EMSOFT 2016

Real-Time Cache Management for
Multi-Core Virtualization

Hyoseung Kim 12 Raj Rajkumar 2

1 University of Riverside, California
2 Carnegie Mellon University

IIIIIIIIIIIIIIIIIIIIII

RIVERSIDE Carnegie Mellon
I

EMSOFT 2016

Benefits of Multi-Core Processors

e Consolidation of real-time systems onto a single hardware
platform
— Reduces the number of CPUs and wiring harness among them
— Leads to a significant reduction in size, weight, and cost requirements

Workload
Consolidation

Multi-core platform

Single-core Platforms

2/24

EMSOFT 2016

Virtualization of Real-Time Systems

e Barriers to consolidation 4C/OS-II
— Each app. could have been developed — The ReatTime Keone
independently by different vendors

e Bare-metal / Proprietary OS

e Linux / Android gRTOS

_ D . .
ifferent license issues AUTSSAR

e Consolidation via virtualization . o
_7\._7_\”_/Il'tua|lzatlon

— Each application can maintain | —

its own implementation

T (7p] q
c e e e h: |l O a
— Minimizes re-certification process _& HIEIE
o I E
— Fault isolation 4\
. . . Real-Time Hypervisor
— |P protection, license segregation _
Multi-core CPU

3/24

EMSOFT 2016

Virtual Machines and Hypervisor

e Two-level hierarchical scheduling structure
— Task scheduling on virtual CPUs (VCPUs) by Guest OSs
— VCPU scheduling on physical CPUs (PCPUs) by the hypervisor

Virtual Machine (VM)

Task | | Task | | Task

EMSOFT 2016

Shared Cache Interference

e Shared last-level cache (LLC)

— Reduces task execution time
— Allows consolidating more tasks onto a single hardware platform

e Cache interference in multi-core virtualization

® @

VM

Task | | Task Task | | Task @Intra-VCPU cache interference:

‘ ‘ ‘ ‘ tasks running on the same VCPU
(@ Inter-VCPU cache interference:

tasks running on different VCPUs

T T

[Cache interference must be addressed for real-time predictability]

5/24

EMSOFT 2016

Page Coloring for S/W Cache Control

e Page coloring
— Software-based, OS-level cache partitioning mechanism

— Used by many prior cache management schemes developed for
non-virtualized multi-core systems (1. 2.3, 4]

[Physically-indexed, set-associative cache]

Color Index
[\

Physical address Physical page # Page offset

Cache mapping Set index Line offset

[1] H. Kim et al. A coordinated approach for practical OS-level cache management in multi-core real-time systems. In ECRTS, 2013.
[2] R. Mancuso et al. Real-time cache management framework for multi-core architectures. In RTAS, 2013.

[3] N. Suzuki et al. Coordinated bank and cache coloring for temporal protection of memory accesses. In ICESS, 2013.

[4] B. C. Ward et al. Making shared caches more predictable on multicore platforms. In ECRTS, 2013..

6/24

EMSOFT 2016

Challenges in Virtualization (1/2)

1. Page coloring and algorithms based on it do not work in a VM
due to the additional address layer at the hypervisor

Virtual Machine (VM)
Task 1 Task 2

]» Virtual pages

I Page Coloring

]» Physical pages of a VM

\ N\ ~ N _
\ ' N~ x No longer mapped to

expected cache colors

]» Physical pages of a host machine

7/24

EMSOFT 2016

Challenges in Virtualization (2/2)

2. Even if page coloring works in a VM, legacy systems to be
virtualized may not have page coloring support

— Will suffer from cache interference
— Need a support for closed-source guest OSs

3. Prior real-time cache management schemes cannot answer:
How to find a VM’s resource requirement in the presence of cache

interference?
How to allocate the host machine's cache to VMs to be consolidated?

8/24

EMSOFT 2016

Our Contributions

e Real-time cache management for multi-core virtualization

e vLLC and vColoring

— Provide a way to allocate host cache colors to individual tasks running in a
virtual machine = First software-based techniques

— Prototype implemented in KVM running on x86 and ARM platforms

e Cache management scheme
— Allocates cache colors to tasks in a VM while satisfying timing constraints
— Finds a VM’s CPU demand w.r.t. the number of cache colors assigned to it
— Minimizes the total utilization of VMs to be consolidated = First approach

9/24

EMSOFT 2016

Outline

e Real-Time Cache Management for Multi-Core Virtualization
— System model
— vLLC and vColoring
— Cache management scheme

e Evaluation
e Conclusions

10/24

System Model

e Hypervisor: implements page coloring
e Guest OSs: may or may not have page coloring

e Partitioned fixed-priority scheduling for both the hypervisor & guest OSs
e VM = (Ul, Uy, ..t vacpu)

e VCPUv; = (C/(k),T{)
- (] (k): Execution budget with k cache colors assigned to it
- T}: Budget replenishment period
e Task T; = (Cl(k), Ti' Dl)
- C;(k): Worst-case execution time (WCET) with k cache colors assigned to it
- T;: Period
— D;: Relative deadline

11/24

EMSOFT 2016

VvLLC: Virtual Last-Level Cache

e Technique for guest OSs with page coloring (e.g., Linux/RK)
— Provides [e Virtual LLC (Last-level cache) information

* Host physical pages corresponding to the virtual LLC

Guest VM Host machine

Guest Host
® Vvirtual LLC Phy. pages Phy. pages Host LLC

Color 1 N X } Color 1
{ :\ > @ S } Color 2

Color 2 { ,\\3 »
Page coloringf , !

\

} Color 3
} Color 4

(@ virtual LLC Info W Host LLC Info
128KB size \\ 256KB size
256 sets 512 sets
16-way < 16-way
@ Colors2and 4

Guest Cache Color 1 = Host Cache Color 2, Guest Cache Color 2 = Host Cache Color 4

12/24

EMSOFT 2016

VvLLC: Virtual Last-Level Cache

e Virtual LLC information Virtualize these!

— # of cache colorsn = S/(W - P) S: cache size This is fixed
W # of ways

P: size of page frame

e Trapping and emulating cache-related operations

— x86: executions of a CPUID instruction
— ARM Cortex-A15: accesses to CCSIDR and CSSERR registers

e Limitations
— The number of cache colors is restricted to a power of two
— Cannot support a guest OS where page coloring is hard-coded

13/24

EMSOFT 2016

vColoring: Virtual Coloring of Cache

e Technique for guest OSs without page coloring support

— Re-maps guest pages to host pages for the requested cache colors

— Applicable to VMs running closed-source, proprietary guest OSs

Req.
Color 1

o

Guest VM

Task’s Page Table
Base Address

|

Guest page table traversal

r

~
Cd

@

entry

N\

entry

A\

entry

Host machine

Host physical
pages

e Color X

mapped to a

Present & user accessible PTEs

N
Tl

guest page

[Find a host page] > Colorl |<-

Page
migra

tion

Guest page tables are not changed at all
— Cache allocation is transparent to the guest OS

14/24

EMSOFT 2016

Outline

e Real-Time Cache Management for Multi-Core Virtualization

— Cache management scheme
e Evaluation
e Conclusions

15/24

EMSOFT 2016

Allocating Cache Colors to Tasks

e Two types of cache interference: Inter-VCPU & Intra-VCPU

e Simple approach 1: Complete cache partitioning (CCP)

— No cache sharing at all
— May result in poor performance due to smaller cache size

e Simple approach 2: Complete cache sharing (CCS) among tasks on the same VCPU

— No cache sharing between tasks on different VCPUs
— Bounds intra-VCPU interference with Cache-Related Preemption Delay (CRPD)
— May suffer from high CRPD

e Our approach: Controlled sharing of cache colors on each VCPU
— Goal: finds a cache-to-task allocation that minimizes taskset utilization = NP-hard
— Approximates CRPD caused by task 7; to reduce the complexity

: ’ Assuming all other tasks have been

cache T; assigned all cache colors

16/24

Desighing a Cache-Aware VM

e VM’s CPU demand
— The sum of the CPU demands of VCPUs in the VM

|—> Affected by the allocation of tasks and cache colors to VCPUs

e Our approach: Cache-aware VM designing algorithm (CAVM)

— Phase 1: Allocates cache-sensitive tasks to the same VCPU so that they can benefit
from cache sharing
e After Phase 1, each VCPU has its own taskset

— Phase 2: Derives each VCPU's CPU demands w.r.t. the number of cache colors
assigned to it
e Determines the minimum budget C/ (k) for all possible k values

17/24

EMSOFT 2016

Allocating Host Cache Colors to VMs

e Goal: determi
consolidated,

e Qur approach:

nes the number of cache colors for each VCPU of the VMs to be
while minimizing the total VM utilization

Dynamic programming o
Minimum number of cache colors

to satisfy timing constraints

(oo (unschedulable) Kk <é
Z CY;;(O'.?;,;J)
T;
v, ey
(11 , (‘f?.. , /i—]‘ﬂ’
{min (U(k) —max (9i.1) = Cil .1 H D)J ck>z
2<kI<k v, €V Ty

N

Finds the maximum utilization gain
made by additional cache colors

18/24

EMSOFT 2016

Outline

e Fvaluation

e Conclusions

19/24

EMSOFT 2016

Implementation

e Experimental setup

— X86: Intel i7-2600 four cores @ 3.4 GHz - 8 MB LLC, 32 colors

— ARM: Exynos 5422 (four Cortex-Al5 cores @ 2 GHz) 2 2 MB LLC, 32 colors
— Hypervisor: Implemented in KVM, but applicable to other hypervisors

— Guest OSs: Linux/RK, Vanilla Linux, MS Windows Embedded (x86 only)

e |[mplementation overhead

Cost (nsec
Name [tems <3G (ARI)\/[
VLLC Virtual LLC_emulation | 787 12212
Color check in GPP-to-HPP mapping 34 921
vColoring | Page migration for GPP re-mapping 2359 | 31864

20/24

EMSOFT 2016

vLLC and vColoring

e Execution times of a synthetic task

160 - . 160 -
] ——Linux/RK w/ vLLC] ——Linux/RK w/ vLLC
<140 +)) . <140 +) . .
s] ——Vanilla Linux w/ vColoring =S] ——Vanilla Linux w/ vColoring
v 120 - w120 +
S] S .
— 100 - =100 -
5] o]
5 80 1 5 80 -
o . o]
¢ 60 Y 60 -
L] Ll]
£ 40 - £ 40 -
2 20 - 2 20 -
O:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII O:||||||||||||||||||||||||||||||||
0O 4 8 12 16 20 24 28 32 0O 4 8 12 16 20 24 28 32
of cache colors # of cache colors

21/24

Cache Management Scheme

e Experimental results with random tasksets

— Quad-core, 2 VMs, 4 VCPUs per VM, 2MB LLC, 10 — 15 tasks
— Cache color reload time: 207 usec (obtained from our ARM board)

e \/M utilization w.r.t. the number of cache colors
Lower is better

3.5
c -0-0urs
% 3 -%-BFD+CCP
= - WFD+CCP
; 25 ~FFD+CCP
> -0-BFD+CCS
T 2
|9 -O0-WFD+CCS
1.5 -+-FFD+CCS

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of cache colors Our scheme yields 1.18 -

1.54x lower utilization

22/24

EMSOFT 2016

Conclusions

e Real-time cache management for multi-core virtualization

vLLC and vColoring

— Hypervisor-level techniques to control cache allocation to individual tasks
running in a virtual machine

— Evaluated with Linux/RK, vanilla Linux, and MS Embedded Windows

e Cache management scheme

— Determines cache to task allocation
Up to 1.54x

— Designs a VM in the presence of cache interference ~— I
lower utilization

— Minimizes the total utilization of VMs

—

e Future work: main memory interference in virtualization
— vColoring: applicable to DRAM bank partitioning

23/24

EMSOFT 2016

Thank You

Real-Time Cache Management for
Multi-Core Virtualization

Hyoseung Kim 12 Raj Rajkumar 2

1 University of Riverside, California

2 Carnegie Mellon University

