
Energy Scheduling for Task Execution on
Intermittently-Powered Devices

Mohsen Karimi
mkari007@ucr.edu

University of California Riverside

Riverside, California

Hyoseung Kim
hyoseung@ucr.edu

University of California Riverside

Riverside, California

ABSTRACT

Intermittently-powered embedded devices (IPDs) are getting wide-

spread attention these days. However, running periodic real-time

tasks on these devices remains a challenging problem due to the lack

of support for data freshness guarantees, timekeeping, and schedu-

lability analysis. Especially, while many sensing tasks require long

atomic operations for data acquisition from sensors, most prior

work on IPDs assumes compute-only workloads and disregards

such sensor operations. In this paper, we present a new energy

scheduling scheme to execute periodic real-time tasks with atomic

sensing operations. Our scheme keeps track of time and ensures

the periodic execution of sensing tasks while efficiently utilizing

intermittent power sources. We provide schedulability analysis to

determine if a task is schedulable in a given charging setup, and ex-

tend this idea for scheduling multiple tasks. As a proof-of-concept,

we design a custom programmable RFID tag device, called R’tag,

and demonstrate the effectiveness of our proposed techniques in

a realistic sensing application. We compare the baseline approach

and the proposed scheme in both simulation and real platforms.

Experimental results show that the proposed method outperforms

the baseline approach in terms of task scheduling, timekeeping,

and periodic sensing.

CCS CONCEPTS

•Computer systems organization→Real-time operating sys-

tems; Embedded systems; Sensor networks.

KEYWORDS

energy scheduling, task scheduling, intermittently powered devices,

real-time systems

1 INTRODUCTION

Battery-less intermittently-powered devices (IPDs) have gained

much interest due to their potential to facilitate wireless sensor

networks and Internet of Things (IoT). These devices, powered

by intermittent power sources such as sunlight, heat, vibration,

and radio signals, have diverse applications including smart home,

agriculture, and health monitoring [1, 4]. Owing to the fact that

they do not have a battery that needs to be replaced, they can

continue to run even for decades without much maintenance effort.

Furthermore, they can be deployed in extreme environments where

batteries do not perform well.

EWiLi’19, October 2019, New York, NY, USA

© Copyright held by the owner/author(s).

Data freshness and timely execution is the key requirement of

many sensing tasks, which is also the case for those running on

IPDs. If a certain event in the environment is sensed long after

the actual occurrence, the reaction may be either ineffective or

dangerous. IPDs often divide long operations into multiple sub-

tasks and execute them over multiple charging/discharging cycles.

Depending on energy availability, data collected earlier may become

stale in the middle of processing, and in such a case, it would be

better to collect new data instead of processing the remaining part

of the stale data. For example, in blood sugar monitoring for a

diabetic to release proper amount of insulin, any late or improper

action would cause a catastrophic damage.

Another challenge is ensuring the long atomic (indivisible) exe-

cution time required for data acquisition from sensor peripherals.

Many sensors, especially environmental and chemiresistive sen-

sors, take a long time, several seconds to minutes, to initiate and to

collect reliable data from them. Hence, IPDs should be able to run

for a relatively long time without intermittent power disruptions.

If the power goes off, all the operation should start over again from

the beginning since the state of sensor peripherals cannot be saved

and resumed.

Prior work on IPDs has focused on "forward progress" guaran-

tees, by checkpointing intermediate results in non-volatile mem-

ories [2, 13] or by providing a programming language [6] to di-

vide the tasks into fragments while preserving data consistency.

Capybara [2] uses multiple capacitor banks to mitigate the atomic

execution time problem. However, similar to other approaches like

[8, 11], the device goes off whenever it exhausts the energy and

loses the notion of time so it is unable to schedule sensing tasks

with periodic execution requirements. MayFly [6] partially solves

this problem with an external circuitry for timekeeping of up to 17

minutes in power failures. InK [19] provides an event based kernel

to manage periodic sensing on IPDs. It relies on an external timer

that keeps track of time while the microcontroller (MCU) is in low

power mode and uses interrupts to wake up the device. However,

none of these approaches have considered scheduling policies for

periodic sensing tasks, e.g., when to start execution for each task,

and provided analytical foundations for timing guarantees, e.g.,

task schedulability under intermittent power supply.

In this paper, we propose an energy scheduling scheme for real-

time task execution to address the aforementioned limitations of

prior work. Our proposed scheme provides an energy model that

is specifically designed to capture the charging and discharging

characteristics of IPDs as well as the periodic execution require-

ments of sensing tasks. Unlike prior work, our scheme controls

the charging level of capacitors, which allows storing more energy



EWiLi’19, October 2019, New York, NY, USA Karimi and Kim

Multi-stage 
voltage doublers

Voltage rectifier 
and regulator

MCU and 
Sensors

Power manager

Energy storage 
Capacitor

Antenna

Figure 1: Block diagramof anRFID energy harvesting device

than what is required to just turn on the MCU. Our scheme com-

putes the required level of voltage to complete the given amount of

computation, including sensor operations, and makes the device

wait until that level is reached. This enables the execution of a

long indivisible sensor operation, which was not possibly doable by

prior work. Furthermore, our scheme enables timekeeping, which

is important to check the freshness of obtained data from sensors.

We analyze the schedulability of a single periodic task under our

scheme and provide illustrations on multi-task scenarios. We de-

velop a prototype hardware and software system for evaluation.

Experimental results from simulation and real hardware indicate

that our scheme outperforms the baseline approach and can satisfy

the timing requirement of periodic real-time tasks.

2 SYSTEM MODEL

In this section we describe the hardware and software properties

of the system which we use in the rest of the paper.

2.1 Hardware Characteristics

Each energy harvesting device has the following main units: en-

ergy harvester unit, energy storage unit, power management unit,

energy conversion unit, and processing unit. The energy harvester

unit converts the energy coming from the power source (e.g. light,

wind, vibration, and RF signal) to a type of energy (e.g. voltage and

electrical current) that can be accumulated in the energy storage

unit. The storage unit, usually consisting of capacitors, can store the

energy to be used to power the system. In the energy conversion

unit, voltage converters, rectifier, and regulator are used to convert

an energy source to the desired voltage for electrical circuits. The

power management unit controls when to store energy and when

to use the energy to power up the system. Finally, in the processing

unit, MCUs and sensors are used to perform the desired operations.

Figure 1 shows the general block diagram of a radio-frequency

identification (RFID) energy harvesting device. In this figure, each

unit is specifically designed to harvest the RF energy to be used for

the MCU and sensors. When the stored energy, i.e., the voltage of

the capacitor, reaches a specific level (called power-on threshold), the

power management unit switches to turn on the MCU and sensors.

When the voltage goes down to the minimum voltage level for the

MCU and the rest of the circuit (called power-off threshold), the

system is turned off until the capacitor voltage is recharged to the

power-on threshold.

Depending on how energy is consumed, there are multiple types

of energy discharging in IPDs. We will analyze the detailed charac-

teristics of each discharging type under our proposed scheduling

scheme in Section 4. Below we give the energy harvesting model

used in this paper.

Energy Harvesting Model. To find the voltage equations for the

circuit, we assume the energy source to be a fixed power instead of

a fixed voltage or current source because what is received from the

RFID reader is a fixed power. We consider a parallel resistor Rp to

the capacitor, which consists of the equivalent storage capacitor,

and also the rest of the circuit’s resistor in parallel with capacitor.

Therefore, the harvesting circuit would become an RC model with a

fixed power source and the voltage of the capacitor can be calculated

by solving the following equation:

P

V
= Cs

dV

dt
+

V

Rp
(1)

By solving this equation, the voltage of the capacitor at time t
can be calculated as:

V =

√
PRp − e

−2t
Cs Rp ∗

(
PRp −V 2

0

)
(2)

where V0 is the voltage of capacitor at t = 0, and P is the power

received from the power source after going through all the voltage

doubler stages. Based on Eq. (2), the time to reach from voltage V0
to V , where V > V0, can be calculated as:

tcharдinд =
CsRp

2
Ln

(
PRp −V 2

0

PRp −V 2

)
(3)

The power source is not always available to an IPD. We charac-

terize the availability of the power source with two parameters, Cc
and Tc , which mean that for a period of Tc , the reader charges the
device for at leastCc time units. This can represent both stationary

and mobile wireless chargers, e.g., [3].

2.2 Software Characteristics

We consider periodic real-time tasks, where a task τi is a character-
ized by its worst case execution time Ci , relative deadline Di , and

period Ti . For simplicity, we assume the initial arrival time of all

tasks is zero. We also consider the implicit deadline which means

Di = Ti . Accordingly, a task i can be expressed as τi := (Ci ,Ti ).
Due to the nature of sensing applications on IPDs, tasks are

scheduled in a non-preemptive manner. Hence, a higher priority

task cannot preempt a lower priority task when the lower priority

task is already running on the device. Note that non-preemptive

scheduling is common in IPDs, as shown in [3, 19].

3 CHALLENGES

To understand the challenges of IPDs in sensing applications, we

conduct a case study using WISP, a well-known RFID-harvesting

device [15]. Based on [5], the power received by WISP can be cal-

culated as:

Pr =
GsGrη

Lp

(
λ

4π (d + β)

)2
Pt (4)

where Gr is the reception antenna gain, Gs is the transmission

antenna gain, η is the rectifier efficiency, Lp is the polarization loss,

λ is the wavelength of the RF signal, d is the distance from tag

to reader, Pt is the transmission power, and β is the adjustment

parameter to adjust Friis’ free space equation for short distance.

The parameters for the above equation are as follows. We use

an RFMAX S9028PCL polarized directional antenna which has the

transmission gain of Gs = 8dBi . WISP has a linear dipole antenna;



Energy Scheduling for Task Execution on Intermittently-Powered Devices EWiLi’19, October 2019, New York, NY, USA

0 2 4 6 8 10
Time (s)

0

0.5

1

1.5

2

2.5

V
ol

ta
ge

 (
V

) X 2.461
Y 1.799

X 2.421
Y 2.2

Figure 2: Charging and discharging cycles of an IPD

therefore, the reception gain isGr = 2dBi . WISP works on 915MHz

frequency so wavelength would be about λ = 0.327. For the other

parameters, we use the values of WISP reported in [5]: β = 0.2316,

η = 0.125, andLp = 2. Since all the parameters exceptd are constant,
we can rewrite Eq. (4) to:

Pr = α

(
1

d + β

)2
Pt (5)

where α and β are constant. As it can be inferred from Eq. (5),

the power received by the device is fixed when it is located at a

fixed distance to the reader. For the distance of 60cm and the power

transmission of 1W , the power reception would be about 1mW .

Let us consider an energy harvesting circuit following the RC

model discussed in Section 2 with Rp = 1GΩ and Cs = 100μF .
Based on this harvester and the WISP parameters obtained above,

we now analyze the charging and discharging characteristics of

an IPD. Figure 2 shows the voltage level of the device when it is

always getting charged by a stationary RFID reader. In this figure,

red lines are charging cycles (i.e., the device is turned off) and blue

lines are discharging cycles (i.e., the device is on and can execute

tasks). The power-on and power-off thresholds, both of which are

determined by the hardware, are 2.2V and 1.8V, respectively.

We discuss three major challenges observed from this case study.

The first one is that in sensing applications, tasks often need to

execute atomically without any power disruptions. As can be seen

in Figure 2, the maximum execution time allowed for a task is

about only 40ms. Therefore, any task that needs more than 40ms

of continuous execution can never complete its job. For example,

most gas sensors are designed to work at a specific temperature

and have an internal micro-heater to maintain that temperature.

Since the heater takes time to reach the desired temperature, any

intermittent power loss would lead to a failure in sensing operation

and sensor data could not be obtained at all.

The second challenge is that tasks on an IPD are unable to cap-

ture samples at specific times because the device can sample data

only when it receives enough power from the power source, e.g., dis-

charging cycles (blue lines) in Figure 2. The problem becomes more

complicated if the RFID reader is not always available, e.g., mobile

readers and line-of-sight obstructions. In many sensing applica-

tions, capturing samples at specific time is required to guarantee

the validity of data freshness and the resulting processing.

The last challenge is timekeeping. The device goes off after each

discharging cycle and it loses the track of time it is working. Even

if a real time clock is integrated into the device, it would also go

off after each power loss. Therefore, any application that needs the

notion of time progress over long periods would not be able to run

on IPDs. Without that, it is very hard (if possible at all) to schedule

periodic sensing tasks and check the freshness of obtained data.

4 PROPOSED METHOD

In this section, we first present our energy model that captures the

energy demand and supply of periodic tasks running on IPDs, and

then present our scheduling scheme.

4.1 Modeling Energy Demand and Supply

We categorize the sources of discharging into three types: decaying,

processing, and waiting. First, decaying occurs when the device is

not receiving any power from the power source and the voltage

threshold of the storage unit is below the minimum voltage needed

for turning on the MCU (power-on threshold). In this case, since

the circuit is not ideally open circuit and the parallel equivalent

resistor exists in the capacitor, the device loses some energy gradu-

ally. Second, processing occurs during the time when the capacitor

voltage is above the minimum threshold, the power management

unit turns on the system, and the MCU is executing tasks. Lastly,

waiting happens when the device is turned on but is put into low

power mode. It is worth noting that the waiting-induced discharg-

ing does not occur in most prior work but we explicitly model it due

to our scheduling scheme given in the next subsection. Specifically,

our scheme accumulates energy beyond the power-on threshold by

putting the device in low power mode and delaying the execution

of tasks until it gets enough energy to run tasks with long atomic

operations. More details will be described later.

For simplicity, we assume all the discharging rates to be linear.

Due to the fact that the frequency of the MCU is remained fixed,

the task execution time is independent of the supply voltage so we

usemD ,mP , andmW to denote the discharging rates of decaying,

processing, and waiting, respectively. During the waiting time, the

system consumes some amount of energy but the power reception

from the power source is assumed to be higher than the power

consumption in waiting time. In other words, the capacitor voltage

can increase in waiting time if the power source is available. This

is true for most commercial MCUs since the power consumption in

lower power mode is orders of magnitude lower than that in active

mode, e.g., 0.4μA vs. 100μA in MSP430.

The charging rate of the device can also be approximated to be

linear by a slope ofmc , wheremc can be calculated based on Eq. (3)

when V0 is the minimum voltage threshold of the device and V
is the maximum voltage that the capacitor can hold based on its

specifications. Therefore, the charging slope can be calculated as:

mc =
Vmin_th −Vmax

CsRp
2 Ln

(
PRp−V

2
min_th

PRp−V
2
max

) (6)

where Cc and Tc are the charging time and charging period of a

power source, respectively.

Thus, the worst-case accumulation voltage during each charging

period, Tc , can be calculated as:

ΔV =
mc ∗Cc −md ∗ (Tc −Cc )

Tc
∗ Δt (7)



EWiLi’19, October 2019, New York, NY, USA Karimi and Kim

wheremd = max{mW ,mD } is the worst-case discharging rate, and

mW andmD are the discharging slope of voltage drop during wait-

ing and decaying time, respectively. If we consider an accumulation

ratema =
mc ∗Cc−md ∗(Tc−Cc )

Tc
, the voltage of the capacitor at time

t with n periodic tasks can be calculated as:

Vcap (t) =ma ∗ t −
n∑
i=1

(⌊
t

Ti

⌋
+ si

)
∗Ci ∗mPi +V0 (8)

wheremPi is the processing discharging rate for a task τi . si is 1 or
0 if τi ’s last released job for its period at t has been executed or not,

respectively. si is a runtime variable that is set to 0 at the beginning

of each period and 1 when the task finishes its execution for that

period. Figure 3 shows how si changes for three tasks. In reality,

each job of a task may contain several segments with different dis-

charging rates. However, in this work, the largest discharging rate

among the segments is considered as the whole job’s discharging

rate. Therefore, the worst-case discharging rate of all the jobs of

the same task τi is considered to be equal tomPi .

4.2 Single Task Scheduling

Based on the aforementioned energymodel and voltage calculations,

we first assume there is only one periodic task in the system and

analyze the schedulability of the single task case. We will show

in the next subsection that how this analysis can be extended for

multi-task systems.

Under our scheduling scheme, when the powermanagement unit

turns on the device, the voltage level required for task execution and

the waiting time for the system to reach that voltage are computed.

Then, a timer is programmed to wake up theMCU after that amount

of time and then MCU goes to low power mode. There are multiple

ways to implement the waiting time for task execution. It can be

implemented on the MCU itself by using the low power mode with

timer capabilities, e.g., LPM3 in TI MSP430. Another way is to add

an external ultra low-power programmable real-time clock, e.g.,

14nA with Ambiq AM08xx RTC [12], so that it can wake the MCU

up by an interrupt. In the latter case, the MCU can be put into a

deeper sleep mode, e.g., LPM4 in MSP430, since the MCU’s clock

sources and timers can be turned off.

For a single task (n = 1), the waiting time for the task can be

calculated as follows:

W (t) = max

{
Vcap −

(
Vmin_th +mP1 ∗C1

)
ma

, t −T1 ∗

⌈
t

T1

⌉}
(9)

where Vcap is the current voltage of the capacitor that can be cal-

culated from Eq. (8).

For a single task to be schedulable,ma should be positive. This

means that the voltage level of the capacitor should increase during

the charging period of the power source. In addition, the capac-

itor voltage should reach the desired voltage level for the task’s

execution, meaning that the following condition should be met:

ma ∗T1 � mP1 ∗C1 (10)

Ifma is non-positive, the charging rate is not enough to keep

the device on during each charging period. Thus, it will cause

the device to be turned off before the start of the next charging

period. In this case, we cannot keep track of time and cannot use

τ1 : (0.5, 3) τ2 : (0.5, 6) τ3 : (0.5, 12) 

10 2 3 4 5 6 7 8 9 10 11 12

s1s2s3

Figure 3: Periodic server example for multi-task scheduling

the aforementioned methods to check the schedulability of the

task. The power source needs to be available to the device more

frequently, i.e., smaller Tc , or longer in each period, i.e., larger Cc .

4.3 Multi-Task Scheduling

In order to ensure the schedulability of multiple periodic tasks, we

propose to abstract the resource demand of the tasks as a periodic

server [16–18] and schedule them by using the budget of the server.

The periodic server is characterized by the two parameters, budget

and budget replenishment period, which correspond to the exe-

cution time and the period of a periodic task, respectively. Hence,

once the server parameters are chosen, the schedulability of the

server can be analyzed with Eqs. (9) and (10). It should be noted

that Eq. (8) still holds for calculating the voltage of the capacitor at

time t .
The scheduling of tasks within the periodic server in an IPD

should be done in a non-preemptive manner and is different from

that in conventional real-time systems. Thus, existing hierarchical

schedulability analysis for preemptive tasks in periodic servers [7,

9, 10, 14] are inapplicable to our problem. Instead, we formulate this

as a variant of the bin-packing problem with additional constraints.

The items to be packed are the jobs of tasks, and the amount of

budget per period is the size of a bin. The number of bins in this

problem is given by Tlcm/Ts , where Tlcm is the hyper-period of all

periodic tasks and the server period Ts . Each task τi hasm items

wherem is the number of jobs arriving during the hyper-period,

i.e., Tlcm/Ti . Figure 3 shows an example of using a periodic server

resource to execute three tasks, τ1, τ2, and τ3, in a periodic server

with period of 3 and budget of 1. An important thing here is that no

more than one item (job) from the same task can be allocated to the

same bin, and the items should be spaced across bins with respect

to their task period. This add complexity to the original bin-packing

problem which is already NP-hard. We leave the development of an

efficient algorithm to solve this problem as future work. It should

be noted that since non-preemptive scheduling is considered, no

context switching happens and the only overhead would be the

time for selecting the next task, which can be implemented as

table-based scheduling [19].

5 IMPLEMENTATION

This section describes the hardware and software setup we use to

implement our proposed methods.

We developed an RFID-based energy harvesting tag device, called

R’tag, to do experiments. It follows the design of WISP [15] and

has the same MSP430 MCU, RF circuits, and antennas. In addition,



Energy Scheduling for Task Execution on Intermittently-Powered Devices EWiLi’19, October 2019, New York, NY, USA

(a) (b)

Figure 4: (a) R’tag and sensor board, (b) Experimental setup

we integrated the tag with extra external I/Os that can be used for

ADC reading for analog and digital measurements. Furthermore,

we added a large super capacitor that can be used to store more

energy that enables the device to run for longer time.

For the sensing purpose, we designed a pluggable sensor board

PCB that can be mounted on R’tag and measure high resistance

values generated by chemiresistive sensors which are widely used

in sensing applications. It is also equipped with Bosch BME680,

an integrated environmental sensor that can measure temperature,

pressure, humidity, and total volatile organic compounds in the air.

Both R’tag and the sensor board are shown in Figure 4a

For the reader, we use an Impinj Speedway Revolution R420 UHF

RFID Reader that can generate up to 30dBm power to charge the

tag and -84dBm reception sensitivity to receive the messages sent

from the tag. The Ethernet interface is used to connect RFID Reader

to the PC to read data received from the tag by the reader. We also

use RFMAX S9028PCL polarized directional antenna which has the

transmission gain of Gs = 8dBi .

6 EVALUATION

6.1 Experimental Results

Figure 4b shows the experimental setup that is used in this paper.

Our setup consists of the Impinj RFID reader which is connected to

the PC via Ethernet cable, an R’tag device which is located about

25cm away from the reader’s antenna, our sensor board attached

to the R’tag, and a 10MΩ resistor connected to the sensor board as

an example of a chemiresistive sensor. A 47μF capacitor is used in

the storage unit to store energy during each charging period. The

voltage is measured by an oscilloscope attached to R’tag via wiring.

In many chemiresistive sensors, the resistance value is so high

that it cannot be measured by simple methods like voltage dividers,

due to the current leakage of I/O and ADCs. Hence, we added a

small additional capacitor to the sensor board in parallel with the

resistance measurement. By checking the time to charge this capac-

itor and considering the charging rate of the parallel RC circuit, we

can estimate the resistance value. In our case, for 10MΩ resistance,

it takes up to 120ms to charge the capacitor and completes the

measurement. We assume this needs to be done every 1s. Thus,

C1 = 120ms and T1 = 1s .
Figure 5a shows when running the resistance measurement task

with the baseline approachwhich executes the taskwhenever power

is available. The blue line is the voltage of the storage unit capacitor

and the yellow line is the voltage of the last regulator that powers

Charging 
begins

Task 
starts

Device 
turns off

(a)

Task 
finishes

Task 
arrives

(b)

Figure 5: (a) Task fails execution under the baseline ap-

proach. Blue line: capacitor voltage, yellow line: regula-

tor output voltage. x-axis=20ms/div, y-axis=1V/div (b) Task

executes periodically under the proposed method. Blue

line: capacitor voltage, yellow line: task execution. x-

axis=500ms/div, y-axis=1V/div

Charging 
begins

LPM 
mode

Charging 
stops

Not 
charging

Charging 
Period

Figure 6: Charging curve of the capacitor when the MCU is

in LPM3 mode. Blue line: capacitor voltage, yellow line: reg-

ulator output voltage. x-axis=20ms/div, y-axis=1V/div

the system. As it can be inferred from the figure, by using the

baseline approach, there is no way to successfully complete the

task’s execution which takes 120ms. Since the task is not resumable

in the next power sequence, the MCU restarts the task from the

beginning in every power cycle.

To use our proposed scheme, we first need to find the charging

and discharging rates. Based on the Figure 5a, the discharging rate

of the task can be approximated as 12V/s. To findmc andmd , we

put the task in sleep mode and find the charging and discharging

rate of the capacitor. Figure 6 shows the charging and discharging

rates based on the charging cycles in the worst-case scenario. Then

Eq. (9) is used to find the next waiting time to run the task. We

set one I/O pin to high during the measurement to observe the

execution pattern of the task by using the oscilloscope. Figure 5b

shows that the task can meets the deadline and the voltage never

goes down below the power-off threshold to turn off the device.

Therefore, the device always keeps running, the task meets the

deadlines, and the MCU can keep track of time.

6.2 Simulation Results

This section evaluates the effect of task execution time and period

on the proposed scheme in simulation. We also compare the per-

formance characteristics of the baseline and the proposed method.

We first use the same task parameters that have been used for

the previous experiments. Figure 7a shows the results under the

baseline and the proposed method. Green lines show the arrival

times of the task. As shown in the figure, the baseline fails to

run the task continuously for 120ms , and since the task is not

resumable, it restarts in every power cycle. However, with the

proposed method, the task can finish its job before the deadline



EWiLi’19, October 2019, New York, NY, USA Karimi and Kim

0 1 2 3 4 5 6

Time (s)

2

2.5

3

3.5

V
ol

ta
ge

 (
V

)

Baseline
Proposed method

(a)

0 2 4 6 8 10 12

Time (s)

2

2.5

3

3.5

V
ol

ta
ge

 (
V

)

Baseline
Proposed method

(b)

0 2 4 6 8 10 12

Time (s)

2

2.5

3

V
ol

ta
ge

 (
V

)

Baseline
Proposed method

Power loss

(c)

Figure 7: Charging and discharging behavior of the tag when running a task with (a) τ :(120ms, 1s), (b) τ :(25ms, 5s), (c) τ :(25ms,

5s) in the presence of power loss

and is always schedulable. One may raise the following question:

what if the capacitor of the baseline is precharged to a higher voltage

level? If that happens, the first job execution of the task might be

successful, but since there is no control over the power-on-cycles of

the device, the energy will deplete after the first job and the same

problem will appear again starting from the second job of the task.

Next, we use different parameters for the task so that it can be

finished even with the baseline approach. An additional require-

ment imposed here is that the task must start its execution at the

beginning of each task period. Figure 7b shows the result for the

task with (25ms, 5s). While the task under the baseline approach

can finish its job, it results in unnecessarily frequent executions

since the whole system goes off and restarts in every charging cycle.

Furthermore, it cannot start execution exactly at the beginning of

the period. On the other hand, the task under the proposed method

is executed exactly following the timing requirements, and the

system can conserve remaining energy for other tasks.

In practical scenarios, power sources may become unexpectedly

unavailable. Figure 7c shows the same scenario as in Figure 7b

with a sudden power loss from time 6 to 10.5. Under the proposed

method, the device can keep track of time even in the presence

of unexpected power losses and can start task execution at the

beginning of the next period at time 10. However, the baseline is

unaware of elapsed time and simply starts task execution when the

device is charged at around time 11.4.

7 CONCLUSION

In this paper, we proposed a new energy scheduling scheme for

periodic real-time task execution on intermittently-powered de-

vices (IPDs). We first presented an energy model that considers the

energy supply and demand of real-time tasks on an IPD charged

by a periodic power source. This model was then used to derive

the voltage level of the energy harvesting unit and the schedula-

bility analysis of a task running on the device. To schedule tasks

on the device, waiting in low power mode and delayed task execu-

tion were proposed. Our techniques enable accumulating enough

energy to ensure the execution of tasks with indivisible atomic

operations. They also achieve timekeeping in the presence of inter-

mittent power losses.

For evaluation, we designed an RFID energy-harvesting device,

R’tag, with a custom sensor board. The device was used to show the

effectiveness of our scheme in a sensing application. We showed

with experimental results that, given the same charging rate from

the RFID reader, the proposed method could schedule the periodic

sensing task while the baseline failed to finish even a single job of

the task. We also performed simulation with various task parame-

ters and the proposed method outperformed the baseline in task

execution, energy usage efficiency, and timing correctness.

There are multiple interesting directions that can be built upon

our work. First, for efficient multi-task scheduling on IPDs, one

may consider developing algorithms to determine the parameters

of the periodic server and to assign tasks to the server instances.

Second, the proposed scheduling scheme can be applied to existing

runtime and programming language frameworks for IPDs, such

as Ink [19] and MayFly [6]. Furthermore, for a large task set with

higher energy demands, Capybara [2] can be added to the hardware

to enable switching to a higher capacity voltage storage bank.

Acknowledgements. This work is supported by the Research Pro-

gram (POC2930) of the Korean Institute of Materials Science (KIMS).

REFERENCES
[1] G. Chen et al. A cubic-millimeter energy-autonomous wireless intraocular

pressure monitor. In IEEE International Solid-State Circuits Conference, 2011.
[2] A. Colin, E. Ruppel, and B. Lucia. A Reconfigurable Energy Storage Architecture

for Energy-harvesting Devices. In ACM SIGPLAN Notices, volume 53, 2018.
[3] Z. Dong et al. Enabling Predictable Wireless Data Collection in Severe Energy

Harvesting Environments. In IEEE Real-Time Systems Symposium, 2017.
[4] D. Fan et al. EHDC: An energy harvesting modeling and profiling platform for

body sensor networks. IEEE J. of Biomedical and Health Info., 22(1):33–39, 2018.
[5] S. He et al. Energy provisioning in wireless rechargeable sensor networks. IEEE

Transactions on Mobile Computing, 12(10):1931–1942, Oct 2013.
[6] J. Hester, K. Storer, and J. Sorber. Timely Execution on Intermittently Powered

Batteryless Sensors. In SenSys, 2018.
[7] S. Hosseinimotlagh and H. Kim. Thermal-aware servers for real-time tasks on

multi-core gpu-integrated embedded systems. In RTAS, 2019.
[8] H. Jayakumar et al. QUICKRECALL: A low overhead HW/SW approach for

enabling computations across power cycles in transiently powered computers.
In IEEE International Conference on VLSI Design, 2014.

[9] H. Kim and R. Rajkumar. Real-time cache management for multi-core virtualiza-
tion. In EMSOFT, Oct 2016.

[10] H. Kim, S. Wang, and R. Rajkumar. vmpcp: A synchronization framework for
multi-core virtual machines. In IEEE Real-Time Systems Symposium, 2014.

[11] K. Maeng and B. Lucia. Adaptive dynamic checkpointing for safe efficient inter-
mittent computing. In OSDI, 2018.

[12] A. Micro. Ultra-low power rtcs. https://ambiqmicro.com/rtc/, June 2019.
[13] B. Ransford, J. Sorber, and K. Fu. Mementos: System support for long-running

computation on rfid-scale devices. In ASPLOS, 2011.
[14] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein. Analysis of hierarchical

fixed-priority scheduling. In ECRTS, 2002.
[15] A. P. Sample et al. Design of an RFID-based battery-free programmable sensing

platform. IEEE Trans. on Inst. and Measurement, 57(11):2608–2615, 2008.
[16] L. Sha, J. Lehoczky, and R. Rajkumar. Solutions for some practical problems in

prioritized preemptive scheduling. In IEEE Real-Time Systems Symposium, 1986.
[17] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time

systems. Real-Time Systems, 1(1):27–60, 1989.
[18] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algorithm

for enhanced aperiodic responsiveness in hard real-time environments. IEEE
Transactions on Computers, 44(1):73–91, 1995.

[19] K. S. Yildirim, A. Y. Majid, D. Patoukas, K. Schaper, P. Pawelczak, and J. Hester.
InK: Reactive Kernel for Tiny Batteryless Sensors. In SenSys, 2018.


