach to safe reinforcement learning. In
Advances in Neural Information Processing Systems, pages 8092–8101, 2018.

[15] X. Dai et al. A dual-mode strategy for performance-maximisation and resource-
efficient cps design. ACM TECS, 18(5s):1–20, 2019.

[16] D. De Niz et al. Mixed-trust computing for real-time systems. In IEEE RTCSA,
2019.

[17] P. S. Duggirala and M. Viswanathan. Analyzing real time linear control systems
using software verification. In RTSS, pages 216–226. IEEE, 2015.

[18] T. Elgamal and K. Nahrstedt. Serdab: An IoT framework for partitioning neural
networks computation across multiple enclaves. arXiv:2005.06043, 2020.

[19] J. Fan et al. Towards verification-aware knowledge distillation for neural-network
controlled systems. In International Conference on Computer-Aided Design (IC-
CAD), 2019.

[20] J. Fan et al. Reachnn*: A tool for reachability analysis of neural-network controlled
systems. In ATVA, 2020.

[21] F. Ferrari et al. Low-power wireless bus. InACMConference on Embedded Network
Sensor Systems (SenSys), 2012.

[22] F. Ferrari et al. Efficient network flooding and time synchronization with glossy.
In Proceedings of the 10th ACM/IEEE International Conference on Information
Processing in Sensor Networks, pages 73–84, 2011.

[23] G. Frehse et al. Formal analysis of timing effects on closed-loop properties of
control software. In IEEE Real-Time Systems Symposium, pages 53–62, Dec 2014.

[24] G. Frehse et al. Spaceex: Scalable verification of hybrid systems. In International
Conference on Computer Aided Verification, pages 379–395. Springer, 2011.

[25] D. Goswami et al. Relaxing signal delay constraints in distributed embedded
controllers. IEEE Trans. on Control Systems Technology, 22(6):2337–2345, 2014.

[26] K. Grover et al. Privado: Practical and secure DNN inference with enclaves. arXiv
preprint arXiv:1810.00602, 2018.

[27] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for
streams with (m, k)-firm deadlines. IEEE Transactions on Computers, 44(12), 1995.

[28] T. A. Henzinger et al. Giotto: a time-triggered language for embedded program-
ming. Proceedings of the IEEE, 91(1):84–99, Jan 2003.

[29] C. Huang et al. Saw: A tool for safety analysis of weakly-hard systems. In
Computer Aided Verification (CAV), pages 543–555, 2020.

[30] C. Huang et al. Reachnn: Reachability analysis of neural-network controlled
systems. ACM Trans. Embed. Comput. Syst., 18(5s), Oct. 2019.

[31] C. Huang et al. Divide and slide: Layer-wise refinement for output range analysis
of deep neural networks. IEEE TCAD, 2020.

[32] C. Huang et al. Formal verification of weakly-hard systems. In ACM Conference
on Hybrid Systems: Computation and Control (HSCC), 2019.

[33] C. Huang et al. Exploring weakly-hard paradigm for networked systems. In
Workshop on Design Automation for CPS and IoT (DESTION), 2019.

[34] C. Huang et al. Opportunistic intermittent control with safety guarantees for
autonomous systems. In Design Automation Conference (DAC), 2020.

[35] L. N. Huynh et al. Deepmon: Mobile gpu-based deep learning framework for
continuous vision applications. In MobiSys, 2017.

[36] Y. Kang et al. Neurosurgeon: Collaborative intelligence between the cloud and
mobile edge. ACM SIGARCH Computer Architecture News, 45(1):615–629, 2017.

[37] H. Kim et al. Bounding memory interference delay in cots-based multi-core
systems. In IEEE RTAS, 2014.

[38] H. Kim et al. A server-based approach for predictable gpu access with improved
analysis. Journal of Systems Architecture, 88:97–109, 2018.

[39] H. Kim and R. Rajkumar. Predictable shared cache management for multi-core
real-time virtualization. ACM TECS, 17(1):1–27, 2017.

[40] T. Lee et al. Occlumency: Privacy-preserving remote deep-learning inference
using SGX. In MobiCom, 2019.

[41] D. J. Leith and W. E. Leithead. Survey of gain-scheduling analysis and design.
International Journal of Control, 73(11):1001–1025, 2000.

[42] G. Li et al. TensorFI: A configurable fault injector for tensorflow applications. In
IEEE Symposium on Software Reliability Engineering Workshops, 2018.

[43] J. Li et al. Providing real-time applications with graceful degradation of QoS and
fault tolerance according to (𝑚,𝑘)-firm model. IEEE Transactions on Industrial
Informatics, 2(2):112–119, 2006.

[44] H. Liang et al. Leveraging weakly-hard constraints for improving system fault
tolerance with functional and timing guarantees. In 2020 International Conference
on Computer-Aided Design (ICCAD), 2020.

[45] H. Liang et al. Security-driven codesign with weakly-hard constraints for real-
time embedded systems. In International Conference on Computer Design (ICCD),
pages 217–226, 2019.

[46] C. Lin et al. Security-Aware Design Methodology and Optimization for Automo-
tive Systems. ACM TODAES, 21(1):18:1–18:26, December 2015.

[47] P. Patel et al. Analytical enhancements and practical insights for mpcp with
self-suspensions. In IEEE RTAS, 2018.

[48] P. Pazzaglia et al. Beyond the weakly hard model: measuring the performance
cost of deadline misses. In ECRTS, 2018.

[49] D. T. Phan et al. Neural simplex architecture. InNASA FormalMethods Symposium,
pages 97–114. Springer, 2020.

[50] A. S. Rakin et al. Bit-flip attack: Crushing neural network with progressive bit
search. In International Conference on Computer Vision, pages 1211–1220, 2019.

[51] P. Ramanathan. Overload management in real-time control applications using
(m, k)-firm guarantee. IEEE Transactions on Parallel and Distributed Systems,
10(6):549–559, Jun 1999.

[52] B. Reagen et al. Ares: A framework for quantifying the resilience of deep neural
networks. In ACM/IEEE Design Automation Conference (DAC), 2018.

[53] D. Seto et al. The simplex architecture for safe online control system upgrades.
In American Control Conference (ACC), 1998.

[54] Y. Sun and M. D. Natale. Weakly hard schedulability analysis for fixed priority
scheduling of periodic real-time tasks. ACM TECS, 16(5s):171, 2017.

[55] N. Suzuki et al. Coordinated bank and cache coloring for temporal protection of
memory accesses. In IEEE CSE, 2013.

[56] C. Szegedy et al. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[57] E. P. van Horssen et al. Performance analysis and controller improvement for
linear systems with (m, k)-firm data losses. In ECC, pages 2571–2577, 2016.

[58] Y. Wang et al. Energy-efficient control adaptation with safety guarantees
for learning-enabled cyber-physical systems. In International Conference on
Computer-Aided Design (ICCAD), 2020.

[59] K. Wardega andW. Li. Application-Aware Scheduling of Networked Applications
over the Low-Power Wireless Bus. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), Mar. 2020.

[60] B. Wittenmark. Adaptive dual control methods: An overview. In C. BÁNYÁSZ,
editor, Adaptive Systems in Control and Signal Processing 1995, IFAC Postprint
Volume, pages 67 – 72. Pergamon, Oxford, 1995.

[61] S.-L. Wu et al. Efficient system verification with multiple weakly-hard constraints
for runtime monitoring. In 20th International Conference on Runtime Verification
(RV), 2020.

[62] Y. Xiang and H. Kim. Pipelined data-parallel CPU/GPU scheduling for multi-DNN
real-time inference. In RTSS, pages 392–405, 2019.

[63] W. Xu et al. Improved deadline miss models for real-time systems using typical
worst-case analysis. In ECRTS, pages 247–256, 2015.

[64] B. Xue and N. Zhan. Robust invariant sets computation for switched discrete-time
polynomial systems. arXiv preprint arXiv:1811.11454, 2018.

[65] B. Zheng et al. Analysis and Optimization of Soft Error Tolerance Strategies for
Real-Time Systems. In International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS), October 2015.

[66] B. Zheng et al. Design and analysis of delay-tolerant intelligent intersection
management. ACM Transaction on Cyber-Physical Systems, 2019.

[67] H. Zhou et al. S3DNN: Supervised streaming and scheduling for GPU-accelerated
real-time DNN workloads. In IEEE RTAS, 2018.

[68] W. Zhou et al. Runtime-safety-guided policy repair. In 20th International Confer-
ence on Runtime Verification (RV), 2020.

[69] W. Zhou and W. Li. Safety-aware apprenticeship learning. In International
Conference on Computer Aided Verification (CAV), pages 662–680, 2018.

[70] Q. Zhu and A. Sangiovanni-Vincentelli. Codesign methodologies and tools for
cyber–physical systems. Proceedings of the IEEE, 106(9):1484–1500, 2018.

9

