
ECRTS 2013

A Coordinated Approach for

Practical OS-Level Cache Management in

Multi-Core Real-Time Systems

Hyoseung Kim

Arvind Kandhalu

Prof. Raj Rajkumar

Electrical and Computer Engineering

Carnegie Mellon University

ECRTS 2013

Why Multi-Core Processors?

• Processor development trend

– Increasing overall performance by integrating multiple cores

• Embedded systems: Actively adopting multi-core CPUs

• Automotive:

– Freescale i.MX6 Quad-core CPU

– Qorivva Dual-core ECU

• Avionics and defense:

– COTS multi-core processors

– ex) Rugged Intel i7-based

 single board computers

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 2/24

ECRTS 2013

Multi-Core CPUs for Real-Time Systems

• Large shared cache in COTS multi-core processors

• Use of shared cache in real-time systems

– Reduce task execution time

– Consolidate more tasks on a single multi-core chip processor

– Implement a cost-efficient real-time system

Intel Core i7

8-15 MB L3 Cache

Freescale i.MX6

1MB L2 Cache

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 3/24

ECRTS 2013

Uncontrolled Shared Cache

1. Inter-core Interference

 C1 C2 C3

L1

L2

L1

L2

L1

L2

L3

C4

L1

L2

Cores

Private

Caches

Shared

Cache

2. Intra-core Interference

C1 C2 C3

L1

L2

L1

L2

L1

L2

L3

C4

L1

L2

Cores

Private

Caches

Shared

Cache

40% Slowdown* 27% Slowdown*

Uncontrolled use of shared cache

 Severely degrade the predictability of real-time systems

Tasks Tasks

* PARSEC Benchmark on Intel i7

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 4/24

ECRTS 2013

Physical page #

Cache Partitioning

• Page coloring (S/W cache partitioning)

– Can be implemented on COTS multi-core processors

– Provides cache performance isolation among tasks

Task virtual address

Physical address

Cache mapping

Virtual page # Page offset

Page offset

Line offset Set index

g bits (Page size : 2g)

l bits

(cache-line: 2l) s bits (# of sets: 2s)

(s+ l – g) bits

Color Index

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 5/24

ECRTS 2013

Problems with Page Coloring (1/2)

1. Memory co-partitioning problem

– Physical pages are grouped into memory partitions

– Memory usage ≠ Cache usage

Color Index 0

Color Index 1

……

Color Index 29

Color Index 30

Color Index 31

Cache partitions

1

2

…
i

i+1

Task τ1

Physical pages

(Memory partitions)

Virtual Address

Space

1

2

…
i

i+1

Task τ2

……

If 𝜏2’s memory usage < 2 memory partitions

 Memory wastage

If 𝜏1’s memory usage > 1 memory partition

 Page swapping or memory pressure

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 6/24

ECRTS 2013

Problems with Page Coloring (2/2)

2. Limited number of cache partitions

– Results in degraded performance as the number of tasks increases

– The number of tasks cannot exceed the number of cache partitions

Color Index 0

Color Index 1

……

Color Index 29

Color Index 30

Color Index 31

Task τ1

Task τ2

Task τ32

32 Cache partitions

Task τ30

Task τ31

…

32 Tasks

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 7/24

ECRTS 2013

Our Goals

• Challenges

– Uncontrolled shared cache: Cache interference penalties

– Cache partitioning (page coloring):

• Memory co-partitioning Memory wastage or shortage

• Limited number of cache partitions

• Key idea: Controlled sharing of partitioned caches

 while maintaining timing predictability

1. Provide predictability on multi-core real-time systems

2. Mitigate the problems of memory co-partitioning, limited partitions

3. Allocate cache partitions efficiently

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 8/24

ECRTS 2013

Outline

• Motivation

• Coordinated Cache Management

– System Model

– Per-core Cache Reservation

– Reserved Cache Sharing

– Cache-Aware Task Allocation

• Evaluation

• Conclusion

9/24

ECRTS 2013

System Model

• Task Model 𝜏𝑖: 𝐶𝑖
𝑝

, 𝑇𝑖 , 𝐷𝑖 , 𝑀𝑖

– 𝐶𝑖
𝑝
: Worst-case execution time (WCET) of task 𝜏𝑖,

 when it runs alone in a system with 𝑝 cache partitions

– 𝑇𝑖: Period of task 𝜏𝑖

– 𝐷𝑖: Relative deadline of task 𝜏𝑖

– 𝑀𝑖: Maximum physical memory

 requirement of task 𝜏𝑖

• Partitioned fixed-priority preemptive scheduling

• Assumptions

– Tasks do not self-suspend

– Tasks do not share memory

of cache partitions

W
C

E
T

1 2 3 4 5 6

 𝐶𝑖
𝑝
 is non-increasing with 𝑝

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 10/24

ECRTS 2013

Mechanisms for controlled sharing of

cache partitions

Policy module controlling the mechanisms

Coordinated Cache Management

Tasks

+

+

+

Bounded
Penalties

Memory
partitions

Cache
partitions

1

2

3

NP -1

NP

1. Per-core Cache

Reservation

2. Reserved
Cache Sharing

3. Cache-Aware

Task Allocation

Task Parameters

Coordinated Cache

Management

τi :(Ci

p
, Ti, Di, Mi)

Core

1

Core

2

Core

NC

…

P
a

rt
it

io
n

e
d

 F
ix

e
d

-p
ri

o
ri

ty
 S

c
h

e
d

u
li

n
g

…

…

P
a

g
e

 C
o

lo
ri

n
g

 (
C

a
c

h
e

 P
a

rt
it

io
n

in
g

)

Per-core cache reservation

 Prevent Inter-core cache interference
Reserved cache sharing: Mitigate the problems with page coloring

 Considerations 1. Preserving schedulability

 2. Guaranteeing memory requirements

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 11/24

ECRTS 2013

Intra-Core Cache Interference

1. Cache warm-up delay

– Occurs at the beginning of each period of a task

– Caused by the executions of other tasks while the task is inactive

2. Cache-related preemption delay

– Occurs when a task is preempted by a higher-priority task

– Imposed on the preempted task

 𝜏1

t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t

(High)

(Low)

Time

Tasks

𝜏2
Preemption Resumption

𝜏2 arrival

𝐶1=3

𝐶2=3

𝜏1 arrival

Cache warm-up delay Cache-related preemption delay

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion

 Bounds intra-core cache interference

 Our RT-test Independent of specific cache analysis used

 Allows estimating WCET in isolation from others

12/24

ECRTS 2013

Page Allocation for Cache Sharing

• Sharing cache partitions = Sharing memory partitions

– Cache sharing can be restricted by task memory requirements

– Depends on how pages are allocated

• Our approach

– Allocate pages to a task from memory partitions in round-robin order

Color Index 0

Color Index 1

……

Cache partitions

Task τ1

Memory partitions Virtual Address

Space

 8 pages

1

2

…

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion

 4 pages from each

 Bounds the worst-case memory usage in a memory partition

 Developed a memory feasibility test for cache-partition sharing

13/24

ECRTS 2013

Coordinated Cache Management

Tasks

+

+

+

Bounded
Penalties

Memory
partitions

Cache
partitions

1

2

3

NP -1

NP

1. Per-core Cache

Reservation

2. Reserved
Cache Sharing

3. Cache-Aware

Task Allocation

Coordinated Cache

Management Core

1

Core

2

Core

NC

…

P
a

rt
it

io
n

e
d

 F
ix

e
d

-p
ri

o
ri

ty
 T

a
s

k
 S

c
h

e
d

u
li

n
g

…

…

P
a

g
e

 C
o

lo
ri

n
g

 (
C

a
c

h
e

 P
a

rt
it

io
n

in
g

)

Task Parameters

τi :(Ci

p
, Ti, Di, Mi)

Cache-Aware Task Allocation

 Algorithm to allocate tasks and cache partitions to cores

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 14/24

ECRTS 2013

Cache-Aware Task Allocation (1/2)

• Objectives

– Reduce the number of cache partitions required for a given taskset

• Remaining cache partitions Non-real-time tasks

 Saving CPU usage

– Exploit the benefits of cache sharing

• Our approach

– Based on the BFD (best-fit decreasing) bin-packing heuristic

• Load concentration is helpful for cache sharing

– Gradually assign caches to cores while allocating tasks to cores

• Use cache reservation and cache sharing during task allocation

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 15/24

ECRTS 2013

• Step 1: Each core is initially assigned zero cache partitions

• Step 2: Find a core where a task fits best

• Step 3: If not found, try to find the best-fit core for the task, assuming

 each core has 1 more cache partition than before

• Step 4: Once found, the best-fit core is assigned the task and

 the assumed cache partition(s)

𝜏4 0.2 𝜏1 0.7

Cache-Aware Task Allocation (2/2)

Core 1 Core 2 Core 3 Core 4

Tasks:

 𝜏2 0.4

𝜏3 0.3

Available cache
partitions:

𝜏1 0.7

𝜏2 0.4

𝜏3 0.3 𝜏1 0.5
𝜏4 0.2

Assigned cache partitions

Remaining

space: 0.3

Utilization of 𝜏1 decreased (Ui = Ci / Ti)

Remaining

space: 0.5 (Harmonic)

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 16/24

ECRTS 2013

Outline

• Motivation

• Coordinated Cache Management

– Task model

– Per-core Cache Reservation

– Reserved Cache Sharing

– Cache-Aware Task Allocation

• Evaluation

• Conclusion

17/24

ECRTS 2013

Implementation

• Based on Linux/RK Memory Reservation

– Page pool stores unallocated physical pages

– Classifies pages into memory partitions with their color indices

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion

Page Pool of Linux/RK Memory Reservation

Mem-partition header Pages in Mem-partition

Cache color index: 1

Cache color index: NP

…

Cache color index: 2

Task i : Parameters

 -
 - Mem Req Mi = m pages
 - Cache indices, Core index

RT Taskset

c

Task i : CPU/Mem reserve

 with cache partitions

 iii

p

ii MDTC ,,,:

18/24

ECRTS 2013

Experimental Setup

• Target system and system parameters

– Implemented in Linux/RK (Linux 2.6)

– Intel i7-2600 quad-core processor

– 8 MB shared L3 cache

– Physical memory 1GB

 2GB

– Number of tasks: 𝑛 = {8, 12, 16}

• Task functions are from the PARSEC benchmarks

• Mixture of cache-sensitive and cache-insensitive tasks

• 𝐶𝑖
𝑝
 and 𝑀𝑖 for tasks are estimated ahead of time

(𝑀𝑡𝑜𝑡𝑎𝑙)

 𝑁𝐶 = 4 cores

 𝑁𝑃 = 32 cache partitions

 Size of a mem-partition 32MB

 64MB

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 19/24

ECRTS 2013

Evaluation Methodology

• Metrics

1. Cache partition usage

2. CPU utilization

• Evaluated schemes

1. BFD: Best-Fit Decreasing + Page Coloring

2. WFD: Worst-Fit Decreasing + Page Coloring

• No cache partition sharing

3. CATA: Our scheme (Cache-Aware Task Allocation)

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 20/24

ECRTS 2013

Cache Partition Usage

• Minimum amount of cache required to schedule given tasksets

CATA requires 12-25% fewer cache partitions than BFD and WFD

N/A 0

20

40

60

80

100

8 tasks 12 tasks 16 tasks 8 tasks 12 tasks 16 tasks

C
ac

h
e

U
sa

ge
 (

%
)

Mtotal = 1 GB Mtotal = 2 GB

BFD WFD CATA * Smaller is better

Fewer cache partitions Fewer memory partitions

 Mitigates the memory wastage of page coloring

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 21/24

ECRTS 2013

CPU Utilization

• Total accumulated CPU utilization required to schedule given tasksets

– Same number of cache partitions is used (𝑁𝑃 = 32)

N/A 0

100

200

300

400

8 tasks 12 tasks 16 tasks 8 tasks 12 tasks 16 tasks

To
ta

l C
P

U
 U

ti
l.

(%
)

BFD WFD CATA * Smaller is better

Mtotal = 1 GB Mtotal = 2 GB

CATA requires 14-49% less CPU utilization than BFD and WFD

More number of tasks Larger utilization benefit

 Mitigates the limited availability of cache partitions

Our scheme
Efficient allocation of cache partitions

Mitigates the two problems with page coloring

 16-32% 35-44% 49% 14-29% 30-38% 40-41%

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 22/24

ECRTS 2013

Conclusions

• Multi-core CPUs for real-time systems

– Uncontrolled shared cache: temporal interference among tasks

– Page coloring: memory wastage/shortage, limited partitions

• Coordinated OS-Level Cache Management

– No special H/W support, No modifications to application S/W

– Per-core cache reservation & Reserved cache sharing

• Preserves task schedulability

• Guarantees task memory requirements

– Cache-aware task allocation

• Determines efficient task and cache allocation

• Yields 9-18% improvement in utilization on real platforms

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 23/24

ECRTS 2013

Linux/RK

• https://rtml.ece.cmu.edu/redmine/projects/rk/

Motivation → Coordinated Cache Mgmt → Evaluation → Conclusion 24/24

• x86 (32/64bit)

• ARM (Cortex-A9)

• Global/Partitioned scheduling

• CPU/Mem reservation

• Cache/Bank coloring

• Task profiling mechanism

https://rtml.ece.cmu.edu/redmine/projects/rk/

