ECRTS 2013

Carnegie Mellon

A Coordinated Approach for

Practical OS-Level Cache Management in
Multi-Core Real-Time Systems

Hyoseung Kim
Arvind Kandhalu
Prof. Raj Rajkumar

Electrical and Computer Engineering
Carnegie Mellon University

ECRTS 2013 Carnegie Mellon

Why Multi-Core Processors?

 Processor development trend
— Increasing overall performance by integrating multiple cores

« Embedded systems: Actively adopting multi-core CPUs

 Automotive:
— Freescale i.MX6 Quad-core CPU
— Qorivva Dual-core ECU

 Avionics and defense.:
— COTS multi-core processors

— ex) Rugged Intel i7-based
single board computers

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Multi-Core CPUs for Real-Time Systems

« Large shared cache in COTS multi-core processors

Intel Core 17
' 8-15 MB L3 Cache

Freescale i.MX6
1MB L2 Cache

! LAk ﬁ)ﬁ“"

Memory Controller e

« Use of shared cache in real-time systems
— Reduce task execution time
— Consolidate more tasks on a single multi-core chip processor
— Implement a cost-efficient real-time system

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Uncontrolled Shared Cache

1. Inter-core Interference 2. Intra-core Interference

ks O Q< Tasks QUK
Cores @ @ @ @ Cores @ C2 C3 C4

private | LL | [L1] [ta] [1] Private L1 | (o] [a
Caches [L2 | | L2 || L2 | | L2 | Caches [L2] 12 L2 L2
Shared : : Shared
Cache L3 Cache L3
40% Slowdown* 27% Slowdown?*
Uncontrolled use of shared cache
- Severely degrade the predictability of real-time systems

* PARSEC Benchmark on Intel i7

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Cache Partitioning

 Page coloring (S/W cache partitioning)
— Can be implemented on COTS multi-core processors
— Provides cache performance isolation among tasks

g bits (Page size : 29)

Task virtual address | Virtual page # Page offset

Color Indexi

A

Physical address | Physical page # ! Page offset
! X y

(s+1-) bits

, | | bits |
'S bits (# of séts: 28)(cache-line: 2l)
| — ~ A\

1
~

Cache mapping Set index | Line offset

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Problems with Page Coloring (1/2)

1. Memory co-partitioning problem
— Physical pages are grouped into memory partitions
— Memory usage # Cache usage

Virtual Address Physical pages "
Space (Memory partitions) Cache partitions
-
Task T, T P S -~ Color Index0
R S - |
If 7,’s memory usage < 2 memory partitions
- Memory wastage)
(y) . ngn | | N
If T,’'s memory usage > 1 memory partition
. - Page swapping or memory pressure)

i+1 Color Index 31

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Problems with Page Coloring (2/2)

2. Limited number of cache partitions
— Results in degraded performance as the number of tasks increases
— The number of tasks cannot exceed the number of cache partitions

32 Cache partitions 32 Tasks
Color Index 0 -+ -vereererreriennie e [TaSk T1 }
CO|OI’ Index 1 [[Ta.Sk TZ 1
COolor INAEX 29 [TaSk T30
Color Index 30 [@- . TaSk T31
Color Index 31 [® TaSk ng

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Our Goals

« Challenges
— Uncontrolled shared cache: Cache interference penalties
— Cache partitioning (page coloring):
« Memory co-partitioning - Memory wastage or shortage
 Limited number of cache partitions

« Key idea: Controlled sharing of partitioned caches
while maintaining timing predictability

1. Provide predictability on multi-core real-time systems
2. Mitigate the problems of memory co-partitioning, limited partitions
3. Allocate cache partitions efficiently

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Outline

« Coordinated Cache Management
— System Model
— Per-core Cache Reservation
— Reserved Cache Sharing
— Cache-Aware Task Allocation

« Evaluation

e Conclusion

9/24

ECRTS 2013 Carnegie Mellon

System Model

- Task Model z;:(C},T;, D;, M;)
- Cip . Worst-case execution time (WCET) of task 1,
when it runs alone in a system with p cache partitions
p
- C;" Is non-increasing with p -
~ T;: Period of task t; \
- D;: Relative deadline of task t; -
B . - - 1 2 3 4 5 6
M;: MaX|_mum physical memory # of cache partitions
requirement of task t;

wC

« Partitioned fixed-priority preemptive scheduling

« Assumptions
— Tasks do not self-suspend
— Tasks do not share memory

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013

Carnegie Mellon

Coordinated Cache Management

Coordinated Cache

Management

1. Per-core Cache
Reservation

2. Reserved
Cache Sharing 1

4

3. Cache-Aware
Task Allocation

\

tioned Fixed-priority Scheduling

ded h
Tasks Egggltizs pl\g?t%grn); pgr?i(t:ioﬁs
? IO 1
7
% T [
M #
L= =&
Z

e Coloring (Cache Partitioning)

trolling the mechanisms

L

Considerations
_[2. Guaranteeing memory requirements y

rReserved cache sharing: Mitigate the problems with page coloring

1. Preserving schedulability

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Intra-Core Cache Interference

1. Cache warm-up delay
— Occurs at the beginning of each period of a task
— Caused by the executions of other tasks while the task is inactive

2. Cache-related preemption delay
— Occurs when a task is preempted by a higher-priority task
— Imposed on the preempted task

Tasks T, arrival T, arrival
T.l ;=3 | i
(High) A
4 . .)
Bounds intra-core cache interference
Our RT-test Independent of specific cache analysis used
Allows estimating WCET in isolation from others

.

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Page Allocation for Cache Sharing

« Sharing cache partitions = Sharing memory partitions
— Cache sharing can be restricted by task memory requirements
— Depends on how pages are allocated

« Our approach
— Allocate pages to a task from memory partitions in round-robin order

Virtual Address Memory partitions Cache partitions
Space
Task T P P ————— N 1]| || | Colorindex 0
T— | — | - -
O v caenes | & T

—> Bounds the worst-case memory usage in a memory partition
- Developed a memory feasibility test for cache-partition sharing

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Coordinated Cache Management

Bounded Memory Cache
Penalties partitions partitions

Tasks

Coordinated Cache
Management

1. Per-core Cache
Reservation

2. Reserved
Cache Sharing 1

4

\

3. Cache-Aware
Task Allocation

ned Fixed-priority Task Scheduling

e Coloring (Cache Partitioning)

Cache-Aware Task Allocation

—> Algorithm to allocate tasks and cache partitions to cores
[] Il —) B

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Cache-Aware Task Allocation (1/2)

* Objectives
— Reduce the number of cache partitions required for a given taskset

« Remaining cache partitions < Non-real-time tasks
Saving CPU usage

— Exploit the benefits of cache sharing

« Qur approach
— Based on the BFD (best-fit decreasing) bin-packing heuristic
« Load concentration is helpful for cache sharing

— Gradually assign caches to cores while allocating tasks to cores
« Use cache reservation and cache sharing during task allocation

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Cache-Aware Task Allocation (2/2)

E> Step 1: Each core is initially assigned zero cache partitions
« Step 2: Find a core where a task fits best

« Step 3: If not found, try to find the best-fit core for the task, assuming
each core has 1 more cache partition than before

« Step 4: Once found, the best-fit core is assigned the task and
the assumed cache partition(s)

Available cache Utilization of t; decreased (U, = C;/T)
partitions: L

7(ssigned cache partitions

A
-

Corel Core 2 Core 3 Core 4

Tasks:
(Harmonic)

Remaining
space: 0.5

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Outline

e Evaluation

e Conclusion

17/24

ECRTS 2013

Carnegie Mellon

Implementation

« Based on Linux/RK Memory Reservation
— Page pool stores unallocated physical pages
— Classifies pages into memory partitions with their color indices

Page Pool of Linux/RK Memory Reservation RT Taskset
Mem-partition header ~ Pages in Mem-partition
N :
r~ ™ Task i : Parameters
[Cache color index: 1 > -7,:(CP.T, D M,)

- Mem Reqg M; = m pages

i) - Cache indices, Core index
[Cache color index: 2 >
E Task i : CPU/Mem reserve
with cache partitions
[Cache color index: Np]% P

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013

Experimental Setup

« Target system and system parameters
— Implemented in Linux/RK (Linux 2.6)
— Intel i7-2600 quad-core processor —> N, = 4 cores
— 8 MB shared L3 cache =2 Np = 32 cache partitions
— Physical memory—[1GB -> Size of a mem-partition
(Mtotar) 2GB

— Number of tasks: n = {8,12, 16}
 Task functions are from the PARSEC benchmarks
 Mixture of cache-sensitive and cache-insensitive tasks

o ¢/ and M; for tasks are estimated ahead of time

Carnegie Mellon

32MB
64MB

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Evaluation Methodology

« Metrics
1. Cache partition usage
2. CPU utilization

« Evaluated schemes
1. BFD: Best-Fit Decreasing + Page Coloring

2. WED: Worst-Fit Decreasing + Page Coloring
* No cache patrtition sharing

3. CATA: Our scheme (Cache-Aware Task Allocation)

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Cache Partition Usage

Minimum amount of cache required to schedule given tasksets

EIBFD FAWEFD CATA *Smaller is better
g 100 7
3 80 : 755
8 60 %o é 7
o 40 *"/ % s % : y / o
S 20 % é é Z éiﬁé:::ﬁf%é:: é %
© 0 P EA 7 N/AVAA | s | Al AL

8 tasks 12 tasks 16 tasks 8 tasks 12 task 16 task
MtotaI= 1GB > MtotaI=ZGB

CATA requires 12-25% fewer cache partitions than BFD and WFD

Fewer cache partitions = Fewer memory partitions
- Mitigates the memory wastage of page coloring

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013

Carnegie Mellon

CPU Utilization

Total accumulated CPU utilization required to schedule given tasksets
— Same number of cache partitions is used (Np = 32)

EIBFD ¥AWFD CATA * Smaller is better

— 400
X
— 300 TF /:::;::-:::::-

200 —+ / e g
) - i i e
& 100) | A 4 ' é %‘
© 16-32% 35-44% 14-29% 30-38% 40- 41%
|9 0 | o I | I T | I NIT AT AN | I | I | fAn" | | ¥

8 tasks 12 tasks 16 tasks 8 tasks 12 tasks 16 tasks
Miota =1 GB S Miotar =2 GB

CATA requires 14-49% less CPU utilization than BFD and WFD

More number of tasks = Larger utilization benefit
- Mitigates the limited availability of cache partitions

our scheme { Efficient allocation of cache partitions
Mitigates the two problems with page coloring

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

ECRTS 2013 Carnegie Mellon

Conclusions

« Multi-core CPUs for real-time systems
— Uncontrolled shared cache: temporal interference among tasks
— Page coloring: memory wastage/shortage, limited partitions

 Coordinated OS-Level Cache Management
— No special H/W support, No modifications to application S/W

— Per-core cache reservation & Reserved cache sharing
« Preserves task schedulability
« Guarantees task memory requirements
— Cache-aware task allocation
« Determines efficient task and cache allocation
* Yields 9-18% improvement in utilization on real platforms

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion 23/24

ECRTS 2013 Carnegie Mellon

Linux/RK

o https://rtml.ece.cmu.edu/redmine/projects/rk/

Home Projects Help

RK

TN Activity News Wiki Forums Repository

Overview

RK (Resource Kernel) is a real-time kernel (operating system) that provides timely, &2 Members
guaranteed and enforced access to system resources for applications. The resource

kernel allows applications to specify anly their resource demands leaving the kernel Manager: Hyoseung Kim
to satisfy those demands using hidden resource management schemes. This
separation of resource specification from resource management allows OS-)
subsystem-specific customization by extending, optimizing or even replacing resource Reporter: Hyoseung Kim
management schemes. As a result, this resource-centric approach can be

implemented with any of several different resource management schemes.

What is Linux/RK?

Linux/RK stands for Linux/Resource Kernel, which incorporates real-time extensions ° 86 32/64b H

to the Linux kernel to support the abstractions of a resource kernel. Linux/RK is X It
developed by the @ Real-time and Multimedia Systems Laboratory led by & Prof. Raj

Rajkumar at & Carnegie Mellon University. Current ongoing research topics include

- core reservation ARM (Cortex-A9)

reservation for multi-core memory hierarchy (cache, DRAM banks, etc)
reservation for parallel task model
heterogeneous multi-core architectures

» Global/Partitioned scheduling
« CPU/Mem reservation

« Cache/Bank coloring

« Task profiling mechanism

Developer: Hyoseung Kim

Carnegie
Mellon
University

Motivation - Coordinated Cache Mgmt - Evaluation - Conclusion

https://rtml.ece.cmu.edu/redmine/projects/rk/

