Energy Scheduling for Task Execution on Intermittently-Powered Devices

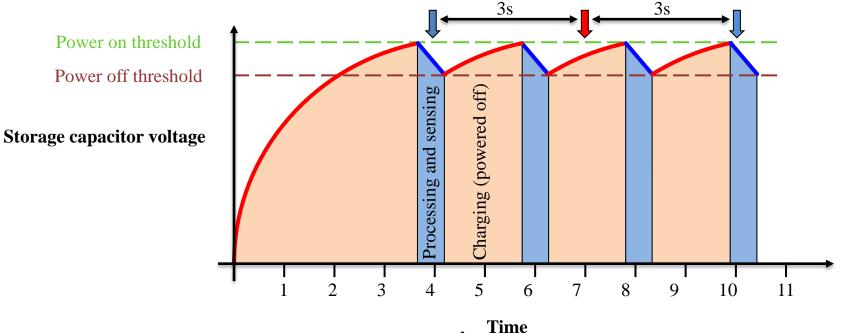
Mohsen Karimi, Hyoseung Kim

University of California, Riverside

Intermittently Powered Devices

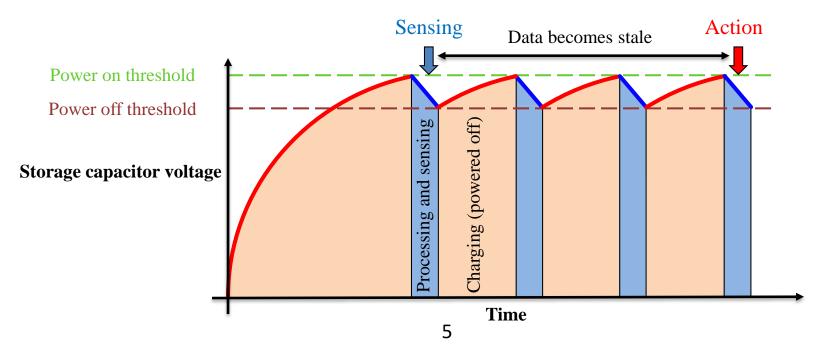
- **Definition**: Devices that do not use battery and are powered by intermittent power sources such as sunlight, heat, vibration, and radio signals.
- Applications: Smart home, agriculture, health monitoring, ...
- Advantages:
 - Few maintenance is required
 - They can last for decades
 - They can be deployed in extreme environments
- Examples : Beacon, WISP, Flicker, ...

Previous Work

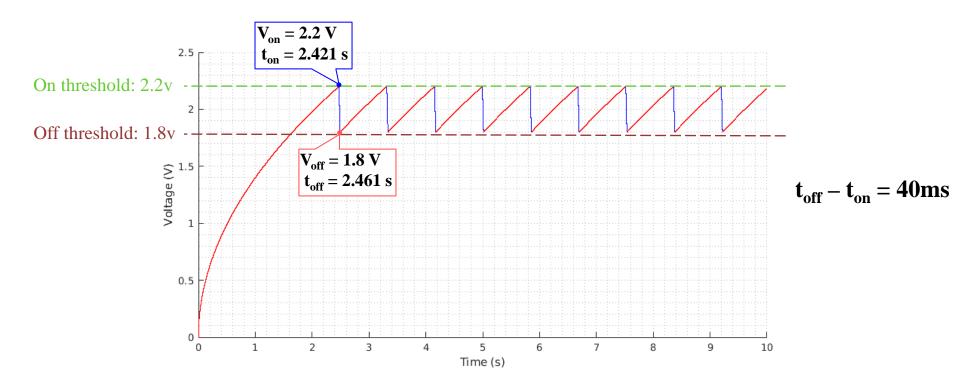

- Forward progress guarantee (checkpointing)[1,2]
- Programming environment to divide tasks into segments to preserve data consistency[3]
- Different energy storage banks for different types of task [4]
- Event-driven Kernel for intermittently powered devices[5]

A. Colin, E. Ruppel, and B. Lucia. A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices. In ACM SIGPLAN Notices, volume 53, 2018.
B. Ransford, J. Sorber, and K. Fu. Mementos: System support for long-running computation on rfid-scale devices. In ASPLOS, 2011.
J. Hester, K. Storer, and J. Sorber. Timely Execution on Intermittently Powered Batteryless Sensors. In SenSys, 2018.
A. Colin, E. Ruppel, and B. Lucia. A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices. In ACM SIGPLAN Notices, volume 53, 2018.

[5] K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester. InK: Reactive Kernel for Tiny Batteryless Sensors. In SenSys, 2018.


Challenges

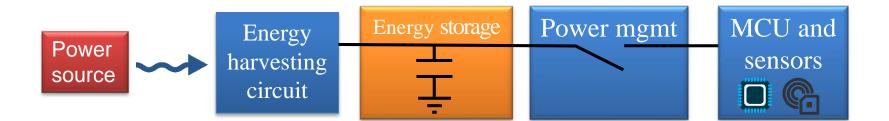
- Periodic sensing and real-time task execution
 - Device goes off in every power cycle
 - Discharging is much faster
 - Energy buffer is extremely small (e.g., capacitors with 47 uF@1.8V)
 - No notion of time

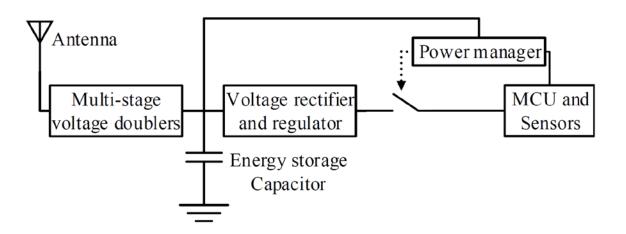

Challenges

- Data freshness and timely execution
 - Importance
 - On time detection (sensing) and in-time reaction
 - Requirement
 - Periodic sampling and time keeping
 - Example
 - Blood sugar monitoring and automatic insulin release for a diabetic

Challenges

- Long atomic (indivisible) execution
 - Sensor reading
 - Example: BME680 gas sensor needs more than 100ms to read sensor value




Proposed Method

- Energy scheduling model
 - Keep track of time
 - Enable periodic task execution
 - Enable atomic indivisible execution
- Real-time task scheduling analysis
 - Single task
 - Multiple task

System Model

• Hardware characteristics

System Model

• RFID tag

- G_s: Transmitter gain
- G_r : Receiver gain
- L_p : Polarization loss
- η : Rectifier efficiency factor
- λ : Wavelength of the RF signal
- β : Parameter to adjust Friis' free space equation for short distance

- Fixed distance from reader:
 - C_s: Storage capacitor
 - R_p Parallel equivalent resistance of the circuit

[6] S. He et al. Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10):1931–1942, Oct 2013.

System Model

- Charging rate
 - V_{min_th} : Min voltage required to turn on the device
 - V_{max} : Max voltage of the capacitor
 - R_p: Parallel equivalent resistance of the circuit
 - C_s: Storage capacitor
- Discharging rates
 - m_D : Decaying
 - m_p: Processing
 - m_W : Waiting
- Overall charging rate
 - MCU in sleep mode
 - Power source is available periodically
 - *T_c*: Charging period
 - *C_c*: Charging time in each period

$$m_{c} = \frac{V_{min_th} - V_{max}}{\frac{C_{s}R_{p}}{2}Ln\left(\frac{PR_{p} - V_{min_th}^{2}}{PR_{p} - V_{max}^{2}}\right)}$$

$$m_d = \max\{m_W, m_D\}$$

$$m_a = \frac{m_c \times C_c - m_d \times (T_c - C_c)}{T_c}$$
$$V = m_a \times \Delta t + V_0$$

Energy scheduling scheme

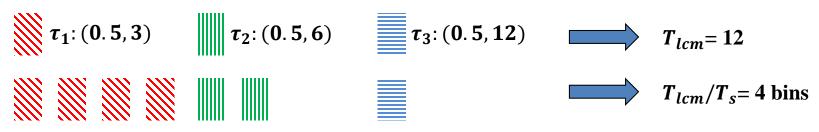
- Goal: Provide system-level support for periodic sensing tasks on intermittently-powered devices
- Approach: Schedule "energy" w.r.t. task execution requirements
 - Find the voltage level that is required for the completion of a single instance of a task (job) without power interruption
 - Higher voltage on capacitor \rightarrow Supports longer job execution
 - \rightarrow but suffers from longer waiting time (charging)
 - Control device wake-up and task invocation time
 - Enable overcharging the capacitor by enforcing the low power mode (LPM3)
 - Wake up the device at the right time after reaching the computed voltage level and before task deadline

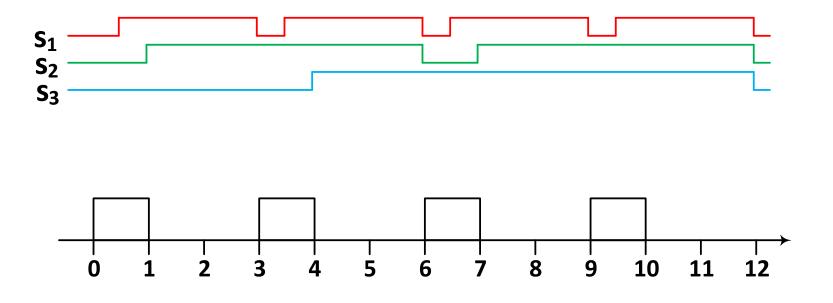
Task Scheduling

- Capacitor voltage for n tasks
 - m_{Pi} : Discharging rate of task i
 - s_i : Indicates if the last job of task *i* is serviced or not (0 or 1)
 - T_i : Period of task i
 - C_i : Execution time of task i

$$V_{cap}(t) = m_a * t - \sum_{i=1}^n \left(\left\lfloor \frac{t}{T_i} \right\rfloor + s_i \right) * C_i * m_{Pi} + V_0$$

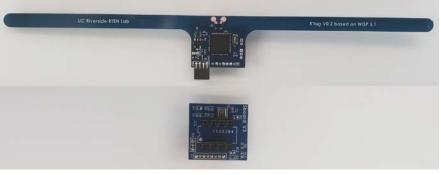
• Single task scheduling

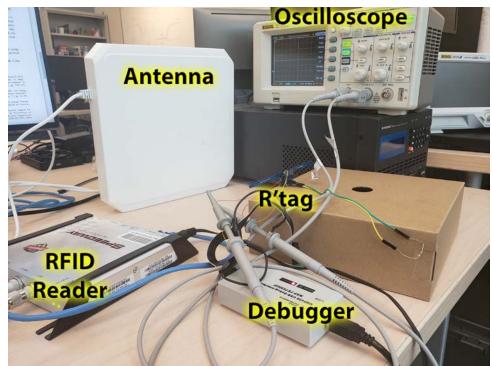

$$m_a > 0 \qquad \qquad m_a \times T_1 > m_{P1} \times C1$$


Task Scheduling

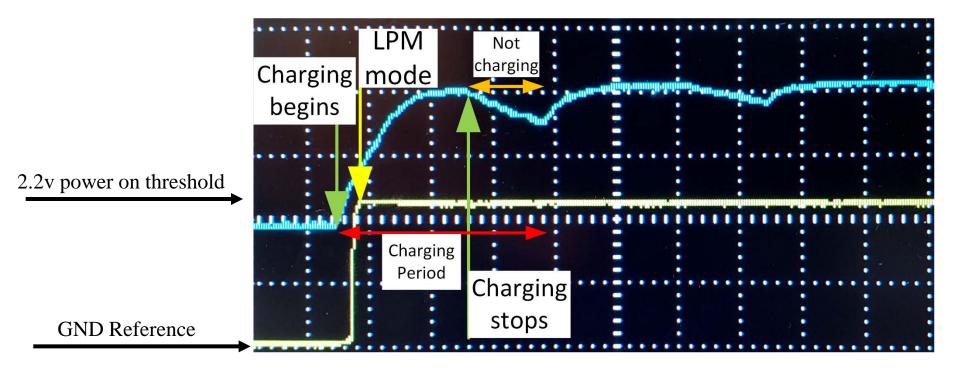
- Multi tasks scheduling
 - Periodic server with period T_s
 - Non-preemptive
 - Modeled as bin-packing problem
 - Items: jobs of each task
 - Bins: amount of budget per period
 - Number of bins: T_{lcm}/T_s
 - No more than one job from the same task in each bin
 - Finding efficient server parameters is an NP-hard problem

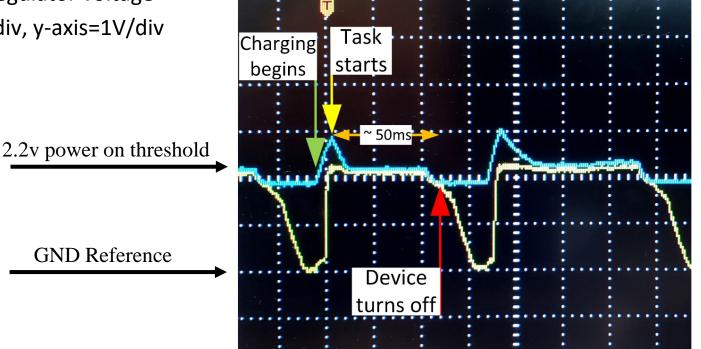
Task Scheduling


• Server with period of 3s and budget of 1

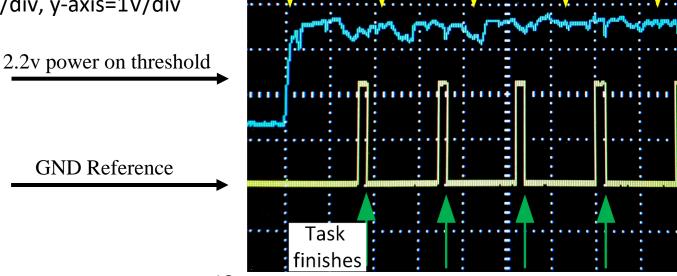


Implementation


- Impinj R420 Reader
- R'tag
 - Based on WISP [7]
 - MSP430 MCU
 - Sensor board
 - Resistive sensor
- RFMAX S9028PCL Antenna
 - Directional with 8dbi gain

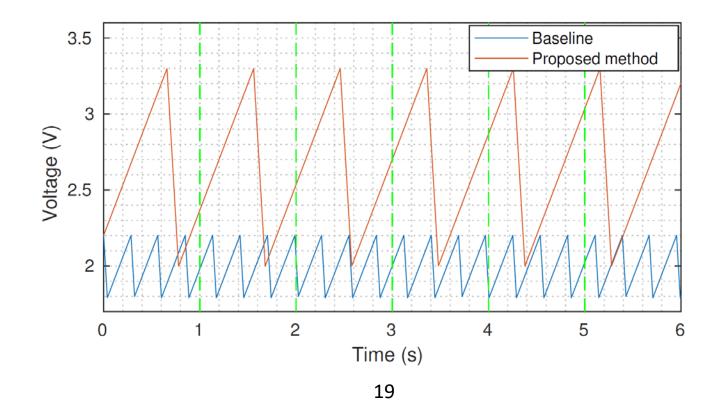

[7] A. P. Sample et al. Design of an RFID-based battery-free programmable sensing platform. IEEE Trans. on Inst. and Measurement, 57(11):2608–2615, 2008.

- Charging and discharging times
 - Blue line: Storage capacitor voltage
 - Yellow line: Regulator voltage
 - x-axis=20ms/div, y-axis=1V/div

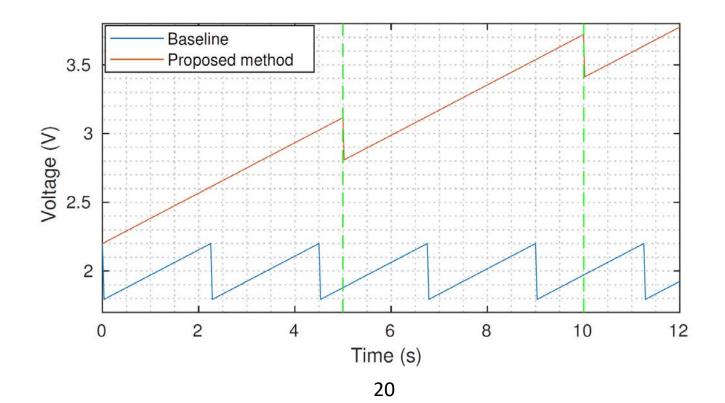

• Experimental results

- Execution time: 120ms
- Period 1s
- Blue line: Storage capacitor voltage
- Yellow line: Regulator voltage
- x-axis=20ms/div, y-axis=1V/div

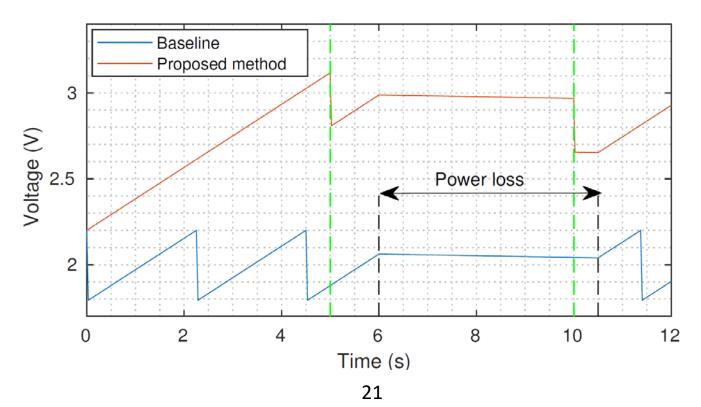
• Experimental results


- Execution time: 120ms
- Period 1s
- Blue line: Storage capacitor voltage
- Yellow line: I/O indicating task is running
- Yellow arrows: Task arrivals
- Green arrows: Task finish time
- x-axis= 500ms/div, y-axis=1V/div

Task


arrives

- Simulation
 - Task execution time: 120ms
 - Task period: 1s


Simulation

- Simulation
 - Task execution time: 25ms
 - Task period: 5s

Simulation

- Simulation
 - Task execution time: 25ms
 - Task period: 5s
 - In presence of power loss

Conclusion

• Energy scheduling scheme

- Keeps track of time
- Enables periodic sensing
- Considers real-time task scheduling

Implementation

- Effective in real sensing applications
- schedule the periodic task

• Simulation

- Outperforms the baseline approach
- Effectiveness if unexpected power loss

• Further improvements

- Algorithm to find the efficient server parameters in multi-task scenario
- Applying the method to existing platforms (e.g. InK)
- Additional hardware to address tasks with longer executions (like *Capybara*)

Thank You