
EMSOFT 2016

Real-Time Cache Management for 

Multi-Core Virtualization

1 University of Riverside, California
2 Carnegie Mellon University

Hyoseung Kim 1,2 Raj Rajkumar 2



EMSOFT 2016

Benefits of Multi-Core Processors

• Consolidation of real-time systems onto a single hardware 
platform
– Reduces the number of CPUs and wiring harness among them

– Leads to a significant reduction in size, weight, and cost requirements

Multi-core platform

Single-core Platforms

Workload
Consolidation
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Virtualization of Real-Time Systems

• Barriers to consolidation
– Each app. could have been developed 

independently by different vendors

• Bare-metal / Proprietary OS

• Linux / Android

– Different license issues

• Consolidation via virtualization
– Each application can maintain 

its own implementation

– Minimizes re-certification process

– Fault isolation

– IP protection, license segregation

Virtualization

Multi-core CPU

Real-Time Hypervisor
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Virtual Machines and Hypervisor

• Two-level hierarchical scheduling structure
– Task scheduling on virtual CPUs (VCPUs) by Guest OSs

– VCPU scheduling on physical CPUs (PCPUs) by the hypervisor

Virtual Machine (VM)

VCPU

Task

Guest OS

Task

VCPU

Task Task

PCPU

Hypervisor
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Task Task

4/24



EMSOFT 2016

• Shared last-level cache (LLC)
– Reduces task execution time 

– Allows consolidating more tasks onto a single hardware platform

• Cache interference in multi-core virtualization

Shared Cache Interference

Cache interference must be addressed for real-time predictability 

①Intra-VCPU cache interference:
tasks running on the same VCPU

②Inter-VCPU cache interference: 
tasks running on different VCPUs

① ②

VM

VCPU

Task Task

VCPU

Task Task

Guest OS
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Page Coloring for S/W Cache Control

• Page coloring 
– Software-based, OS-level cache partitioning mechanism

– Used by many prior cache management schemes developed for 
non-virtualized multi-core systems [1, 2, 3, 4] 

[1] H. Kim et al. A coordinated approach for practical OS-level cache management in multi-core real-time systems. In ECRTS, 2013.

[2] R. Mancuso et al. Real-time cache management framework for multi-core architectures. In RTAS, 2013.

[3] N. Suzuki et al. Coordinated bank and cache coloring for temporal protection of memory accesses. In ICESS, 2013.

[4] B. C. Ward et al. Making shared caches more predictable on multicore platforms. In ECRTS, 2013..

[ Physically-indexed, set-associative cache ]

Physical address

Cache mapping

Physical page # Page offset

Line offsetSet index

Color Index
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Challenges in Virtualization (1/2)

1. Page coloring and algorithms based on it do not work in a VM 
due to the additional address layer at the hypervisor

of a VM

Virtual Machine (VM)

Virtual pages

Physical pages 

Physical pages of a host machine

Task 1 Task 2

Hypervisor

OS Page ColoringGuest OS

No longer mapped to 
expected cache colors
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Challenges in Virtualization (2/2)

2. Even if page coloring works in a VM, legacy systems to be 
virtualized may not have page coloring support
– Will suffer from cache interference

– Need a support for closed-source guest OSs

3. Prior real-time cache management schemes cannot answer:
– How to find a VM’s resource requirement in the presence of cache 

interference?

– How to allocate the host machine's cache to VMs to be consolidated?
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Our Contributions

• Real-time cache management for multi-core virtualization

• vLLC and vColoring
– Provide a way to allocate host cache colors to individual tasks running in a 

virtual machine  First software-based techniques

– Prototype implemented in KVM running on x86 and ARM platforms

• Cache management scheme 
– Allocates cache colors to tasks in a VM while satisfying timing constraints

– Finds a VM’s CPU demand w.r.t. the number of cache colors assigned to it

– Minimizes the total utilization of VMs to be consolidated  First approach
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Outline

• Introduction and Motivation

• Real-Time Cache Management for Multi-Core Virtualization
– System model

– vLLC and vColoring

– Cache management scheme

• Evaluation

• Conclusions
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System Model

• Hypervisor: implements page coloring

• Guest OSs: may or may not have page coloring

• Partitioned fixed-priority scheduling for both the hypervisor & guest OSs

• VM ≔ (𝑣1, 𝑣2, … , 𝑣𝑁𝑣𝑐𝑝𝑢)

• VCPU 𝑣𝑖 ≔ 𝐶𝑖
𝑣 𝑘 , 𝑇𝑖

𝑣

– 𝐶𝑖
𝑣 𝑘 : Execution budget with 𝑘 cache colors assigned to it

– 𝑇𝑖
𝑣: Budget replenishment period

• Task  𝜏𝑖 ≔ (𝐶𝑖 𝑘 , 𝑇𝑖 , 𝐷𝑖)

– 𝐶𝑖 𝑘 : Worst-case execution time (WCET) with 𝑘 cache colors assigned to it

– 𝑇𝑖: Period

– 𝐷𝑖: Relative deadline
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vLLC: Virtual Last-Level Cache

• Technique for guest OSs with page coloring (e.g., Linux/RK)
– Provides • Virtual LLC (Last-level cache) information

• Host physical pages corresponding to the virtual LLC

Guest VM
Guest 

Phy. pages

128KB size
256 sets
16-way

Virtual LLC Info

Host
Phy. pages Host LLC

Color 1

Color 2

Color 3

Color 4

Host machine

256KB size
512 sets
16-way

Host LLC Info

Virtual LLC

Color 1

Color 2

Colors 2 and 4

Guest Cache Color 1 = Host Cache Color 2,    Guest Cache Color 2 = Host Cache Color 4

①

②

③

④

Page coloring
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vLLC: Virtual Last-Level Cache

• Virtual LLC information
– # of cache colors 𝑛 = 𝑆/(𝑊 ⋅ 𝑃)

• Trapping and emulating cache-related operations
– x86: executions of a CPUID instruction

– ARM Cortex-A15: accesses to CCSIDR and CSSERR registers

• Limitations
– The number of cache colors is restricted to a power of two 

– Cannot support a guest OS where page coloring is hard-coded

𝑆: cache size
𝑊: # of ways
𝑃: size of page frame

This is fixed

Virtualize these!
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vColoring: Virtual Coloring of Cache 

• Technique for guest OSs without page coloring support
– Re-maps guest pages to host pages for the requested cache colors

– Applicable to VMs running closed-source, proprietary guest OSs

Task’s Page Table
Base Address

Host physical
pages

Color X

Color 1

Page 
migration

①

②
entry

...
... entry

...
... entry

...
...

Guest page table traversal

...
...

...

Find a host page 
mapped to a 
guest page

③

④

Guest VM Host machine
Req. 
Color 1

Present & user accessible PTEs

Guest page tables are not changed at all
 Cache allocation is transparent to the guest OS
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Outline

• Introduction and Motivation

• Real-Time Cache Management for Multi-Core Virtualization
– System model

– vLLC and vColoring

– Cache management scheme

• Evaluation

• Conclusions
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Allocating Cache Colors to Tasks

• Two types of cache interference: Inter-VCPU & Intra-VCPU

• Simple approach 1: Complete cache partitioning (CCP)

– No cache sharing at all

– May result in poor performance due to smaller cache size

• Simple approach 2: Complete cache sharing (CCS) among tasks on the same VCPU

– No cache sharing between tasks on different VCPUs

– Bounds intra-VCPU interference with Cache-Related Preemption Delay (CRPD)

– May suffer from high CRPD

• Our approach: Controlled sharing of cache colors on each VCPU

– Goal: finds a cache-to-task allocation that minimizes taskset utilization  NP-hard

– Approximates CRPD caused by task 𝜏𝑖 to reduce the complexity

Assuming all other tasks have been
assigned all cache colors
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Designing a Cache-Aware VM

• VM’s CPU demand

– The sum of the CPU demands of VCPUs in the VM

• Our approach: Cache-aware VM designing algorithm (CAVM)
– Phase 1: Allocates cache-sensitive tasks to the same VCPU so that they can benefit 

from cache sharing

• After Phase 1, each VCPU has its own taskset

– Phase 2: Derives each VCPU's CPU demands w.r.t. the number of cache colors 
assigned to it

• Determines the minimum budget 𝐶𝑖
𝑣(𝑘) for all possible 𝑘 values

Affected by the allocation of tasks and cache colors to VCPUs                     
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Allocating Host Cache Colors to VMs

• Goal: determines the number of cache colors for each VCPU of the VMs to be 
consolidated, while minimizing the total VM utilization

• Our approach: Dynamic programming
Minimum number of cache colors 
to satisfy timing constraints

Finds the maximum utilization gain 
made by additional cache colors
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Outline

• Introduction and Motivation

• Real-Time Cache Management for Multi-Core Virtualization
– System model

– vLLC and vColoring

– Cache management scheme

• Evaluation
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Implementation

• Experimental setup
– x86: Intel i7-2600 four cores @ 3.4 GHz  8 MB LLC, 32 colors

– ARM: Exynos 5422 (four Cortex-A15 cores @ 2 GHz)  2 MB LLC, 32 colors

– Hypervisor: Implemented in KVM, but applicable to other hypervisors

– Guest OSs: Linux/RK, Vanilla Linux, MS Windows Embedded (x86 only)

• Implementation overhead
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vLLC and vColoring

• Execution times of a synthetic task
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Cache Management Scheme

• Experimental results with random tasksets
– Quad-core, 2 VMs, 4 VCPUs per VM, 2MB LLC, 10 – 15 tasks

– Cache color reload time: 207 𝜇sec (obtained from our ARM board)

• VM utilization w.r.t. the number of cache colors
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Lower is better
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Conclusions

• Real-time cache management for multi-core virtualization

• vLLC and vColoring
– Hypervisor-level techniques to control cache allocation to individual tasks 

running in a virtual machine

– Evaluated with Linux/RK, vanilla Linux, and MS Embedded Windows

• Cache management scheme 
– Determines cache to task allocation

– Designs a VM in the presence of cache interference

– Minimizes the total utilization of VMs

• Future work: main memory interference in virtualization
– vColoring: applicable to DRAM bank partitioning

Up to 1.54x 
lower utilization 
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Real-Time Cache Management for 

Multi-Core Virtualization
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