
ECRTS 2013

A Coordinated Approach for

Practical OS-Level Cache Management in

Multi-Core Real-Time Systems

Hyoseung Kim

Arvind Kandhalu

Prof. Raj Rajkumar

Electrical and Computer Engineering

Carnegie Mellon University

ECRTS 2013

Why Multi-Core Processors?

• Processor development trend

– Increasing overall performance by integrating multiple cores

• Embedded systems: Actively adopting multi-core CPUs

• Automotive:

– Freescale i.MX6 Quad-core CPU

– Qorivva Dual-core ECU

• Avionics and defense:

– COTS multi-core processors

– ex) Rugged Intel i7-based

 single board computers

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 2/24

ECRTS 2013

Multi-Core CPUs for Real-Time Systems

• Large shared cache in COTS multi-core processors

• Use of shared cache in real-time systems

– Reduce task execution time

– Consolidate more tasks on a single multi-core chip processor

– Implement a cost-efficient real-time system

Intel Core i7

8-15 MB L3 Cache

Freescale i.MX6

1MB L2 Cache

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 3/24

ECRTS 2013

Uncontrolled Shared Cache

1. Inter-core Interference

 C1 C2 C3

L1

L2

L1

L2

L1

L2

L3

C4

L1

L2

Cores

Private

Caches

Shared

Cache

2. Intra-core Interference

C1 C2 C3

L1

L2

L1

L2

L1

L2

L3

C4

L1

L2

Cores

Private

Caches

Shared

Cache

40% Slowdown* 27% Slowdown*

Uncontrolled use of shared cache

 Severely degrade the predictability of real-time systems

Tasks Tasks

* PARSEC Benchmark on Intel i7

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 4/24

ECRTS 2013

Physical page #

Cache Partitioning

• Page coloring (S/W cache partitioning)

– Can be implemented on COTS multi-core processors

– Provides cache performance isolation among tasks

Task virtual address

Physical address

Cache mapping

Virtual page # Page offset

Page offset

Line offset Set index

g bits (Page size : 2g)

l bits

(cache-line: 2l) s bits (# of sets: 2s)

(s+ l – g) bits

Color Index

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 5/24

ECRTS 2013

Problems with Page Coloring (1/2)

1. Memory co-partitioning problem

– Physical pages are grouped into memory partitions

– Memory usage ≠ Cache usage

Color Index 0

Color Index 1

……

Color Index 29

Color Index 30

Color Index 31

Cache partitions

1

2

…
i

i+1

Task τ1

Physical pages

(Memory partitions)

Virtual Address

Space

1

2

…
i

i+1

Task τ2

……

If 𝜏2’s memory usage < 2 memory partitions

 Memory wastage

If 𝜏1’s memory usage > 1 memory partition

 Page swapping or memory pressure

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 6/24

ECRTS 2013

Problems with Page Coloring (2/2)

2. Limited number of cache partitions

– Results in degraded performance as the number of tasks increases

– The number of tasks cannot exceed the number of cache partitions

Color Index 0

Color Index 1

……

Color Index 29

Color Index 30

Color Index 31

Task τ1

Task τ2

Task τ32

32 Cache partitions

Task τ30

Task τ31

…

32 Tasks

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 7/24

ECRTS 2013

Our Goals

• Challenges

– Uncontrolled shared cache: Cache interference penalties

– Cache partitioning (page coloring):

• Memory co-partitioning  Memory wastage or shortage

• Limited number of cache partitions

• Key idea: Controlled sharing of partitioned caches

 while maintaining timing predictability

1. Provide predictability on multi-core real-time systems

2. Mitigate the problems of memory co-partitioning, limited partitions

3. Allocate cache partitions efficiently

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 8/24

ECRTS 2013

Outline

• Motivation

• Coordinated Cache Management

– System Model

– Per-core Cache Reservation

– Reserved Cache Sharing

– Cache-Aware Task Allocation

• Evaluation

• Conclusion

9/24

ECRTS 2013

System Model

• Task Model 𝜏𝑖: 𝐶𝑖
𝑝

, 𝑇𝑖 , 𝐷𝑖 , 𝑀𝑖

– 𝐶𝑖
𝑝
: Worst-case execution time (WCET) of task 𝜏𝑖,

 when it runs alone in a system with 𝑝 cache partitions

– 𝑇𝑖: Period of task 𝜏𝑖

– 𝐷𝑖: Relative deadline of task 𝜏𝑖

– 𝑀𝑖: Maximum physical memory

 requirement of task 𝜏𝑖

• Partitioned fixed-priority preemptive scheduling

• Assumptions

– Tasks do not self-suspend

– Tasks do not share memory

of cache partitions

W
C

E
T

1 2 3 4 5 6

 𝐶𝑖
𝑝
 is non-increasing with 𝑝

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 10/24

ECRTS 2013

Mechanisms for controlled sharing of

cache partitions

Policy module controlling the mechanisms

Coordinated Cache Management

Tasks

+

+

+

Bounded
Penalties

Memory
partitions

Cache
partitions

1

2

3

NP -1

NP

1. Per-core Cache

Reservation

2. Reserved
Cache Sharing

3. Cache-Aware

Task Allocation

Task Parameters

Coordinated Cache

Management

τi :(Ci

p
, Ti, Di, Mi)

Core

1

Core

2

Core

NC

…

P
a

rt
it

io
n

e
d

 F
ix

e
d

-p
ri

o
ri

ty
 S

c
h

e
d

u
li

n
g

…

…

P
a

g
e

 C
o

lo
ri

n
g

 (
C

a
c

h
e

 P
a

rt
it

io
n

in
g

)

Per-core cache reservation

 Prevent Inter-core cache interference
Reserved cache sharing: Mitigate the problems with page coloring

 Considerations 1. Preserving schedulability

 2. Guaranteeing memory requirements

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 11/24

ECRTS 2013

Intra-Core Cache Interference

1. Cache warm-up delay

– Occurs at the beginning of each period of a task

– Caused by the executions of other tasks while the task is inactive

2. Cache-related preemption delay

– Occurs when a task is preempted by a higher-priority task

– Imposed on the preempted task

 𝜏1

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t

(High)

(Low)

Time

Tasks

𝜏2
Preemption Resumption

𝜏2 arrival

𝐶1=3

𝐶2=3

𝜏1 arrival

Cache warm-up delay Cache-related preemption delay

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion

 Bounds intra-core cache interference

 Our RT-test Independent of specific cache analysis used

 Allows estimating WCET in isolation from others

12/24

ECRTS 2013

Page Allocation for Cache Sharing

• Sharing cache partitions = Sharing memory partitions

– Cache sharing can be restricted by task memory requirements

– Depends on how pages are allocated

• Our approach

– Allocate pages to a task from memory partitions in round-robin order

Color Index 0

Color Index 1

……

Cache partitions

Task τ1

Memory partitions Virtual Address

Space

 8 pages

1

2

…

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion

 4 pages from each

 Bounds the worst-case memory usage in a memory partition

 Developed a memory feasibility test for cache-partition sharing

13/24

ECRTS 2013

Coordinated Cache Management

Tasks

+

+

+

Bounded
Penalties

Memory
partitions

Cache
partitions

1

2

3

NP -1

NP

1. Per-core Cache

Reservation

2. Reserved
Cache Sharing

3. Cache-Aware

Task Allocation

Coordinated Cache

Management Core

1

Core

2

Core

NC

…

P
a

rt
it

io
n

e
d

 F
ix

e
d

-p
ri

o
ri

ty
 T

a
s

k
 S

c
h

e
d

u
li

n
g

…

…

P
a

g
e

 C
o

lo
ri

n
g

 (
C

a
c

h
e

 P
a

rt
it

io
n

in
g

)

Task Parameters

τi :(Ci

p
, Ti, Di, Mi)

Cache-Aware Task Allocation

 Algorithm to allocate tasks and cache partitions to cores

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 14/24

ECRTS 2013

Cache-Aware Task Allocation (1/2)

• Objectives

– Reduce the number of cache partitions required for a given taskset

• Remaining cache partitions Non-real-time tasks

 Saving CPU usage

– Exploit the benefits of cache sharing

• Our approach

– Based on the BFD (best-fit decreasing) bin-packing heuristic

• Load concentration is helpful for cache sharing

– Gradually assign caches to cores while allocating tasks to cores

• Use cache reservation and cache sharing during task allocation

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 15/24

ECRTS 2013

• Step 1: Each core is initially assigned zero cache partitions

• Step 2: Find a core where a task fits best

• Step 3: If not found, try to find the best-fit core for the task, assuming

 each core has 1 more cache partition than before

• Step 4: Once found, the best-fit core is assigned the task and

 the assumed cache partition(s)

𝜏4 0.2 𝜏1 0.7

Cache-Aware Task Allocation (2/2)

Core 1 Core 2 Core 3 Core 4

Tasks:

 𝜏2 0.4

𝜏3 0.3

Available cache
partitions:

𝜏1 0.7

𝜏2 0.4

𝜏3 0.3 𝜏1 0.5
𝜏4 0.2

Assigned cache partitions

Remaining

space: 0.3

Utilization of 𝜏1 decreased (Ui = Ci / Ti)

Remaining

space: 0.5 (Harmonic)

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 16/24

ECRTS 2013

Outline

• Motivation

• Coordinated Cache Management

– Task model

– Per-core Cache Reservation

– Reserved Cache Sharing

– Cache-Aware Task Allocation

• Evaluation

• Conclusion

17/24

ECRTS 2013

Implementation

• Based on Linux/RK Memory Reservation

– Page pool stores unallocated physical pages

– Classifies pages into memory partitions with their color indices

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion

Page Pool of Linux/RK Memory Reservation

Mem-partition header Pages in Mem-partition

Cache color index: 1

Cache color index: NP

…

Cache color index: 2

Task i : Parameters

 -
 - Mem Req Mi = m pages
 - Cache indices, Core index

RT Taskset

c

Task i : CPU/Mem reserve

 with cache partitions

 iii

p

ii MDTC ,,,:

18/24

ECRTS 2013

Experimental Setup

• Target system and system parameters

– Implemented in Linux/RK (Linux 2.6)

– Intel i7-2600 quad-core processor

– 8 MB shared L3 cache

– Physical memory 1GB

 2GB

– Number of tasks: 𝑛 = {8, 12, 16}

• Task functions are from the PARSEC benchmarks

• Mixture of cache-sensitive and cache-insensitive tasks

• 𝐶𝑖
𝑝
 and 𝑀𝑖 for tasks are estimated ahead of time

(𝑀𝑡𝑜𝑡𝑎𝑙)

 𝑁𝐶 = 4 cores

 𝑁𝑃 = 32 cache partitions

 Size of a mem-partition 32MB

 64MB

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 19/24

ECRTS 2013

Evaluation Methodology

• Metrics

1. Cache partition usage

2. CPU utilization

• Evaluated schemes

1. BFD: Best-Fit Decreasing + Page Coloring

2. WFD: Worst-Fit Decreasing + Page Coloring

• No cache partition sharing

3. CATA: Our scheme (Cache-Aware Task Allocation)

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 20/24

ECRTS 2013

Cache Partition Usage

• Minimum amount of cache required to schedule given tasksets

CATA requires 12-25% fewer cache partitions than BFD and WFD

N/A 0

20

40

60

80

100

8 tasks 12 tasks 16 tasks 8 tasks 12 tasks 16 tasks

C
ac

h
e

U
sa

ge
 (

%
)

Mtotal = 1 GB Mtotal = 2 GB

BFD WFD CATA * Smaller is better

Fewer cache partitions  Fewer memory partitions

 Mitigates the memory wastage of page coloring

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 21/24

ECRTS 2013

CPU Utilization

• Total accumulated CPU utilization required to schedule given tasksets

– Same number of cache partitions is used (𝑁𝑃 = 32)

N/A 0

100

200

300

400

8 tasks 12 tasks 16 tasks 8 tasks 12 tasks 16 tasks

To
ta

l C
P

U
 U

ti
l.

(%
)

BFD WFD CATA * Smaller is better

Mtotal = 1 GB Mtotal = 2 GB

CATA requires 14-49% less CPU utilization than BFD and WFD

More number of tasks  Larger utilization benefit

 Mitigates the limited availability of cache partitions

Our scheme
Efficient allocation of cache partitions

Mitigates the two problems with page coloring

 16-32% 35-44% 49% 14-29% 30-38% 40-41%

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 22/24

ECRTS 2013

Conclusions

• Multi-core CPUs for real-time systems

– Uncontrolled shared cache: temporal interference among tasks

– Page coloring: memory wastage/shortage, limited partitions

• Coordinated OS-Level Cache Management

– No special H/W support, No modifications to application S/W

– Per-core cache reservation & Reserved cache sharing

• Preserves task schedulability

• Guarantees task memory requirements

– Cache-aware task allocation

• Determines efficient task and cache allocation

• Yields 9-18% improvement in utilization on real platforms

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 23/24

ECRTS 2013

Linux/RK

• https://rtml.ece.cmu.edu/redmine/projects/rk/

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 24/24

• x86 (32/64bit)

• ARM (Cortex-A9)

• Global/Partitioned scheduling

• CPU/Mem reservation

• Cache/Bank coloring

• Task profiling mechanism

https://rtml.ece.cmu.edu/redmine/projects/rk/

