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ABSTRACT
Real-time virtualization techniques have been investigated
with the primary goal of consolidating multiple real-time sys-
tems onto a single hardware platform while ensuring timing
predictability. However, a shared last-level cache (LLC) on
recent multi-core platforms can easily hamper timing pre-
dictability due to the resulting temporal interference among
consolidated workloads. Since such interference caused by
the LLC is highly variable and may have not even existed in
legacy systems to be consolidated, it poses a significant chal-
lenge for real-time virtualization. In this paper, we propose
a real-time cache management framework for multi-core vir-
tualization. Our framework introduces two hypervisor-level
techniques, vLLC and vColoring, that enable the cache allo-
cation of individual tasks running in a virtual machine (VM),
which is not achievable by the current state of the art. Our
framework also provides a cache management scheme that
determines cache allocation to tasks, designs VMs in a cache-
aware manner, and minimizes the aggregated utilization of
VMs to be consolidated. As a proof of concept, we imple-
mented vLLC and vColoring in the KVM hypervisor running
on x86 and ARM multi-core platforms. Experimental results
with three different guest OSs, namely Linux/RK, vanilla
Linux and MS Windows Embedded, show that our tech-
niques can effectively control the cache allocation of tasks
in VMs. Our cache management scheme yields a significant
utilization benefit compared to other approaches.

1. INTRODUCTION
With the growth of processing core counts on recent pro-

cessors, there is a strong demand for consolidating multi-
ple real-time systems onto a single hardware platform. One
of the promising solutions for such consolidation is virtu-
alization. With virtualization, each consolidated system is
contained within a virtual machine (VM), which is spatially
isolated from other VMs by an additional address transla-
tion layer introduced by a hypervisor. Figure 1 illustrates
the three address layers in modern virtualization platforms,
such as Xen [6] and KVM [20]. Guest virtual pages for appli-
cation tasks within a VM are mapped to guest physical pages
by the guest OS of that VM, and those guest physical pages
are mapped to host physical pages by the hypervisor. Us-
ing this approach, the hypervisor ensures that any software
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Figure 1: Address translation layers in virtualization

failure in one VM does not propagate to other VMs.
The foremost requirement for real-time system virtualiza-

tion is ensuring timing predictability. Hierarchical real-time
scheduling theory [12, 31, 35, 36, 46] and its implementa-
tions [18, 45, 22] have established a good foundation for
this requirement. However, shared hardware resources on
recent multi-core platforms, such as a last-level cache (LLC)
and a memory bus, have not been thoroughly considered in
the context of real-time virtualization. Since contention in
those resources can cause significant temporal interference
among consolidated workloads, the requirement of timing
predictability cannot be fully satisfied without considering
their effects. In this paper, we focus on the predictable man-
agement of a shared LLC in a virtualization environment.

Many previous approaches developed for non-virtualized
multi-core systems [16, 28, 40, 43] use page coloring to ad-
dress “cache interference”, which is the temporal interference
caused by a shared LLC. Page coloring is an OS-level tech-
nique to control the cache allocation of tasks in software, by
assigning physical pages corresponding to specific cache sets
to the tasks. Since page coloring does not require any hard-
ware feature beyond that available on most of today’s proces-
sors, it is considered as a practical technique. However, page
coloring and cache allocation algorithms based on it can-
not function properly in a VM due to the additional address
layer shown in Figure 1. Although a guest OS selects guest
physical pages for page coloring, those pages may be mapped
to host physical pages corresponding to cache sets different
from the ones intended by the guest OS, resulting in unpre-
dictable cache allocation. Even if page coloring works in a
VM, tasks running on other guest OSs that do not support
page coloring will suffer from cache interference. Also, cache
allocation algorithms developed for non-virtualized systems
cannot provide an efficient solution to design a VM in the
presence of cache interference and to allocate the host ma-
chine’s LLC to VMs to be consolidated.

In this paper, we propose a real-time cache management
framework for multi-core virtualization. To address the prob-
lem of cache-to-task allocation in a VM, our framework sup-
ports two new hypervisor-level techniques, named vLLC and
vColoring. vLLC is designed for a VM that runs a guest OS
with page coloring support. vLLC provides such a VM with
a portion of the host machine’s LLC in the form of a virtual
LLC. Then, vLLC enables the guest OS to control the virtual
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LLC by using its own implementation of page coloring. vCol-
oring, on the other hand, is designed for a VM that runs a
guest OS having no page coloring support. vColoring allows
the hypervisor to directly assign a portion of the host LLC
to a task running in a VM. Hence, with vColoring, we can
even control the cache allocation of tasks running on propri-
etary, closed-source OSs that do not support page coloring.
We have implemented prototypes of vLLC and vColoring in
the KVM hypervisor running on x86 and ARM multi-core
platforms. Experimental results show that vLLC and vCol-
oring are effective in controlling cache allocation to tasks and
in addressing cache interference, on both an OS with page
coloring (Linux/RK [16, 29]) and OSs without page coloring
(vanilla Linux and MS Windows Embedded).

In addition, we propose a new cache management scheme
as part of our framework. Our scheme determines a cache-
to-task allocation that reduces taskset utilization while sat-
isfying timing constraints. Our scheme also designs a VM in
a way that the VM’s resource requirement is captured with
respect to the number of cache colors allocated. Lastly, when
VMs are consolidated into the host machine, our scheme finds
a cache-to-VM allocation that minimizes the total VM uti-
lization. We use randomly-generated tasksets for the evalua-
tion of our cache management scheme. Experimental results
indicate that our scheme yields a significant benefit in VM
utilization over other approaches.

The rest of this paper is organized as follows. Section 2
reviews the background for our paper. Section 3 describes
our system model. Section 4 presents our vLLC and vCol-
oring techniques. Section 5 presents our cache management
scheme. Section 6 provides detailed evaluation. Section 7
reviews related work, and Section 8 concludes the paper.

2. BACKGROUND
In this section, we give a brief description on scheduling,

cache interference, address translation in a virtualization en-
vironment, and discuss the page coloring technique.

2.1 Scheduling and Cache Interference
Virtualization generally features a two-level hierarchical

scheduling structure. Each VM has one or more virtual
CPUs (VCPUs), each of which is represented as a processing
core to a guest OS. Tasks in a VM are scheduled on the VC-
PUs of that VM by the guest OS, and VCPUs are scheduled
on physical CPUs (PCPUs) by the hypervisor. Note that
a VCPU is the smallest schedulable entity in the hypervi-
sor, analogous to a task in an OS. Hence, the hypervisor can
execute only one VCPU on each PCPU at a time.

Cache interference among tasks in a multi-core virtualiza-
tion environment can be categorized into two types: inter-
VCPU and intra-VCPU. Inter-VCPU cache interference hap-
pens among tasks running on different VCPUs. Since those
VCPUs can be scheduled on different PCPUs by the hy-
pervisor, tasks on different VCPUs may access the LLC si-
multaneously. In addition, when a VCPU preempts another
VCPU, the cache contents of tasks on the preempted VCPU
may be evicted by tasks on the preempting VCPU. Intra-
VCPU cache interference happens among tasks running on
the same VCPU. Although tasks on the same VCPU cannot
access the LLC simultaneously, a task preempting another
task may evict the cache contents of the preempted task.

2.2 Address Translation
There are three types of addresses in a virtualized environ-
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Figure 2: Page coloring

ment: guest virtual addresses (GVA), guest physical address
(GPA), and host physical address (HPA). Whenever a GVA
is accessed, it needs to be translated to the corresponding
HPA. Shadow paging and two-dimensional paging are tech-
niques to do such translation in full virtualization scenarios,
where unmodified guest OSs can be used.

Shadow paging: Under shadow paging, the hypervisor gen-
erates shadow page tables where GVAs are directly mapped
to HPAs. Although a guest OS still maintains its own page
tables, the memory management unit (MMU) uses the shadow
page tables for address translation so that a GVA can be di-
rectly translated to its corresponding HPA without having
GVA-to-GPA translation. To maintain the validity of con-
tents of the shadow page tables, the hypervisor has to keep
track of any change in the guest page tables. A well-known
approach to doing this is to write-protect the guest page ta-
bles, which triggers a page-fault exception to the hypervisor
whenever any change is made to the guest page tables.

Two-dimensional paging: Two-dimensional paging refers
to hardware-assisted address translation techniques intro-
duced in recent processors, e.g., AMD Nested Page Tables
(NPT), Intel Extended Page Tables (EPT), and ARM Stage-
2 Page Tables. Under two-dimensional paging, the MMU
can traverse both guest and host page tables. Hence, when a
GVA is accessed, the MMU first translates it to a GPA by us-
ing the guest page tables and then translates that GPA to an
HPA by using the host page tables. Such two-step address
translation requires more memory accesses than the direct
GVA-to-HPA translation of shadow paging, but it eliminates
the overhead of maintaining valid shadow page tables.

Neither shadow paging nor two-dimensional paging domi-
nates the other in terms of performance [42]. It is also cur-
rently unknown which technique is preferable for real-time
virtualization. Therefore, one of our goals in this paper is to
develop a cache allocation technique that is independent of
a specific address translation technique used.

2.3 Page Coloring
Page coloring is a software technique to control a physically-

indexed set-associative cache, which is the case for most
LLCs on modern processors. On a physically-indexed cache,
page coloring uses the mapping between physical addresses
and cache set indices. As shown in Figure 2, there are over-
lapping bits between the physical page number and the cache
set index. Those overlapping bits are used as a color index
by page coloring. Since the OS has direct control over the
mapping between physical pages and the virtual pages of an
application task, it can allocate specific cache colors to a task
by providing the task with physical pages corresponding to
the cache colors.

The number of cache colors available in the system is cal-
culated as follows: n = S/(W ×P ), where n is the number of
cache colors, S is the cache size, W is the number of ways of
the cache, and P is the size of a page frame and is typically
4KB. Hence, if S = 256KB, W = 16 and P = 4KB, the num-
ber of cache colors n is 4. One implicit assumption in page
coloring is that the number of cache sets is a power of two. In
some architectures like Intel Sandy Bridge and Haswell, the
LLC consists of cache slices, the number of which is equal to



that of physical cores [13, 21]. As shown in [16, 47], although
the mapping between physical addresses and cache slices is
not publicly known, page coloring on such architectures can
be implemented on a per cache-slice basis. This results in
the number of cache colors equal to n = S/(W × P × NP ),
where NP is the number of physical cores.

Page coloring was originally developed for a non-virtualized
system. In a virtualized system, page coloring implemented
in a guest OS can no longer map a task’s virtual page to
a specific cache color due to the additional address trans-
lation at the hypervisor. One simple approach to consider
is to implement page coloring in the hypervisor and assign
cache colors to VMs, as proposed in [22, 27, 34]. However,
this approach cannot allocate cache colors to individual tasks
running in a VM. In other words, all tasks within the same
VM share the cache colors assigned to the VM and will suffer
from inter- and intra-VCPU cache interference.

3. SYSTEM MODEL
We consider a multi-core host machine, where each PCPU

runs at the same fixed clock frequency and the last-level
cache (LLC) is shared among all PCPUs. The host machine
runs a hypervisor hosting guest VMs in full-virtualization
mode. The hypervisor implements page coloring and par-
titions the LLC into cache colors. Each cache color is rep-
resented as a unique natural number. Guest OSs may or
may not have page coloring. We assume that each VM has
been allocated a sufficient number of host physical pages and
that page swapping does not happen at run-time. This is a
reasonable assumption in real-time virtualization scenarios
because, unlike in server virtualization, memory underpro-
visioning is considered to be harmful to timing predictabil-
ity [19]. Also, this assumption can be easily achieved by VM
admission control at the hypervisor.

Scheduling: We focus on partitioned fixed-priority preemp-
tive scheduling for both the hypervisor and guest OSs due to
its wide usage, such as in OKL4 [3] and PikeOS [4]. Thus,
each VCPU is statically assigned to a single PCPU and each
task is statically assigned to a single VCPU.

Task Model: We consider periodic tasks with constrained
deadlines. Task τi is represented as follows:

τi := (Ci(k), Ti, Di)

• Ci(k): the worst-case execution time (WCET) of τi, when
it runs alone in the system with k cache colors assigned to
it

• Ti: the period of τi
• Di: the relative deadline of τi (Di ≤ Ti)
Ci(k) values are assumed to be known ahead of time. They
can be obtained by either measurement-based or static analy-
sis tools.1 We assume that Ci(k) is monotonically decreasing
with k.2 Each task τi has a unique priority πi.

3 Tasks are
1Capturing the overhead of virtualization in task execution
time is beyond the scope of this paper. However, we believe
this does not limit the applicability of our work because its
impact is relatively small (e.g., more than 99% of native per-
formance can be achieved in full-virtualization mode with
recent hardware virtualization techniques [38]).
2This is a common assumption in the literature. The actual
WCET function may not be monotonic, but this assumption
can be easily satisfied by monotonic over-approximations of
WCETs with insignificant pessimism [5].
3An arbitrary tie-breaking rule can be used to achieve this
under fixed-priority scheduling.

 
 

Phy. pages 

 
 

Phy. pages Host LLC 

Color 1 

Color 2 

Color 3 

Color 4 

Guest VM Host machine 

Virtual LLC 

Color 1 

Color 2 

256KB size 
512 sets 
16-way 

Host LLC Info 

128KB size 
256 sets 
16-way 

Virtual LLC Info 

Colors 2 and 4 

Page coloring 

Figure 3: vLLC example

assumed not to share any data with others. Also, tasks do
not make dynamic memory allocation, since it is typically
prohibitive in many real-time systems [28]. Relaxing those
assumptions is part of our future work.

VM Resource Model: Each VM is represented as follows:

VM := (v1, v2, ..., vNvcpu)

where vi is a VCPU and Nvcpu is the number of VCPUs in
the VM. We represent a VCPU vi as follows:

vi := (Cvi (k), T vi )

• Cvi (k): the execution budget of a VCPU vi, represented as
a function of the total number of cache colors (k) assigned
to the tasks of vi
• T vi : the budget replenishment period of a VCPU vi
Since task execution time is affected by the number of as-
signed cache colors, it is obvious that the required budget
of a VCPU is also affected by the number of cache colors to
be used by its tasks. With this model, the resource demand
of each VM can be presented to the hypervisor and other
VMs, without revealing its task attributes. We will show
in Section 5 how to find the budget of each VCPU with
respect to the number of cache colors. For the VCPU bud-
get supply and replenishment policies, we consider periodic
server [33], sporadic server [37], and deferrable server [39]
variants, because they have been widely used in real-time
virtualization [45, 22, 18, 17].

In the rest of the paper, Ci and Cvj may be used instead of
Ci(k) and Cvj (k′), respectively, when each task and VCPU
is assumed to have been assigned its cache colors.

4. CACHE CONTROL IN VIRTUALIZATION
In this section, we present our vLLC and vColoring tech-

niques. Both techniques provide a way to allocate cache col-
ors to individual tasks running in a VM. They do not rely on
the page-fault exception of shadow paging or the hardware
support of two-dimensional paging. Our techniques differ in
their target guest OSs: vLLC is for guest OSs with page col-
oring (coloring-aware OSs) and vColoring is for guest OSs
without page coloring (coloring-unaware OSs).

4.1 vLLC for Coloring-aware Guest OSs
As discussed in Section 2.3, page coloring implemented in

a guest OS cannot allocate cache colors to tasks in a VM
due to the additional address layer in the hypervisor. vLLC
overcomes this limitation. The keys to vLLC are (i) to pro-
vide a VM with “virtual LLC” information that corresponds
to the cache colors assigned to the VM, and (ii) to map guest
physical pages to host physical pages corresponding to the as-
signed cache colors. Figure 3 illustrates an example of vLLC.
The virtual LLC provided to the VM is different from the
actual LLC of the host machine in terms of the size of a cache
and the number of cache sets, which are the main factors de-
termining the number of cache colors. In Figure 3, since the
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hypervisor assigns two colors out of four to the guest VM,
the size and the number of cache sets of the virtual LLC are
each half of those of the host LLC. Using this virtual LLC,
the guest OS can identify that the number of available cache
colors is two. The virtual LLC can be implemented by trap-
ping and emulating cache-related operations, e.g., executions
of a CPUID instruction on x86 architectures [2] and accesses
to CCSIDR and CSSERR registers on an ARM Cortex-A15 ar-
chitecture [1].

In addition to the virtual LLC information, vLLC maps
guest physical pages (GPPs) to host physical pages (HPPs)
such that guest colors are mapped to their corresponding
host colors. This can be easily done by the hypervisor be-
cause the hypervisor has both the virtual LLC information
and the control of the GPP-to-HPP mapping. When a GPP
needs to be mapped to an HPP, vLLC in the hypervisor
checks the guest color of the GPP, finds out the correspond-
ing host color, and maps the GPP to an HPP with that host
color. For instance, in Figure 3, Colors 2 and 4 of the host
machine are represented as Colors 1 and 2 in the guest VM,
respectively, and GPPs with Colors 1 and 2 are mapped to
HPPs with Colors 2 and 4, respectively. With this approach,
a guest OS can allocate cache colors to tasks. It is worth not-
ing that the GPP-to-HPP mapping happens only once per
GPP during the lifetime of a VM. Therefore, once all GPPs
used by a task have been populated, vLLC does not cause
any runtime overhead to that task.

There are two constraints in vLLC. First, virtual LLC in-
formation should be in accordance with the assumption of
page coloring, where the number of cache sets is a power of
two. This means that, with vLLC, the number of cache colors
that can be assigned to a VM is restricted to a power of two.
Second, it cannot support a guest OS where page coloring
is hard-coded (e.g., using fixed cache parameters, instead of
checking them when the system boots). If these constraints
become a problem, one can disable the page coloring feature
of the guest OS and use our vColoring technique.

4.2 vColoring for Coloring-unaware Guest OSs
With vColoring, a VM is assigned two sets of cache colors,

default and extra. The default color set is used whenever a
GPP needs to be mapped to an HPP. The hypervisor maps
a GPP to an HPP corresponding to one of the colors in the
default color set. Hence, by default, all tasks are constrained
to use only the default cache colors. The extra color set
is used for explicit color allocation requests. When a task
running in a VM makes such a request, the hypervisor re-
maps all GPPs used by that task to HPPs corresponding to
the requested colors in the extra color set.

Re-mapping GPPs to new HPPs: Figure 4 shows the
detailed steps for re-mapping all the GPPs of a task from
the currently-used HPPs to new HPPs for the requested col-
ors. The first step is to obtain the task’s page table base
address (PTBA), which we will explain in detail later. Once
the PTBA is obtained, the hypervisor can traverse the task’s

page tables that are maintained by the guest OS. The second
step is to find out present and user-level accessible GPPs in
the task’s page tables. This can be done by checking the in-
formation bits of page table entries (PTEs). The third step
is to find an HPP mapped to each of the GPPs found in the
second step. The fourth step is to migrate each HPP ob-
tained in the third step to a new HPP that corresponds to
one of the requested colors. As part of page migration, refer-
ences to the previous HPP are also updated to the new one.
During all these steps, guest page tables are not changed at
all. Therefore, the task can be assigned its requested colors
transparent to the guest OS. Note that, since the above steps
re-map GPPs present at that time, it is desirable to make a
cache allocation request at the end of the initialization phase,
where a real-time task typically initializes and places all the
required data into memory.

PTBA identification: On most processors, the currently-
executing task’s PTBA is stored in a specific register to facil-
itate address translation, e.g., a CR3 register in x86 architec-
tures and a Translation Table Base register in ARM architec-
tures. We will refer to such a register as a PTB (Page Table
Base) register. Under shadow paging, the hypervisor traps
on write accesses to the PTB register and stores the base ad-
dress of the corresponding shadow page table into the PTB
register. The real PTBA value trapped by the hypervisor is
stored in the hypervisor’s memory space and used for syn-
chronizing the shadow page table with the guest page table.
Under two-dimensional paging, the MMU has two PTB reg-
isters, one for a guest PTBA and the other for a host PTBA,
and the hypervisor has access to both registers. Therefore,
under both address translation techniques, the current task’s
PTBA can be obtained by the hypervisor.

Cache allocation request: To make a cache allocation re-
quest to the hypervisor, on x86 architectures, a task can use a
“hypercall” instruction. It can be executed by any user-level
task in a VM and results in a world switch to the hypervi-
sor [2]. Then, the hypervisor can easily get the task’s PTBA
because that task is the currently executing one, and the hy-
pervisor can allocate requested colors to the task by following
the re-mapping steps explained before. On other architec-
tures, a user-level task is not allowed to execute a hypercall.
Hence, we propose the inclusion of a simple driver that pro-
vides a user-level task with an interface to issue a hypercall.
Then, the task can make a cache allocation request through
the driver interface. Since many recent real-time OSs such as
VxWorks [44] support implementing device drivers as load-
able kernel modules, this approach can be easily used for
such OSs without rebuilding the entire kernel image.

5. CACHE MANAGEMENT SCHEME
In this section, we present our cache management scheme

which (i) allocates cache colors to tasks within a VM while
satisfying timing constraints, (ii) designs a VM in a cache-
aware manner so that the VM’s resource requirement is spec-
ified w.r.t. the number of cache colors allocated, and (iii)
determines the allocation of cache colors to a set of VMs to
be consolidated.

Recall that, in multi-core virtualization, there are two types
of cache interference: inter- and intra-VCPU cache interfer-
ence. To avoid both types of interference, a simple approach
would be assigning each task a dedicated set of cache colors
for its own exclusive use. Hence, tasks do not share their
assigned cache colors with others, resulting in no conflicts in
the LLC. We will refer to this approach as complete cache



partitioning (CCP). However, due to the availability of a lim-
ited number of cache colors, CCP may result in performance
degradation. Many prior studies in non-virtualized environ-
ments [11, 10, 16, 5] have shown that sharing of cache colors
among tasks on the same core yields better task schedula-
bility than CCP, and the resulting cache interference can be
safely upper-bounded by the notion of cache-related preemp-
tion delay (CRPD). Therefore, our scheme builds on this idea
in that (i) cache colors are not shared among tasks on differ-
ent VCPUs to prevent inter-VCPU cache interference, and
(ii) cache colors can be shared among tasks on the same core
with the cost of intra-VCPU cache interference.

5.1 Schedulability Analysis
Before presenting our scheme, we first review VCPU and

task schedulability analyses. The schedulability of a VCPU
vi can be determined by the following recurrence equation [14]:

W v,n+1
i = Cvi +

∑
vh∈P(vi)∧πv

h>π
v
i

⌈
W v,n
i + Jvh
T vh

⌉
Cvh (1)

where W v,n
i is the worst-case response time (WCRT) of a

VCPU vi at the nth iteration (W v,0
i = Cvi ), πvi is the priority

of a VCPU vi, P(vi) is the PCPU of vi, and Jvh is a release jit-
ter (Jvh = T vh−Cvh for the deferrable server policy and Jvh = 0
for the periodic and sporadic server policies [8]). It termi-

nates when W v,n+1
i = W v,n

i , and the VCPU vi is schedulable
if its WCRT does not exceed its period, i.e., W v,n

i <= T vi .
The schedulability of task τj running on a VCPU vi can

be determined by:

Wn+1
j =Cj+

∑
τh∈V(τj)
∧πh>πj

⌈Wn
j +Jh

Th

⌉
(Ch+γh,j)+

⌈Wn
j +Cvi
T vi

⌉
(T vi−Cvi )

(2)

where Wn
j is the WCRT of task τj at the nth iteration (W 0

j =
Cj), πj is the priority of τj , V(τj) is the VCPU of τj , Jh is
the release jitters of a task τh (Jh = T vi − Cvi ), and γh,j
is the cache-related preemption delay (CRPD) caused by τh
and imposed on τj . Task τj is schedulable if its WCRT does
not exceed its deadline, i.e., Wn

j <= Dj . Note that Eq. (2)
is based on the task schedulability test under hierarchical
scheduling given in [31] but extended with CRPD [11, 16] to
bound intra-VCPU cache interference. γj,i is given by:

γj,i =

∣∣∣∣Sj ∩ ⋃
τk∈V(τi)∧πk<πj∧πk≥πi

Sk
∣∣∣∣ ·∆ (3)

where Sj is the set of cache colors assigned to τj , and ∆ is the
maximum time needed to reload data in one cache color.4

In the presence of intra-cache VCPU interference, the uti-
lization of a taskset Γ allocated to the same VCPU is calcu-
lated as follows [7, 16]:

util(Γ) =
∑
τi∈Γ

(
Ci
Ti

+
γi,n
Ti

)
(4)

where n is the index of the lowest-priority task in Γ.

5.2 Allocating Cache Colors to Tasks
Suppose that we have a set of tasks running on the same

VCPU and a set of cache colors is to be allocated to the
tasks. Our goal is to find a cache-to-task allocation that min-
imizes taskset utilization while satisfying taskset schedula-

4In case of a write-back cache, ∆ should take into account
the effect of a dirty cache line that requires two memory
accesses to fetch a new cache line [32].

Algorithm 1 CacheToTaskAlloc(Γ, Ncache)

Input: Γ: taskset, Ncache: the number of cache colors
Output: Utilization of Γ if schedulable, and ∞ otherwise
1: if Ncache = 0 then
2: return ∞
3: cache idx← 1
4: for all τi ∈ Γ do
5: /* Find the number of cache colors for τi */

6: Si ← argmin1≤k≤Ncache
(
Ci(k)
Ti

+
γi,n
Ti

)

7: /* Find cache-color indices for τi */
8: Si ← ∅
9: for k ← 1 to Si do

10: Si ← Si ∪ {cache idx}
11: cache idx← (cache idx+ 1) mod Ncache
12: if schedulable(Γ) then
13: return util(Γ)
14: else
15: return ∞

bility. When cache sharing is allowed, the problem of cache-
to-task allocation is known to be NP-hard [10]. Hence, we
present in Alg. 1 a heuristic to solve this problem. It first
checks if Ncache is non-zero because page coloring requires
tasks to be assigned at least one cache color [16]. Then, for
each task τi, it finds the number of cache colors, Si, that
minimizes the sum of the utilization of and CRPD caused
by τi (line 6). Since cache allocation is not done yet, we
approximate γi,n by assuming that all other tasks have been
allocated all Ncache colors. Once the number of cache colors
for τi is found, our heuristic finds cache color indices to be
allocated (line 9). It records the index of the next cache color
to be allocated in cache idx and begins the allocation start-
ing from cache idx, with an increment of 1 and a modulo
of Ncache. This approach ensures that the difference in the
number of tasks sharing each color does not exceed 1.

5.3 Designing a Cache-Aware VM
The resource requirement of a VM is the aggregate of the

resource requirements of all VCPUs in that VM, and it is
affected by the allocation of tasks to VCPUs. Especially,
when cache-sensitive tasks are allocated together to the same
VCPU, the benefit of cache sharing increases, thereby reduc-
ing the resource requirement. Hence, we propose a cache-
aware VM designing algorithm (CAVM) that (i) allocates
tasks to VCPUs in a way so as to increase the benefit of cache
sharing, and (ii) derives each VCPU’s resource requirement
w.r.t. the number of cache colors allocated to its taskset.
Our algorithm can be used for designing a new VM as well
as calculating the resource requirement of an existing VM.

Alg. 2 presents the pseudo-code of CAVM. It takes four
input parameters: Γ is a taskset to be allocated, Nvcpu is
the number of VCPUs in the VM, Ncache is the number of
available cache colors, and T v is the VCPU period that will
be assigned to all VCPUs in the VM.5 CAVM initializes the
budget of each VCPU vi to be full, i.e., Cvi = T v, and the
number of cache colors for vi (Svi ) to zero (line 2).

CAVM consists of two phases. The first phase is allocat-
ing tasks to VCPUs. Our allocation strategy is to group
cache-sensitive tasks into a “bundle” and allocate as many
tasks in the bundle as possible onto the same VCPU. To
do so, CAVM first groups all tasks in Γ into a single bun-
dle ϕ. Then, it checks the utilization of ϕ, assuming each

5There are many ways to choose T v. For example, system
designers may use a hyperperiod to improve VCPU schedu-
lability, or utilize the findings in [36] to reduce the overhead
of hierarchical scheduling.



Algorithm 2 CacheAwareVM(Γ, Nvcpu, Ncache, T
v)

Input: Γ: taskset, Nvcpu: the number of VCPUs, Ncache: the
number of cache colors, T v : VCPU period

Output: Success or Fail
1: V ← {v1, v2, ..., vNvcpu}
2: ∀vi ∈ V : T vi ← T v , Cvi (1, ..., Ncache)← T v , Svi ← 0
3: Nrem ← Ncache /* Remaining cache colors */
4: /* Phase 1: Allocate task bundles to VCPUs */
5: ϕ← Γ; Φ← ∅
6: while util(ϕ) > 1 do
7: (ϕ′, ϕ′′)← BreakBundle(ϕ, 1, Ncache)
8: Φ← Φ ∪ {ϕ′};ϕ← ϕ′

9: Φ← Φ ∪ {ϕ}
10: while Φ 6= ∅ do
11: /* Allocate bundles */
12: Φrest ← ∅
13: for all ϕi ∈ Φ in dec. order of average utilization do
14: (vBF , k)← BestFitWithCache(ϕi,V, Nrem)
15: if vBF 6= invalid then
16: ΓBF←ΓBF ∪ ϕi;SvBF←SvBF +k;Nrem←Nrem−k
17: else
18: Φrest ← Φrest ∪ {ϕi}
19: /* Break unallocated bundles */
20: Φ← ∅; singletons← true
21: for all ϕi ∈ Φrest do
22: if |ϕi| > 1 then
23: singletons←false; size←1−minvj∈Vutil(Γj)

24: (ϕ′, ϕ′′)← BreakBundle(ϕi, size,Ncache)
25: Φ← Φ ∪ {ϕ′, ϕ′′}
26: else
27: Φ← Φ ∪ {ϕi}
28: if singletons = true then
29: return Fail
30: /* Phase 2: Determine VCPU budget */
31: for all vi ∈ V do
32: Cvi (0)← invalid
33: for k ← 1 to Ncache do
34: if CacheToTaskAlloc(Γi, k) ≤ 1 then
35: Svi ← k
36: Binary search to find the minimum budget x
37: Cvi (k)← x
38: else
39: Cvi (k)← invalid
40: if Ci(k − 1) 6= invalid ∧ (Cvi (k − 1) < Cvi (k) ∨ Cvi (k) =

invalid) then
41: Cvi (k)← Cvi (k − 1)
42: return Success

task in ϕ uses one dedicated cache color (line 6). If it is
greater than 1, ϕ is broken into two sub-bundles by Break-
Bundle() such that the size of the first sub-bundle does not
exceed 1. The pseudo-code of BreakBundle() is given in
Alg. 4. To keep as many cache-sensitive tasks as possible
in the first sub-bundle, BreakBundle() removes tasks from
the first sub-bundle in increasing order of cache sensitivity,
which is calculated by (Ci(1)−Ci(Ncache))/Ti, until the size
of the first sub-bundle becomes not to exceed the given size
constraint. When BreakBundle() returns, CAVM puts the
first sub-bundle into Φ that is the set of bundles to be allo-
cated (line 8 of Alg. 2), and continues to check the second
bundle if it needs to be broken. As a result, each bundle in Φ
has a utilization not exceeding 1 and is ready to be allocated.

CAVM allocates bundles in Φ to VCPUs based on the
best-fit decreasing (BFD) heuristic (from line 13 to line 18).
Here, we define the average utilization of a bundle ϕi as∑
τj∈ϕi

∑Ncache
k=1 {(Cj(k)/Tj)/Ncache}. Bundles are sorted in

descending order of average utilization and CAVM tries to al-
locate each bundle to a VCPU by using BestFitWithCache()
given in Alg. 3. This function finds the best-fit VCPU that
can schedule a given bundle with k additional cache colors

Algorithm 3 BestFitWithCache(ϕ,V, Nrem)

Input: ϕ: a bundle of tasks to be allocated, V: a set of VCPUs,
Nrem: the number of cache colors

Output: (vi, k): a tuple of the best-fit VCPU and the number of
additional cache colors needed

1: for k ← 0 to Nrem do
2: for all vi∈V in decreasing order of util(Γi) do
3: if CacheToTaskAlloc(Γi ∪ ϕ, Svi + k) ≤ 1 then
4: return (vi, k)
5: return (invalid,−1)

Algorithm 4 BreakBundle(ϕ, size,Ncache)

Input: ϕ: a bundle to be broken, size: the size constraint for the
first sub-bundle, Ncache: the number of colors

Output: (ϕ′, ϕ′′): a tuple of sub-bundles
1: ϕ′ ← ϕ;ϕ′′ ← ∅
2: for all τi ∈ ϕ in increasing order of cache sensitivity do
3: ϕ′ ← ϕ′ \ τi; ϕ′′ ← ϕ′′ ∪ τi
4: /* Get util(ϕ′) assuming each task uses one color */
5: if util(ϕ′) ≤ size then
6: break
7: return (ϕ′, ϕ′′)

assigned to it, where k starts from 0 to the number of remain-
ing cache colors (Nrem). If a best-fit VCPU is found (line 15
of Alg. 2), the bundle is allocated to that VCPU, and the
number of cache colors of that VCPU (SvBF ) and the num-
ber of remaining cache colors are updated. Otherwise, the
bundle is put into Φrest (line 18).

Then, CAVM attempts to break all unallocated bundles in
Φrest. If a bundle in Φrest has more than one task (line 22), it
is broken into two sub-bundles by BreakBundle() such that
the size of the first sub-bundle does not exceed the remaining
capacity of a VCPU having the minimum taskset utilization.
The resulting two sub-bundles are put into Φ so that they can
be allocated in the next iteration. If all unallocated bundles
are singletons (line 28 of Alg. 2), CAVM returns fail because
none of these bundles can be broken into sub-bundles.

After finishing the first phase of task allocation, each VCPU
vi is allocated its own taskset Γi. The second phase of CAVM
determines the budget Cvi (k) of a VCPU vi for all possible
k values (1 ≤ k ≤ Ncache). If Γi with k colors is schedulable
(line 34), CAVM finds the minimum possible budget of vi by
using a binary search between 0 and Tv, and sets Cvi (k) to x.
Otherwise, Cvi (k) is marked as invalid. Here, it may happen
that, due to CRPD, Cvi (k − 1) is smaller than Cvi (k) or is
valid while Cvi (k) is invalid. In such cases (line 40), CAVM
sets Cvi (k) to Cvi (k − 1) and lets vi use only k − 1 colors if
k colors are given. With this, CAVM can find Cvi (k) values
that are monotonically decreasing with k.

5.4 Allocating Host Cache Colors to VMs
We now present our cache-to-VM allocation algorithm that

determines the number of cache colors for each VCPU of the
VMs to be consolidated, while minimizing the total utiliza-
tion of those VMs. Once cache colors are allocated, con-
ventional bin-packing heuristics such as BFD can be used to
allocate the VCPUs of those VMs to PCPUs.

Let σi,k denote the number of cache colors assigned to vi
when a total of k colors is provided in the host machine, and
let V denote a set of VCPUs of all VMs to be consolidated.
Then, the total utilization of VMs with k cache colors is
given by: ∑

vi∈V

Cvi (σi,k)

Ti
(5)



Algorithm 5 CacheToVMAlloc(V, Ncache)
Input: V: a set of VCPUs of all VMs to be consolidated, Ncache:

the number of available cache colors
Output: Success or Fail
1: Find xi for each VCPU vi ∈ V
2: z ←

∑
vi∈V xi

3: if Ncache < z then
4: return Fail
5: ∀vi ∈ V : σi,x ← xi

6: U(z)←
∑
vi∈V

Cv
i (σi,z)

Tv
i

/* U(z): total utilization */

7: for k ← z + 1 to Ncache do

8: U(k)← min
z≤k′<k

(
U(k′)−max

vi∈V

Cvi(σi,k′)−Cvi(σi,k′+(k−k′))
T vi

)
9: ∀vi∈V : σi,k← # of colors of vi contributing to U(k)

10: ∀vi ∈ V : Svi ← σi,Ncache
11: return Success

To find the minimum total utilization of VMs with k cache
colors, U(k), we use a dynamic programming approach. Let
xi denote the smallest number of cache colors that gives a
valid budget for vi, i.e., Cvi (xi) 6= invalid and Cvi (xi − 1) =
invalid, and let z denote the minimum number of cache col-
ors needed to schedule all VCPUs in V. Then, z is calculated
by z =

∑
vi∈V xi, and σi,z is equal to xi because there is only

one valid cache allocation to vi when z colors are provided.
For k < z, we represent U(k) as ∞ because there is no valid
allocation. For k = z, U(k) can be computed by Eq. (5) be-
cause σi,k = xi. For k = z+ 1, U(k) cannot be computed by
Eq. (5) because σi,k is unknown. Instead, we can compute
U(k) from U(z). Recall that our CAVM algorithm given in
Section 5.3 ensures that Cvi (k) is monotonically decreasing
with k. Hence, if any additional cache color is assigned to
vi, a non-negative utilization gain is obtainable. Based on
this observation, we can compute U(k = z + 1) by U(z) −
max

Cv
i (σi,z)−Cv

i (σi,z+1)

Tv
i

, which subtracts the maximum uti-

lization gain made by one additional color from U(z). We can
also find σi,z+1 by recording the number of colors of vi that
leads to U(z + 1). For k = z + 2, U(k) can be calculated

by the minimum between U(z) − max
Cv

i (σi,z)−Cv
i (σi,z+2)

Tv
i

,

which subtracts the maximum gain by two additional col-

ors from U(z), and U(z + 1) −max
Cv

i (σi,z+1)−Cv
i (σi,z+1+1)

Tv
i

,

which subtracts the maximum gain by one additional color
from U(z + 1). This approach can be extended to all k > z,
and U(k) is given by the following recurrence:

U(k)=


∞ (unschedulable) : k<z∑
vi∈V

Cvi (σi,k)

Ti
: k=z

min
z≤k′<k

(
U(k′)−max

vi∈V

Cvi(σi,k′)−Cvi(σi,k′+(k−k′))
T vi

)
: k>z

(6)

Alg. 5 shows our cache-to-VM allocation algorithm based
on the recurrence in Eq. (6). Our algorithm first finds z, and
if a given number of cache colors (Ncache) is smaller than z, it
returns fail (line 4). Otherwise, it computes U(k) iteratively
(line 8) and saves σi,k that leads to U(k) (line 9). Once the
iteration completes, our algorithm sets the number of cache
colors for each VCPU to σi,Ncache and returns success. The
time complexity of our algorithm is O((Ncache)

2 · |V|).

6. EVALUATION
This section presents our experimental results on our vLLC,

vColoring, and cache management scheme.

Table 1: Implementation cost of vLLC and vColoring

Name Items
Cost (nsec)
x86 ARM

vLLC
Virtual LLC emulation 787 12212
Color check in GPP-to-HPP mapping 34 921

vColoring Page migration for GPP re-mapping 2359 31864

6.1 vLLC and vColoring
Experimental Setup: We have implemented vLLC and
vColoring on the KVM hypervisor included in the Linux
3.10.39 kernel. We chose KVM for its convenience, such as
supporting various architectures and providing both shadow
paging and two-dimensional paging. However, it is worth
noting that our techniques, vLLC and vColoring, can also
be implemented in other hypervisors. In our experiments,
we use two-dimensional paging because it is the default ad-
dress translation technique of KVM and shadow paging is
not yet supported by KVM for ARM.

We use x86 and ARM platforms as host machines for our
experiments. The x86 platform is equipped with an In-
tel i7-2600 3.4GHz quad-core processor and 16GB of DDR3
1666MHz memory. The Intel processor has a unified 8MB
shared LLC that consists of four 2MB cache slices, providing
32 cache colors. We disabled hardware prefetcher, simultane-
ous multithreading, and dynamic clock frequency scaling to
reduce measurement inaccuracies. The ARM platform used
is an ODROID-XU4 board. It has 2GB of LPDDR3 933MHz
memory and a Samsung Exynos 5422 SoC that combines a
cluster of four ARM Cortex-A15 cores with a cluster of four
Cortex-A7 cores. However, we only use the cluster of Cortex-
A15 cores because the performance of the other cluster seems
inadequate for our experiments. The LLC shared among four
Cortex-A15 cores is 2MB, providing 32 cache colors. We dis-
abled dynamic clock frequency scaling and configured each
core to run at its maximum speed, 2GHz.

Since our focus is on cache interference imposed on tasks
in a VM, each platform hosts one VM that has four VCPUs
(VCPUs 1-4). Each VCPU is allocated to a different PCPU
with 100% of budget. Hence, there is only one VCPU per
PCPU on both the x86 and ARM platforms. The VM is
assigned all the 32 cache colors of the host machine. On the
host side, VCPU threads are assigned real-time priorities,
which prevents unexpected delays from indispensable system
services that could not be disabled.

Three different guest OSs are used in our experiments:
Linux/RK and the vanilla Linux kernel 3.10.39 for x86 and
ARM, and MS Windows Embedded 8.1 Industry for x86.
Linux/RK is used as a guest OS to evaluate vLLC because it
supports page coloring. The vanilla Linux and MS Windows
Embedded OSs are used to evaluate vColoring because they
both do not support page coloring. Specifically, MS Windows
Embedded is chosen to verify that vColoring can be used for
proprietary, closed-source guest OSs.

Implementation Overhead: Table 1 shows the compu-
tational overhead of vLLC and vColoring, measured with
hardware performance counters on the x86 and ARM plat-
forms. vLLC performs the virtual LLC emulation when a
guest OS reads the VM’s LLC information, which is typi-
cally done during the system initialization phase. The GPP-
to-HPP mapping occurs only once per GPP, as described in
Section 4, and the overhead added by the color check of vLLC
in the GPP-to-HPP mapping is less than 5% of the original
mapping time on both platforms. Hence, we consider that
the overhead of vLLC is acceptably small. vColoring re-maps
GPPs when cache colors are assigned to a task. Since the
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Figure 5: Execution times of the latency task
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Figure 6: Execution times of the PARSEC benchmarks when
synthetic tasks run on different VCPUs in parallel

major overhead of this re-mapping is caused by page migra-
tion, we present per-page migration time in Table 1.

Results with a Synthetic Task: As the first step of our
experiments, we check if vLLC and vColoring can correctly
assign cache colors to a task running in a VM. We use the
latency task [48] which traverses a randomly-ordered linked
list. The execution time of the latency task highly depends
on the memory access time, due to the data dependency of
pointer-chasing operations in linked-list traversals. To make
the latency task cache-sensitive, we configured the working
set size of the latency task to be half of the LLC of each
platform, i.e., 4MB on x86 and 1MB on ARM. We compiled
this task for both Linux and MS Windows guests on x86.

Figure 5 compares the maximum observed execution times
of the latency task when it runs alone in each VM with dif-
ferent numbers of cache colors assigned to it. The x-axis of
each graph denotes the number of cache colors assigned to
the task. The y-axis shows the execution time normalized to
the case where the task runs with one cache color. On both
x86 and ARM platforms, the execution time of the task be-
gins to plateau after more than 16 cache colors are assigned
to it. This is because the entire working set of the task can
fit into the LLC after that point. On each platform, a very
similar execution-time pattern is observed although differ-
ent guest OSs are used. This shows that both vLLC and
vColoring work as expected.

Results with PARSEC Benchmarks: We use the PAR-
SEC benchmarks [9], which are closer to the memory access
patterns of real applications compared to the synthetic task,
latency. A total of eleven PARSEC benchmarks is used. We
have excluded two PARSEC benchmarks, dedup and facesim,
due to their excessive disk accesses for data files. Since we
have shown in the previous subsection that vLLC and vCol-
oring are equivalent in preventing cache interference on x86
and ARM platforms, we use only vLLC on x86 for simplicity.

We first identify the impact of inter-VCPU cache inter-
ference on the PARSEC benchmarks. Each benchmark is
assigned to VCPU 1 and the three instances of the latency
task are assigned to the other VCPUs to generate interfering
cache requests. When vLLC is not used, the benchmark and
the three instances share all 32 cache colors. When vLLC is
used, our objective here is to protect the cache behavior of
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Figure 7: Response times of the PARSEC benchmarks when
synthetic tasks are scheduled on the same VCPU

the benchmark from the three instances of latency. Hence,
with vLLC, each benchmark is assigned 31 private cache col-
ors and the three instances share the remaining 1 color.

Figure 6 compares the execution time of each PARSEC
benchmark with and without vLLC. The x-axis denotes the
benchmark names, and the y-axis shows the execution time
of each benchmark normalized to the case when it runs alone
in the VM with 32 cache colors. When vLLC is not used
(Baseline), there is up to 30% of execution time increase.
When vLLC is used, only streamcluster has an execution
time increase of 2% and the other benchmarks have no no-
ticeable difference in their execution times. The reason for
the increase in streamcluster’s execution time is due to the
fact that it is assigned a smaller number of cache colors when
vLLC is used, compared to when vLLC is not used.

Next, we explore the impact of intra-VCPU cache interfer-
ence on the PARSEC benchmarks. Each benchmark and the
three instances of latency are assigned to the same VCPU,
and the SCHED_RR policy with a time quantum of 10 msec
is used to time-share that VCPU. When vLLC is used, the
benchmark is assigned 31 private cache colors and the three
instances share 1 remaining cache color, just like the inter-
VCPU interference experiment.

Figure 7 shows the response time of each benchmark when
the three instances of latency are scheduled on the same
VCPU. The response time of a benchmark is normalized to
the case when it is scheduled on the same VCPU with three
instances of a busyloop task. busyloop runs an empty infinite
while loop, thereby causing no cache interference. When
vLLC is not used, the response time increases by up to 15%.
When vLLC is used, all the benchmarks except streamcluster
have no noticeable difference in their response times. The
increase in streamcluster’s execution time is again because
a smaller number of cache colors is assigned to the bench-
mark when vLLC is used. To summarize, the results with
the PARSEC benchmarks show that both inter- and intra-
VCPU cache interference can significantly degrade task per-
formance, and our techniques are effective in allocating cache
colors to tasks running in a VM.

6.2 Cache Management Scheme
In this subsection, we evaluate our real-time cache man-

agement scheme for multi-core virtualization. To do this,
we use randomly-generated tasksets and capture the total
utilization of VMs as the metric.

Experimental Setup: We generated 10,000 tasksets with
the parameters in Table 2. Cache hit/miss delay and cache
color reload time (∆) were obtained by measurement on our
ARM platform. To generate a WCET function (Ci(k)) for
each task τi, we use the method described in [10]. This
method first calculates a cache miss rate for given cache size,
neighborhood size, locality, and task memory usage, by us-
ing the analytical cache behavior model proposed in [41]. It



Table 2: Parameters for taskset generation
Type Parameters Values
System Number of PCPUs 4

Number of VMs 2
Number of VCPUs per VM 4
VCPU replenishment period 10 msec
Cache (LLC) size 2048 KB
# of cache colors (Ncache) 32
Cache hit delay 26 nsec
Cache miss delay 202 nsec
Cache color reload time (∆) 207 µsec

Taskset Total number of tasks [10, 15]
Taskset utilization (Utaskset) 3.0

WCET Memory accesses per job [100000, 1000000]
Neighborhood size [16, 64]
Locality [1.5, 3.0]
Task memory usage [8, 40] MB
*Resulting working-set size [64 KB, 40 MB]
*Resulting WCET [8.47, 202.02] msec
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Figure 8: Some of WCETs generated for our experiments

then generates an execution time with the calculated cache
miss rate, the timing delay of a cache miss, and the num-
ber of memory accesses. With this method, we were able to
generate WCETs with different cache sensitivities, as shown
in Figure 8. Then, the total taskset utilization (Utaskset) is
split into n random-sized pieces, where n is the total number
of tasks. The size of each piece represents the utilization of
the corresponding task when one cache color is assigned to
it. The period of a task τi is calculated by dividing Ci(1)
by its utilization. Once a taskset is generated, they are ran-
domly distributed to two VMs, each of which has four VC-
PUs. Within each VM, the priorities of tasks are assigned by
the Rate-Monotonic Scheduling (RMS) policy [25]. The pri-
orities of VCPUs are arbitrarily assigned since they use the
same period. The sporadic server policy is used for VCPU
budget replenishment.

Results: For comparison with our scheme, we consider vari-
ants of the best-fit decreasing (BFD), worst-fit decreasing
(WFD), and first-fit decreasing (FFD) heuristics. Each heuris-
tic is used for task-to-VCPU allocation within a VM and
combined with two different cache-to-task allocation poli-
cies: complete cache partitioning (CCP) and complete cache
sharing (CCS). CCP allocates private cache colors to tasks
in proportion to their working-set sizes. On the other hand,
CCS lets tasks on the same VCPU share all their cache col-
ors. Hence, we compare our scheme against a total of six ap-
proaches: BFD+CCP, WFD+CCP, FFD+CCP, BFD+CCS,
WFD+CCS, and FFD+CCS. For each approach, k cache col-
ors, where 1 ≤ k ≤ Ncache, are evenly distributed to all VC-
PUs of the two VMs such that the difference in the number
of cache colors of each VCPU does not exceed 1. Tasks are
sorted in decreasing order of utilization w.r.t. the number
of cache colors per VCPU. Once task-to-VCPU allocation is
done, we determine the budget of each VCPU by the binary
search approach used in the Phase 2 of our CAVM algorithm
given in Alg. 2. Finally, we calculate the total utilization of
VMs by summing up the utilization of all VCPUs.

Figure 9 shows the total VM utilization as the number of
cache colors increases. Since CCP cannot find a schedula-
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Figure 9: VM utilization w.r.t the number of cache colors
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Figure 10: VM utilization (∆ = 10 msec)

ble allocation if the number of colors is smaller than that of
tasks, we compare only the cases where the number of cache
colors is greater than 15. Our scheme outperforms all other
approaches, yielding 1.18× to 1.54× lower utilization. This
is because our scheme allocates cache-sensitive tasks together
to the same VCPU to increase the benefit of cache sharing
and finds the minimum total VM utilization for a given num-
ber of cache colors. The heuristics with CCS perform better
than the ones with CCP. This is because ∆ obtained from
our ARM platform is relatively small so that the reduction
in task execution time from cache sharing is larger than the
resulting CRPD in our experiments.

Figure 10 shows the total VM utilization when ∆ is 10
msec. This experiment is to evaluate our scheme when CRPD
is extremely high. Overall, the benefit of using more cache
colors is smaller compared with the previous experiment.
Our scheme outperforms other approaches because it can
balance between the utilization gain and CRPD from cache
sharing. The heuristics with CCS perform worse than the
ones with CCP due to the high CRPD. In case of BFD+CCS
and FFD+CCS, the utilization even increases as more cache
colors are provided. WFD+CCS is affected less by the high
CRPD compared with BFD+CCS and FFD+CCS, because
WFD results in a fewer number of tasks per VCPU. Based
on these results, we conclude that our scheme allocates cache
colors efficiently in a virtualization environment and yields a
significant utilization benefit.

7. RELATED WORK
Cache management schemes have been extensively studied

in the context of non-virtualized systems. Liedtke et al. [23]
proposed to use page coloring to prevent cache interference
from other tasks in a single-core platform. Lin et al. [24]
conducted a comparative study on various multi-core cache
partitioning schemes by implementing them with page col-
oring. Mancuso et al. [28] proposed the Colored Lockdown
technique that combines page coloring and cache lockdown to
better keep the frequently accessed pages of real-time tasks
in a cache. Ye et al. [47] developed COLORIS that sup-
ports both static and dynamic cache partitioning based on
page coloring. Ward et al. [43] focused on cache management
issues in multi-core mixed-criticality systems and proposed
cache locking and scheduling techniques that use page col-
oring. Bui et al. [10] developed a genetic algorithm to find
a near optimal solution for cache partition allocation on a



single-core platform. Paolieri [30] proposed IA3, which is a
heuristic algorithm for allocating cache partitions to cores in
a multi-core real-time system. All these schemes, however,
cannot be directly applied to a virtualized system.

There also exist many research efforts on taking into ac-
count cache interference delay in the schedulability analy-
ses [5, 26, 46]. Specifically, Altmeyer and Davis [5] compared
the performance of cache partitioning and cache-related pre-
emption delay (CRPD) analysis on a single-core platform.
Xu et al. [46] extended multi-core compositional analysis to
incorporate cache interference delay, assuming that there is
no shared cache. Lunniss et al. [26] extended CRPD analysis
to a single-core hierarchical scheduling environment. How-
ever, none of these approaches focuses on a shared cache in
a multi-core platform.

Previous work on software-based cache management in a
virtualization environment [22, 27, 34] proposed to imple-
ment page coloring in the hypervisor and to allocate cache
colors to VMs. This approach, however, cannot be used to
address cache interference among tasks running in the same
VM, as we discussed in Section 2.3. Kim et al. [15] pro-
posed a hardware-based solution to enable page coloring im-
plemented in a guest OS to work. However, hardware mod-
ification required by this approach does not allow the use
of commodity multi-core processors. In addition, if a guest
OS does not have page coloring support, tasks running on
that guest OS cannot get any benefit. In this paper, we have
addressed these limitations.

8. CONCLUSIONS
In this paper, we present our proposed real-time cache

management framework for multi-core virtualization. Our
framework has vLLC and vColoring, hypervisor-level tech-
niques to enable the cache allocation of individual tasks run-
ning in a VM. We have implemented vLLC and vColoring on
the KVM hypervisor running on x86 and ARM platforms.
Experimental results with three different guest OSs show
that both vLLC and vColoring can effectively control the
cache allocation of tasks in a VM. Our framework also sup-
ports a cache management scheme that determines cache to
task allocation, designs a VM in the presence of cache inter-
ference, and minimizes the total utilization of VMs to be con-
solidated into the host machine. Experimental results with
randomly-generated tasksets show that our scheme yields a
significant utilization benefit compared to other approaches.
As future work, we plan to address temporal interference
from main memory in a virtualization environment.
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