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Abstract

Many modern multi-core processors sport a large shared cache with
the primary goal of enhancing the statistic performance of computing
workloads. However, due to resulting cache interference among tasks,
the uncontrolled use of such a shared cache can significantly hamper the
predictability and analyzability of real-time multi-core systems.

Software cache partitioning has been considered as an attractive ap-
proach to address this issue because it does not require any hardware
support beyond that available on many modern processors. However, the
state-of-the-art software cache partitioning techniques face two challenges:
(1) the memory co-partitioning problem, which results page swapping or
waste of memory, and (2) the availability of a limited number of cache
partitions, which causes degraded performance. These are major impedi-
ments to the practical adoption of software cache partitioning.

In this paper, we propose a practical OS-level cache management
scheme for multi-core real-time systems. Our scheme provides predictable
cache performance, addresses the aforementioned problems of existing
software cache partitioning, and efficiently allocates cache partitions to
schedule a given taskset. We have implemented and evaluated our scheme
in Linux/RK running on the Intel Core i7 quad-core processor. Experi-
mental results show that our scheme prevents inter-core cache interference
and provides a safe upper bound on intra-core cache interference. In ad-
dition, compared to the traditional approaches, our scheme is up to 39%
more memory space efficient and consumes up to 25% less cache partitions
and 49% less CPU utilization in our system.

1 Introduction

The ever-increasing demands for additional software functionality have led to
the active use of multi-core processors in a wide range of platforms. Unlike tra-
ditional multiprocessor architectures, modern multi-core processors incorporate
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shared resources among cores to improve performance and efficiency. Among
them, an on-chip large shared cache has received much attention [13][14][33].
The shared cache can efficiently bridge the performance gap between memory
access latency and processor clock speed by backing up small private caches.
Each of the cores can access the entire shared cache, so a better cache hit ratio
can be statistically achieved. Tasks running on different cores can also reduce
their inter-task communication latency through the shared cache. Due to these
benefits, the size of the shared cache has become increasingly larger. For exam-
ple, the Intel Core i7 has 8MB of a shared L3 cache, and the ARM Cortex A15
architecture can have up to 4MB of a shared L2 cache.

While the use of a shared cache can reduce the average execution time of a
task, it introduces significant worst-case timing penalties due to “cache inter-
ference”. Cache interference in multi-core systems can be categorized into two
types: inter-core and intra-core. Inter-core cache interference happens when
tasks running on different cores access the shared cache simultaneously. A task
may evict the useful cache contents of another task running on a different core
during its execution. Since cache eviction that adversely affects the performance
of a running task can occur at any time, the worst-case execution time (WCET)
of the task may be potentially affected by memory accesses of all tasks running
on other cores. This makes the accurate analysis of inter-core cache interference
extremely difficult [14]. Intra-core cache interference, in contrast, occurs within
a core. When a task preempts another task, the preempting task may evict
the cache contents of the preempted task. This causes the preempted task to
experience timing penalties to refill its cache contents when it resumes execu-
tion. Also, a task may need to refill its cache at the beginning of each period,
because other tasks can corrupt the cache while the task is inactive. The tim-
ing penalties from intra-core interference can vary according to the number of
preemptions, the number and nature of tasks, and the size of the cache.

Many researchers in the real-time systems community have recognized and
studied the problem of cache interference in order to use the shared cache in
a predictable manner. Among a variety of approaches, software cache parti-
tioning, called page coloring, has been considered as an appealing approach to
address this issue. Page coloring prevents cache disruptions from other tasks by
assigning exclusive cache partitions to each task. It does not require any hard-
ware support beyond that available on most of today’s multi-core processors.
In addition, page coloring enables to obtain the effects of cache partitioning for
a real machine, which is hard to accurately estimate in simulation.

There still remain two challenging problems to be solved before page col-
oring can be used widely in multi-core real-time systems. The first problem
is the memory co-partitioning problem [20][21]. Page coloring simultaneously
partitions the entire physical memory into the number of cache partitions. If
a certain number of cache partitions is assigned to a task, the same number of
memory partitions is also assigned to that task. However, a task’s memory us-
age is not necessarily related to its cache usage. If a task requires more number
of memory partitions than that of cache partitions, the required memory parti-
tions should be assigned to the task despite its small cache usage. Otherwise,
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the task would suffer from page swapping. If a task requires more number of
cache partitions than that of memory partitions, some of the assigned memory
would be wasted. We are not aware of any previous work that has provided a
software-level solution for this problem.

The second problem is the availability of a limited number of cache parti-
tions. As the number of tasks increases, the amount of cache that can be used
for an individual task becomes smaller and smaller resulting in degraded perfor-
mance. Moreover, the number of cache partitions may not be enough for each
task to have its own cache partition. This second problem also unfortunately
applies to hardware-based cache partitioning schemes.

In this paper, we propose a practical OS-level cache management scheme
for a multi-core real-time system that uses partitioned fixed-priority preemptive
scheduling. Our scheme provides predictable cache performance and addresses
the aforementioned problems of page coloring through tight coordination of
cache reservation, cache sharing, and cache-aware task allocation. Cache reser-
vation ensures the exclusive use of a certain amount of cache for individual cores
to prevent inter-core cache interference. Within each core, cache sharing allows
tasks to share the reserved cache, while providing a safe upper bound on intra-
core cache interference. Cache sharing also significantly mitigates the memory
co-partitioning problem and the limitations on the number of cache partitions.
By using cache reservation and cache sharing, cache-aware task allocation de-
termines efficient task and cache allocation to schedule a given taskset.

Our scheme does not require special hardware cache partitioning support or
modifications to application software. Hence, it is readily applicable to com-
modity processors such as the Intel Core i7. Our scheme can be used not only
for developing a new system but also for migrating existing applications from
single-core to multi-core platforms.

Contributions: Our contributions are as follows:

• We introduce the concept of cache sharing on page coloring to counter the
memory co-partitioning problem and the limited number of cache parti-
tions. We show how pages are allocated when cache partitions are shared,
and provide a condition that checks the feasibility of sharing while guar-
anteeing the allocation of the required memory to tasks.

• We provide a response time test for checking the schedulability of tasks
with intra-core interference. We explicitly consider cache warm-up delay
as an extrinsic factor to the worst-case execution time (WCET) of a task,
which allows us to estimate the WCET less pessimistically and in isolation
from other tasks.

• Our cache-aware task allocation algorithm reduces the number of cache
partitions required to schedule a given taskset, while meeting both the
task memory requirements and the task timing constraints. We also show
that the remaining cache partitions after the allocation can be used to
save the total CPU utilization.
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• We have implemented and evaluated our scheme by extending the Linux/RK
platform [24][29] running on the Intel Core i7 quad-core processor.1 The
experimental results on a real machine demonstrate the effectiveness of
our scheme.

Organization: The rest of this paper is organized as follows. Section 2 reviews
related work and describes the assumptions and notation used in this paper.
Section 3 shows the impact of cache interference on a state-of-the-art quad-core
processor. Section 4 presents our coordinated cache management scheme. A
detailed evaluation of our scheme is provided in Section 5. Finally, we conclude
the paper in Section 6.

2 Related Work and Background

We discuss related work on cache interference and describe the assumptions and
notation used in our paper.

2.1 Related Work

Hardware cache partitioning is a technique for avoiding cache interference by
allocating private cache space to each task in a system. With cache partition-
ing, the system performance is largely dependent on how cache partitions are
allocated to tasks. Yoon et al. [33] formulated cache allocation as a MILP
problem to minimize the total CPU utilization of Paolieri’s new multi-core ar-
chitecture [25]. Fu et al. [13] proposed a sophisticated low-power scheme that
uses both cache partitioning and DVFS. In [26], the authors focused on a sys-
tem using non-preemptive partitioned scheduling and proposed a task allocation
algorithm that also allocates cache partitions. These approaches, however, as-
sume special underlying hardware cache partitioning support, which is not yet
widely available in current commodity processors [1][3][31].

Software-based page coloring is an alternative to hardware cache partition-
ing support. Wolfe [32] and Liedtke et al. [20] used page coloring to prevent
cache interference in a single-core real-time system. Bui et al. [7] focused on
improving the schedulability of a single-core system with page coloring. Page
coloring also has been studied for multi-core systems in [10][30]. Guan et al.
[14] proposed a non-preemptive scheduling algorithm for a multi-core real-time
system using page coloring. Lin et al. [21] evaluated existing hardware-based
cache partitioning schemes on a real machine via page coloring. Unfortunately,
none of these approaches provided a software method to tackle the problems of
memory co-partitioning and the limited number of cache partitions.

For single-core real-time systems, much research has been conducted on the
analysis of cache interference penalties caused by preemptions [4][9][18]. The
cache penalties are bounded by accounting them as cache-related preemption

1Intel Core i7 processors are used in not only desktop/server machines but also aerospace
and defense embedded systems [2]. In fact, Intel’s Embedded Systems Division is rather big
inside Intel.
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Figure 1: Memory to cache mapping and page coloring

delays while performing schedulability analysis. Busquets-Mataix et al. [8]
proposed a hybrid technique of cache partitioning and schedulability analysis
for a single core system. These approaches, however, are not designed to analyze
inter-core cache interference on a shared cache of a multi-core processor.

Pellizzoni et al. [27] suggested a compiler-assisted approach for cache pre-
dictability. Based on source-level user annotations, their proposed compiler
divides a program into small blocks, each of which is non-preemptively sched-
uled and prefetches all its required data into the cache before execution. This
approach can provide predictability on a private cache but not on a shared
cache.

2.2 Page Coloring

We briefly describe the background on the page coloring technique, on which
our scheme is based. The key to the page coloring technique lies in the map-
ping between cache entries and physical addresses. Figure 1 shows how a task’s
memory address is mapped to a cache entry. With paged virtual memory, every
memory address referenced by a task represents a virtual address in which the g
least significant bits are used as an offset into a page, and the remaining bits of
the virtual address are translated into a physical page number. The cache loca-
tion to store memory contents is identified by the physical address. We assume
a cache memory with 2l bytes per cache-line and 2s cache sets in this figure.
Then, the last l bits of the physical address are used as a cache-line offset, and
the preceding s bits are used as a set index into the cache. As can be seen, there
are overlapping intersection bits between the physical page number and the set
index. Page coloring uses these intersection bits as a color index which parti-
tions the cache into 2(s+l−g) cache partitions. Simultaneously, the color index
co-partitions the entire physical memory into 2(s+l−g) memory partitions. In
other words, physical memory pages with the same color index are also grouped
into a memory partition, and each memory partition corresponds to a cache par-
tition with the same color index. Since the OS can control the physical pages
and the virtual↔physical address translation, specific cache partitions can be
assigned to a task by allocating memory pages in the corresponding memory
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partitions to that task.

2.3 Assumptions and Notation

We consider a system equipped with a single-chip multi-core processor and
Mtotal MB of memory. The processor has NC identical cores running at a
fixed clock speed and a last-level cache shared among all the cores.2 We adopt
page coloring to manage the shared cache in OS software. With page coloring,
the cache is divided into NP partitions. Each cache partition is represented as
a unique integer in the range from 1 to NP . The entire memory is also divided
into NP memory partitions of Mtotal/NP MB.

We focus on systems that use partitioned fixed-priority preemptive task schedul-
ing. Tasks are ordered in the decreasing order of priorities, i.e. i < j implies
that task τi has higher priority than task τj . We assume that each task has a
unique priority and n is the lowest priority. Task τi is represented as follows:

τi = {Cpi , Ti, Di,Mi}

• Cpi : the worst-case execution time of task τi, when it runs alone in a system
with p cache partitions assigned to it. We have, d Mi

Mtotal/NP
e ≤ p ≤ NP

• Ti: the period of τi

• Di: the relative deadline of τi (Di ≤ Ti)

• Mi: the size of required physical memory in MB, which should be assigned
to τi to prevent swapping.

The minimum p for Cpi depends on Mi due to the memory co-partitioning that
page coloring causes. The possible Cpi values of task τi are assumed to be
known ahead of time. They can be measured by changing the number of cache
partitions allocated to τi. We assume that Cpi is non-increasing with p,3 i.e.

p < p′ =⇒ Cpi ≥ Cp
′

i . In the rest of the paper, Ci may be used as a simplified
representation of Cpi , when task τi’s p is obvious, or when each task is assumed
to be assigned its own p.

We also use the following notation for convenience:

• hp(i): the set of tasks with higher priorities than i

• hep(i): the set of tasks whose priorities are higher than or equal to i

• int(j, i): the set of tasks whose priorities are lower than j and higher than
or equal to i

2This corresponds to various modern multi-core processors, such as Intel Core i7, AMD
FX, ARM Cortex A15, and FreeScale QorIQ processors. In contrast, tiled multi-cores, such
as Tilera TILE64, typically do not have a shared cache, but we focus on the former type of
architecture in this work.

3Since Cp
i is non-increasing in p, it can begin to plateau at some point. At this point,

adding more cache partitions will not reduce a task’s execution time.
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Figure 2: System configuration for cache interference measurement

It is assumed that a task does not suspend itself during its execution. For
simplicity, we further assume that tasks do not share memory. Section 4.5 will
describe how our scheme can be used for tasks using shared memory.

3 Cache Interference in Multi-core Systems

We present our measurements of cache interference on a state-of-the-art quad-
core processor. Even though there is some work showing the negative effect of
cache interference [28][30], our measurements differ from them since we show
intra-core interference as well as inter-core interference. We will describe in
detail our proposed scheme to counter the cache interference in Section 4.

3.1 Inter-core Cache Interference

We first measured the impact of inter-core cache interference. Figure 2(a)
presents the system configuration we used for this measurement. The target
system is equipped with the Intel Core i7-2600 3.4GHz quad-core processor4;
each core has 32KB of data and 32KB of instruction L1 caches and 256KB of
unified L2 cache; all cores share 8MB of unified L3 cache that is inclusive. The
processor also has hardware performance counters, so L1/L2/L3 hits, the num-
ber of memory accesses (L3 misses), and the total execution time of a task were
measured as our performance metrics. We used four independent single-task
applications (streamcluster, ferret, canneal, fluidanimate) from the PARSEC
chip-multiprocessor benchmark suite [6].

Each task was configured to run with the highest real-time priority on each
core. As a baseline, we first measured the performance of each task without any
co-running tasks. Then, we executed each of the tasks on different cores simul-
taneously, to measure the impact of inter-core cache interference. Figure 3(a)
shows the performance changes of each task when it runs with co-runners rela-
tive to the case when the task is running all by itself on the multi-core platform.

4Intel Core i7 processors have been used for not only desktop/server machines but also
aerospace and defense embedded systems [2]
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(b) Intra-core cache interference

Figure 3: Performance changes due to cache interference

There is relatively little change in L1 and L2 hits because they are private caches.
However, L3 misses were noticeably higher for all tasks. Since an L3 miss costs
more than six times that of an L3 hit on this processor, the increased L3 misses
can significantly increase the execution time of tasks. For instance, the number
of L3 misses of streamcluster was increased by 112%, and its execution time
was increased by 40%. This result implies that inter-core cache interference can
severely degrade schedulability and timing predictability of multi-core real-time
systems.

3.2 Intra-core Cache Interference

We then measured the impact of intra-core cache interference on a multi-core
system. Figure 2(b) is the system configuration of the measurement. We used
the same tasks and performance metrics as in the previous section. In addition,
we used Linux/RK to specify each task’s per-period execution time and period
as 2.5 msec and 10 msec, respectively.5 At first, we measured the performance of

5The use of the same timing parameters for all tasks is for simplicity. Different results may
be obtained if different timing parameters are used.
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Figure 4: Overview of the proposed OS-level cache management

each task without any co-running tasks. Then, we ran all tasks on the first core
of the processor to measure the impact of intra-core cache interference. Since
the four tasks had the same execution time and period, they shared the CPU
time equally during the test. Figure 3(b) shows the performance changes due to
intra-core cache interference. Overall, the result is similar to the result from the
inter-core measurement. streamcluster showed the most increase in execution
time, 27%. Interestingly, L1/L2 caches are shared in this configuration, but
the changes in L1/L2 hits are comparable to those in the previous inter-core
measurement. This is because the processor’s L3 cache is inclusive and the
processor has L1/L2 hardware prefetchers, so memory contents evicted from
the L1/L2 caches may reside in the L3 cache for a while. Consequently, most
of the L1/L2 cache contents can be refilled from the L3 cache by the hardware
prefetchers. This result further confirms the importance of the last-level cache
in the performance of multi-core processors.

4 Coordinated Cache Management

In this section, we describe our proposed cache management scheme. Figure 4
shows the overview of our scheme that consists of three components: cache
reservation, cache sharing, and cache-aware task allocation. Cache reservation
ensures the exclusive use of a portion of the shared cache for each core. Cache
sharing enables sharing of cache partitions among tasks within each core. Cache-
aware task allocation combines these two components to find efficient cache and
task allocation while maintaining feasibility.
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4.1 Cache Reservation

Due to the inherent difficulties of precisely analyzing inter-core cache interfer-
ence on a multi-core processor, we reserve a portion of cache partitions for each
core to prevent inter-core cache interference. The reserved cache partitions are
exclusively used by their owner core, thereby preventing cache contention from
other cores. Per-core cache reservation differentiates our scheme from other
cache partitioning techniques that allocate exclusive cache partitions to each
task. Within each core, cache partitions reserved for the core can be shared by
tasks running on the core. This approach allows the core to execute more tasks
than the number of cache partitions allocated to that core. The execution time
of a task can potentially be further reduced by providing more cache partitions
to the task. Moreover, since the sharing of a cache partition means the sharing
of an associated memory partition, it can significantly reduce the waste of cache
and memory resources caused by the memory co-partitioning problem due to
page coloring.

Cache partitions are reserved for a core by allocating associated memory
partitions to the core. Each core manages the state of pages in its memory
partitions. When a new task is assigned to a core, the task’s memory requests
are handled by allocating free pages from the core’s memory partitions. The
appropriate number of cache partitions for each core depends on the tasks run-
ning on the core. This cache allocation will be determined by our cache-aware
task allocation, discussed in Section 4.4.

4.2 Cache Sharing: Bounding Intra-core Penalties

Suppose that a certain number of cache partitions is allocated to a core by
cache reservation. Our scheme allows tasks running on the core to share the
given partitions, but sharing causes intra-core cache interference. Intra-core
cache interference can be further subdivided into two types:

1. Cache warm-up delay: occurs at the beginning of each period of a task
and arises due to the execution of other tasks while the task is inactive.

2. Cache-related preemption delay: occurs when a task is preempted by a
higher-priority task and is imposed on the preempted task.

Previous work on cache analysis assumes that the cache warm-up delay can be
taken into account in the WCET of a task [18]. However, for a less pessimistic
and more accurate estimation, the cache warm-up delay should be considered
as an extrinsic factor to a task’s WCET. Once a task is launched, the task’s
cache is initially warmed up during the startup phase or the very first execution
of the task. Subsequent task instances do not experience any cache warm-up
delay at run-time, if the task uses its cache all by itself [20]. Conversely, if
the task’s cache is shared, the response time of the task may be increased by
other tasks, even though the task runs with the highest priority. We therefore
explicitly consider the cache warm-up delay to estimate the WCET not only
less pessimistically but also in isolation from other tasks.
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Figure 5: Cache warm-up delay and cache-related preemption delay

Figure 5 shows an example of intra-core cache interference. Consider two
tasks, τ1 and τ2; τ1 with a higher priority and τ2 with a lower priority. They
share a single cache partition. At time t, τ2 is released and warms up the
cache, because its previously loaded cache contents have been possibly evicted
by τ1. When τ1 preempts τ2, τ1 also encounters cache warm-up delay for the
same reason. After finishing the execution of τ1, τ2 continues its execution after
refilling the cache.

We formally define cache warm-up delay ω and cache-related preemption
delay γ as follows:

ωj,i =

∣∣∣∣∣∣S(j) ∩
⋃

k:k 6=j∧k∈hep(i)

S(k)

∣∣∣∣∣∣ ·∆
γj,i =

∣∣∣∣∣∣S(j) ∩
⋃

k∈int(j,i)

S(k)

∣∣∣∣∣∣ ·∆
• S(j) : the set of cache partitions assigned to τj

• ∆ : the time to refill one cache partition, which is constant and architecture-
dependent.

ωj,i is τj ’s cache warm-up delay, which is caused by the tasks belonging to hep(i)
and sharing cache partitions with τj . γj,i is the cache-related preemption delay
caused by τj and imposed on the tasks that belong to int(j, i) and share cache
partitions with τj .

Each core’s utilization with intra-core cache interference penalties, ω and γ,
can be calculated by extending Liu and Layland’s schedulability condition [22]
as follows:

U =

n∑
i=1

(
Ci
Ti

+
ωi,n
Ti

+
γi,n
Ti

)
≤ n(21/n − 1) (1)

where U is the total CPU utilization of a core. It is based on the Basumallick
and Nilsen’s technique [5], but we explicitly consider cache warm-up delay ω.
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The iterative response time test [15] can be extended as follows to incorporate
the two types of intra-core cache interference:

Rk+1
i = Ci + ωi,n +

∑
j∈hp(i)

(⌈
Rki
Tj

⌉
Cj

)
+

∑
j∈hp(i)

{
ωj,n +

(⌈
Rki
Tj

⌉
− 1

)
ωj,i

}
+

∑
j∈hp(i)

(⌈
Rki
Tj

⌉
γj,i

) (2)

where Rki is the worst-case response time of τi at the kth iteration. The test
terminates when Rk+1

i = Rki . Task τi is schedulable if its response time is before
its deadline: Rki ≤ Di. We represent the amount of ω and γ delays caused by
the execution of a higher priority task τj within the worst-case response time
Rki in the second and the third summations of (2). Note that the first execution
of a higher priority task τj within Rki causes a cache warm-up delay of ωj,n, but
the subsequent executions of τj cause ωj,i because tasks with lower priorities
than i are not scheduled while τi is running.

Figure 6 shows an example taskset {τ1, τ2, τ3} sharing a set of cache parti-
tions {1, 2}. Assume that the cache partitions are pre-assigned to tasks; S(1) is
{1, 2}; S(2) is {1}; S(3) is {2}. All tasks have the same execution time Ci = 2
and the same periods and deadlines Ti = Di = 12. The cache partition refill
time ∆ is 1 in this example. When τ1 starts its execution, it needs to refill its
two cache partitions. τ2 has one cache warm-up delay and one cache-related
preemption delay due to τ1. τ3 also has one cache warm-up delay and one
cache-related preemption delay.
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For this taskset, the response time of each task is computed as follows:

R0
1 =C1 + ω1,3 = 2 + 2 ≤ D1 = 12

R0
2 =C2 + ω2,3 = 2 + 1 = 3

R1
2 =C2 + ω2,3 + (dR

0
2

T1
eC1) + {ω1,3 + (dR

0
2

T1
e − 1)ω1,2}+ (dR

0
2

T1
eγ1,2)

=2 + 1 + (2) + {2− 0}+ (1) = 8 ≤ D2 = 12

R0
3 =C3 + ω3,3 = 2 + 1 = 3

R1
3 =C3 + ω3,3 + (dR

0
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0
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0
3

T2
eγ2,3)

=2 + 1 + (2) + {2 + 0}+ (2) + (2) + {1 + 0}+ (0)

=12 ≤ D3 = 12

4.3 Cache Sharing: How to Share Cache Partitions

We now describe how cache partitions are allocated to tasks within a core such
that schedulability is preserved and memory requirements are guaranteed de-
spite sharing the partitions. There are two conditions for a cache allocation to
be feasible. The first condition is the response time test given by Equation (2).
The factors affecting a task’s response time are as follows: (i) cache-related
task execution time Cpi , (ii) cache partition refill time ∆, (iii) the number of
other tasks sharing the task’s cache partitions, and (iv) the periods of the tasks
sharing the cache partitions. Factors (i) and (ii) are explicitly used to calculate
the response time. If factor (iii) increases or factor (iv) is relatively short, the
response time may be lengthened due to cache penalties caused by frequent
preemptions.

The second condition is related to the task memory requirements. Before
defining this condition, we show in Figure 7 an example of page allocations for
different cache allocation cases. In each case, there are four memory partitions
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Algorithm 1 MinCacheAlloc(Γj , N j
P )

Input: Γj : a taskset assigned to the core j, Nj
P : the number of available cache

partitions in the core j
Output: ϕmin: a cache allocation with the minimum CPU utilization (ϕmin = ∅, if

no allocation is feasible), minUtil: the CPU utilization of Γj with ϕmin
1: ϕmin ← ∅; minUtil← 1

2: Φ← a set of candidate allocations of Nj
P to Γj

3: for each allocation ϕi in Φ do
4: Apply ϕi to Γj

5: if Γj satisfies both Eq. (2) and Eq. (3) then
6: currentUtil← CPU utilization from Eq. (1)
7: if minUtil ≥ currentUtil then
8: ϕmin ← ϕi; minUtil← currentUtil

9: return {ϕmin,minUtil}

and one task τi. Each memory partition is depicted as a square and the shaded
area represents the memory space allocated to τi. The task τi’s memory re-
quirement Mi is equal to the size of one memory partition. If we assign only
one cache partition to τi, all pages for τi are allocated from one memory par-
tition (Case 1 in Figure 7). If we assign more than one cache partition to τi,
our scheme allocates pages to τi from the corresponding memory partitions in
round-robin order.6 Thus, the same amount of pages from each of the corre-
sponding memory partitions is allocated to τi at its maximum memory usage
(Cases 2, 3, and 4 in Figure 7). The reason behind this approach is to render
the page allocation deterministic, which is required for each task’s cache access
behavior to be consistent. For instance, if pages are allocated randomly, a task
may have different cache performance when it re-launches.

A cache partition can be shared among tasks by sharing a memory partition.
We present a necessary and sufficient condition for cache sharing to meet the
task memory requirements under our page allocation approach. For each cache
partition ρ, the following condition must be satisfied:∑

∀τi: ρ∈S(i)

Mi

|S(i)|
≤Mtotal/NP (3)

where Mi is the size of the memory requirement of τi, |S(i)| is the number of
cache partitions assigned to τi, and Mtotal/NP is the size of a memory partition.
Mi

|S(i)| represents τi’s per-memory-partition memory usage. This condition means

that the sum of the per-memory-partition usage of the tasks sharing the cache
partition ρ should not exceed the size of one memory partition. If this condition
is not satisfied, tasks may experience memory pressure or swapping.

Algorithm 1 shows a procedure for finding a feasible cache allocation with the

6If a page is deallocated from τi, the deallocated page is used ahead of never-allocated
free pages to service τi’s next page request. This enables multiple memory partitions to be
allocated at the same rate without explicit enforcement such as in memory reservation [11].
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Algorithm 2 FindBestFit(τi, NC , AT , AP )

Input: τi: a task to be allocated, NC : the number of cores, AT : an array of a taskset
allocated to each core, AP : an array of the number of cache partitions assigned to
each core

Output: cid: the best-fit core’s index (cid = 0, if no core can schedule τi)
1: space← 1; cid← 0
2: for j ← 1 to NC do
3: {ϕ, util} ← MinCacheAlloc(τi ∪AT [j], AP [j])
4: if ϕ 6= ∅ and space ≥ 1− util then
5: space← 1− util; cid← j

6: return cid

minimum CPU utilization. The algorithm first creates a set of candidate cache
allocations to be examined, which are combinations of given cache partitions
for a given taskset. Then, the algorithm checks the feasibility of each candidate
allocation by using Equation (2) and (3). Many methods can be used to generate
the candidate cache allocations, such as exhaustive search and heuristics. An
efficient way to generate candidate allocations is part of our future work.

4.4 Cache-aware Task Allocation

Cache-aware task allocation incorporates cache reservation and cache sharing
into a task allocation algorithm. It tries to reduce the number of cache partitions
required to schedule a given taskset with a given number of cores.

Cache-aware task allocation is a modification of the best-fit decreasing bin-
packing algorithm. We first explain Algorithm 2 that finds the best-fit core in
our task allocation algorithm. Once the task to be allocated is given, Algo-
rithm 2 checks whether the task is schedulable on each core and estimates the
total utilization of each core with the task. Then, it selects the core where the
task fits best.

Our cache-aware task allocation algorithm is given in Algorithm 3. Before
allocating tasks, it sorts tasks in decreasing order of their average utilization,
i.e. (

∑NP

p=1 C
p
i /NP )/Ti. The number of cache partitions for each core is set to

zero. Then, the algorithm initiates task allocation. If a task to be allocated
is not schedulable on any core and the number of remaining cache partitions
is not zero, the algorithm increases the number of each core’s cache partitions
by 1 and finds the best-fit core again, until the cache partition increment per
core exceeds NP . When the algorithm finds the best-fit core, only the best-fit
core maintains its increased number of cache partitions and other cores return
to their previous number of cache partitions.

The algorithm returns the number of remaining cache partitions along with
the task allocation and cache assignment. The remaining cache partitions can
be used for other purposes, such as for non-real-time tasks or for saving the
CPU utilization. Here, we employ a simple solution to save the CPU utilization
with the remaining cache partitions: assigning each remaining cache partition
to a core which will obtain the greatest saving in utilization when an additional
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Algorithm 3 CacheAwareTaskAlloc(Γ, NC , NP )

Input: Γ: a taskset to be allocated, NC : the number of cores, NP : the number of
available cache partitions

Output: True/False: the schedulability of Γ, AT : an array of a taskset allocated to
each core, AP : an array of the number of cache partitions assigned to each core,
NP ′ : the number of remaining cache partitions

1: Sort tasks in Γ in decreasing order of their average utilization
2: Initialize elements of AT to ∅ and AP to 0
3: for each task τi in Γ do
4: cid← FindBestFit(τi, NC , AT , AP )
5: if cid > 0 then . Found the core for τi
6: Insert τi to AT [cid]
7: Mark τi schedulable
8: continue
9: for k ← 1 to NP do . Try with k more partitions

10: for j ← 1 to NC do
11: Atmp[j]← AP [j] + k

12: cid← FindBestFit(τi, NC , AT , Atmp)
13: if cid > 0 then
14: Insert τi to AT [cid]
15: Mark τi schedulable
16: NP ← NP − k . Assign k to the core
17: AP [cid]← AP [cid] + k
18: break
19: if all tasks schedulable then
20: return {True, AT , AP , NP }
21: else
22: return {False, AT , AP , NP }

cache partition is given to it. We use this approach in our experiments when
we measure the CPU utilization with a specified number of cache partitions.

4.5 Tasks with Shared Memory

Like previous work on cache-aware response time analysis [4][18] and software
cache partitioning [20][21][34], we have so far assumed that tasks do not use
shared memory. However, recent operating systems widely use shared memory
pages, not only for inter-process communication and shared libraries, but also
the kernel’s copy-on-write technique and file caches [16]. Suppose that two tasks
share some memory segments and they are allocated to different cores. If we
apply cache sharing on each core, other tasks may experience inter-core cache
interference because the use of shared memory causes unintended sharing of
cache partitions among tasks on different cores.

We suggest one simple but effective strategy for this problem. Tasks that
share their memory are bundled together and each task bundle is allocated
together as a single task into a core. If a task bundle cannot be allocated to
a core, we assign exclusive cache partitions to the tasks in the bundle. Hence,
even if the tasks are allocated to different cores, they will not cause inter-core
cache interference to other tasks. This strategy can be integrated into our cache-
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Figure 8: Implementation of our scheme in Linux/RK

aware task allocation and be performed before allocating tasks with no shared
memory.

5 Evaluation

In this section, we evaluate our proposed cache management scheme. We first
describe the implementation of our scheme and then show the experimental
results of cache reservation, cache sharing, and cache-aware task allocation.

5.1 Implementation

We have implemented our scheme in Linux/RK, based on the Linux 2.6.38.8
kernel. To easily implement page coloring, we have used the memory reservation
mechanism [11][16] of Linux/RK. Memory reservation maintains a global page
pool to manage unallocated physical pages. In this page pool, we categorize
pages into memory partitions with their color indices (Figure 8). Each memory
partition header contains its color index as well as its core index. When a real-
time taskset is given, our scheme assigns a core index and color indices to each
task. Then, a memory reservation is created for each task from the page pool,
using the task’s memory demand and assigned color indices, and each task only
uses pages within its memory reservation during execution.

The target system is equipped with the Intel Core i7-2600 3.4GHz quad-
core processor. The system is configured for 4KB page frames and a 1GB
memory reservation page pool. The processor has a unified 8MB L3 shared
cache that consists of four cache slices. Each cache slice has 2MB and is 16-way
set associative with a line size of 64B, thereby having 2048 sets. For the entire
L3 cache to be shared among all cores, the processor distributes all physical
addresses across the four cache slices by using an on-chip hash function [3][19].7

Figure 9 shows the implementation of page coloring on this cache configuration.

7Intel refers to this technique, which is unrelated to cache partitioning, as a Smart Cache.
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Figure 9: Page coloring on the Intel i7-2600 L3 cache

Regardless of the hash function, the cache set index for a given physical address
is independent from the cache slice index. Hence, with page coloring, we can
use 211+6−12 = 32 colors and each cache partition spans the four cache slices.
Page coloring divides the L3 cache into 32 cache partitions of 256KB and the
page pool into 32 memory partitions of 32MB. The cache partition refill time
∆ in the target system is 45.3 µsec,8 which is an empirically obtained from
a cache calibration tool, as given in [23]. We used the processor’s hardware
performance counters to measure the task execution time and the L3 misses. To
reduce inaccuracies in measurement, we disabled the processor’s simultaneous
multithreading and dynamic clock frequency scaling.

5.2 Taskset

Table 1 shows four periodic tasks that we have created for the evaluation. The
task functions are from the PARSEC benchmark suite [6] and we utilize them
as representative components of complex real-time embedded applications such
as sensor fusion and computer vision in an autonomous vehicle [17]. Each task
has a relative deadline Di equal to its period Ti and a memory requirement Mi

that consequently determines the minimum required number of cache/memory
partitions p for the task. Task priorities are assigned by the deadline-monotonic
scheduling policy. Figure 10 shows each task’s per-period execution time as
the number of assigned cache partitions increases, when each of the tasks are
running alone in the system. In each sub-figure, the WCET and the average-
case execution time (Avg-CET) are plotted as a solid line and a dotted line,
respectively. The worst-case L3 misses per period are presented as a bar graph
with the scale on the right y-axis. We refer to the WCET measurement from
Figure 10 as the standalone WCET.

The taskset used in our evaluation is a mixture of cache-sensitive and cache-
insensitive tasks. We can confirm this from Figure 10. τ1 and τ3 are cache-

8The cache partition refill time is the time to fetch from memory to the L3 cache. Thus,
it is hardly affected by the fact that the Intel i7’s core-to-L3 access time varies from 26 to 31
cycles. Our WCET measurement covers such L3 access variations.
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Table 1: Taskset information
Task Ti=Di Mi Min. Cache

Name and description
τi (msec) (MB) p Sensitive
τ1 40 18 1 Yes p streamcluster: computes clustering of data

points
τ2 120 66 3 No p ferret: image-based similarity search engine
τ3 180 52 2 Yes p canneal: graph restructuring for low routing

cost
τ4 600 50 2 No p fluidanimate: simulates fluid motion for ani-

mations

sensitive tasks. The τ1’s WCET Cp1 drastically decreases as the number of cache
partitions p increases, until p exceeds 12. The number of τ1’s L3 misses also
decreases as p increases. τ3’s WCET Cp3 continuously decreases as p increases.
In terms of utilization, the difference between the maximum and the minimum
utilization of τ1 is (C32

1 − C1
1 )/T1 = 10.82%. The utilization difference of τ3

is 11.83%. On the other hand, τ2 and τ4 are cache-insensitive. The utilization
differences of τ2 and τ4 are merely 0.56% and 0.54%, respectively.

Cache Sensitivity and CPU/Memory Bound: The cache sensitivity of a
task is not necessarily related to whether the task is CPU-bound or memory-
bound. Typically, if the performance of a task is mainly limited by the speed of
the CPU, the task is considered as CPU-bound. If the performance of a task is
mainly limited by the speed of the memory access, then the task is considered as
memory-bound. Since the definition of CPU-bound and memory-bound is based
on the relative performance difference, there would be many ways to classify
tasks into either CPU-bound or memory-bound. Among a variety of ways, the
cycle-per-instruction (CPI) has been widely used to identify task characteristics.
CPI means the number of processor cycles taken by each instruction. Recent
processors incorporate the pipeline and super scalar processing techniques that
enables to dispatch many instruction per cycle and results CPI to be less than
1. However, memory access instructions cause the CPU to stall and results
CPI to be greater than 1. Hence, many researchers such as in [12] consider a
task as CPU-bound if the task’s average CPI is equal to or less than 1, or as
memory-bound if the task’s average CPI is greater than 1. From the CPI point
of view, τ3 can be considered memory-bound because its CPI ranges from 1.23
to 1.90. The other tasks can be considered CPU-bound because their CPIs are
less than 1 (τ1: 0.40 to 0.57, τ2: 0.86 to 0.90, and τ4: 0.47 to 0.50).

5.3 Cache Reservation

The purpose of this experiment is to verify how effective cache reservation is
in avoiding inter-core cache interference. We ran each task on different cores
simultaneously, i.e. τi on Core i, under two cases: with and without cache reser-
vation. Memory reservation was used in both cases. Without cache reservation,
all tasks competitively used the entire cache space. With cache reservation, the
number of cache partitions for each core was as follows: 12 partitions for Core
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(a) τ1: p streamcluster
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(b) τ2: p ferret
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(c) τ3: p canneal
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(d) τ4: p fluidanimate

Figure 10: Execution time and L3 misses of each task as the number of cache
partitions increases when running alone in the system

1, 3 for Core 2, 14 for Core 3, and 3 for Core 4. These numbers are determined
to reduce the total CPU utilization by the observation of Figure 10. The cache
partitions assigned to each core were solely used by the task on that core.

Figure 11 presents the response time and the L3 misses of four tasks with and
without cache reservation, when they ran simultaneously on different cores. In
each sub-figure, the upper graph shows the response time of each task instance
and the lower graph shows the number of L3 misses for each instance. The x-
axis on each graph indicates the instance numbers of a task. Tasks are released
at the same instance using hrtimers in Linux.

The response times of all tasks without cache reservation vary significantly
compared to the response times with cache reservation. Without cache reser-
vation, tasks compete for the L3 cache and higher worst-case L3 misses are
encountered. The correlation between response time and L3 misses is clearly
shown in Figure 11(a) and Figure 11(c). The average response time of tasks
without cache reservation may not be too high. However, the absence of cache
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Figure 11: Response time and L3 misses of tasks when each task runs simulta-
neously on different cores
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Table 2: Cache allocation to tasks with cache sharing

τi
Allocated cache WCET Estimated Response-Time
partitions S(i) (msec) NoCInt CInt

τ1 {1, 2, 3, 4, 5, 6, 7, 8} C8
1 = 11.94 11.94 12.30

τ2 {1, 2, 3} C3
2 = 13.15 25.09 25.72

τ3 {1, 2, 3, 4, 5, 6, 7, 8} C8
3 = 49.58 98.55 101.36

τ4 {4, 5, 6, 7, 8} C5
4 = 44.30 179.88 273.78

reservation contributes to poor timing predictability. The longest response time
of τ1 without cache reservation is close to its standalone WCET with 8 dedi-
cated cache partitions (C8

1 ), τ2 is close to C3
2 , τ3 is close to C10

3 , and τ4 is close
to C4

4 . Note that this cannot be obtained before profiling each of the tasks
and the taskset. The profiling may need to be re-conducted whenever a single
parameter of the taskset changes. In addition, without cache reservation, the
cache is not effectively utilized. The total number of cache partitions for the
above response times is 8 + 3 + 10 + 4 = 25. This means that 7 partitions are
wasted in terms of WCET.

With cache reservation, the response times of τ1, τ2, and τ4 do not exceed
their standalone WCET. τ3 also does not exceed its standalone WCET except
at the beginning of each hyper-period of 1800 msec. τ3 exceeds its standalone
WCET by less than 2% once in a hyper-period. However, this is not caused
by inter-core cache interference. As shown in Figure 11(c), the L3 misses of
τ3 instances are always lower than its standalone worst-case L3 misses even at
the beginning of each hyper-period, meaning that cache reservation successfully
avoids inter-core cache interference. Since all task instances start their execution
concurrently at the beginning of each hyper-period, we strongly suspect that
the response time slightly greater than the WCET is caused by other shared
resources on a multi-core processor, such as the memory controller and the bus
memory. We plan to study this as part of our future work.

5.4 Cache Sharing

We first verify the correctness of our proposed equations for estimating the re-
sponse time of a task with cache sharing. In this experiment, all tasks run on a
single core with 8 cache partitions. Table 2 shows the cache partition allocations
to the tasks by the cache-sharing technique and the estimated response time of
the tasks. The response time is estimated with two methods: “NoCInt” means
intra-core cache interference is not taken into account, and “CInt” means the
response time is calculated by Equation (2). Figure 12 illustrates the measured
response time of each task. The estimated response time values with NoCInt
and CInt are depicted as straight lines in each graph. In all tasks, the measured
response time exceeds the estimated time with NoCInt, but does not exceed
the estimated time with CInt. For τ1, the estimated response time difference
between NoCInt and CInt is solely caused by the cache warm-up delay, because
τ1 has the highest priority task and does not experience any cache-related pre-
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emption delay. This result verifies the validity of our response time test which
explicitly considers the cache warm-up delay. τ4 shows a significant 93.9 msec
difference between NoCInt and CInt. Since the estimated response time with
NoCInt is close to the period of τ3, timing penalties from intra-core cache inter-
ference make the response time exceed the period of τ3. Then, the next instance
of τ3 preempts τ4, thereby increasing the response time of τ4 significantly.

Secondly, we identify the utilization benefit of the cache-sharing technique by
comparing the total CPU utilization with and without cache sharing. Without
cache sharing, cache allocations are as follows: τ1 is assigned 1 partition, τ2 is
assigned 3 partitions, τ3 is assigned 2 partitions, and τ4 is assigned 2 partitions.
Note that this is the only possible cache allocation without cache sharing because
the number of available cache partitions is eight, which is equal to the sum of
each task’s minimum cache requirement. With cache sharing, the same cache
allocations as in the Table 2 are used. Figure 13 depicts the total CPU utilization
with and without cache sharing. The left three bars are the estimated and the
measured values without cache sharing and the right four bars are the values
with cache sharing. The utilization values with cache sharing are almost 10%
lower than the values without cache sharing. This result shows that cache
sharing is very beneficial for saving the CPU utilization. Furthermore, with
cache sharing, both the worst-case and the average-case measured utilization are
higher than the estimated utilization with NoCInt and lower than the estimated
value with CInt. This implies that Equation (1) provides a valid upper bound
on the total utilization with intra-core cache interference.

5.5 Cache-aware Task Allocation

We now evaluate the effectiveness of our cache-aware task allocation (CATA)
algorithm. Note that it is not appropriate to compare CATA against previous
approaches such as in [33][26][14], since (i) they do not consider the task memory
requirements, which is essential to prevent page swapping when page coloring is
used, and (ii) they focus on different scheduling policies, such as non-preemptive
scheduling. Hence, for comparison, we consider the best-fit decreasing (BFD)
and the worst-fit decreasing (WFD) bin-packing algorithms. Each of BFD and
WFD is combined with a conventional software cache partitioning approach.
Before allocating tasks, BFD and WFD evenly distribute NP cache partitions to
all NC cores and sort tasks in decreasing order of task utilization with dNP /NCe
cache partitions. During task allocation, they do not use cache sharing.

The system parameters used in this experiment are as follows: the number of
tasks n = {8, 12, 16}, the number of cores NC = 4, the number of available cache
partitions NP = 32, and the size of total system memory Mtotal = {1024, 2048}
MB. To generate more than the four tasks in Table 1, we have duplicated the
taskset such that the number of tasks is a multiple of four.

We first compare in Figure 14 the minimum number of cache partitions re-
quired to schedule a given taskset under BFD, WFD, and CATA. The y-axis
represents the cache partition usage as a percentage to NP , for ease of com-
parison. CATA schedules given tasksets by using 16% to 25% and 12% to 19%
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less cache partitions than BFD and WFD, respectively. All algorithms consume
more cache partitions when Mtotal = 1024, compared to when Mtotal = 2048,
due to the task memory requirements. BFD fails to schedule a taskset with 16
tasks when Mtotal = 1024 but schedules the taskset when Mtotal = 2048. We
next compare the memory space efficiency of the algorithms at their minimum
cache partition usage. The memory space efficiency in our context is the ratio
of the total memory usage of tasks to the size of allocated memory partitions,
computed as (

∑
Mi)/{(Mtotal/NP )×(# of allocated memory partitions)}. Fig-

ure 15 shows the memory space efficiency. CATA is 25% to 39% and 14% to
35% more memory space efficient than BFD and WFD, respectively. Since BFD
and WFD suffer from the memory co-partitioning problem, they exhibit poor
memory space efficiency. On the other hand, CATA shows 97% of memory space
efficiency when n = 8 and Mtotal = 1024, meaning that only 3% of slack space
exists in the allocated memory partitions. Lastly, we compare in Figure 16 the
total accumulated CPU utilization required to schedule given tasksets under
BFD, WFD, and CATA when all cache partitions are used. CATA requires
29% to 44% and 14% to 49% less CPU utilization than BFD and WFD, respec-
tively. The utilization benefit of CATA becomes larger as the number of tasks
increases. This is because CATA utilizes cache sharing but BFD and WFD suf-
fer from the availability of a limited number of cache partitions. Based on these
results, we therefore conclude that our scheme efficiently allocates cache parti-
tions to tasks and significantly mitigates the memory co-partitioning problem
and the availability of a limited number of cache partitions.

6 Conclusions

In this paper, we have proposed a coordinated OS-level cache management
scheme for a multi-core real-time system. While providing predictable perfor-
mance on architectures with shared caches across cores, our scheme addresses
the two major challenges of page coloring: the memory co-partitioning problem
and the availability of only limited number of cache partitions. Our scheme
also yields a very noticeable utilization benefit compared to the traditional ap-
proaches. Our experimental results show the practical impact of our proposed
schemes on a multi-core platform. Our scheme can be used not only for develop-
ing new multi-core real-time systems but also for migrating existing applications
from single-core to multi-core platforms.

Our work focused on interference due to the presence of a shared cache,
which in turn can cause significant degradation in the predictable run-time
performance of a multi-core real-time system. However, there also exist other
factors contributing to unexpected timing penalties in a multi-core system, such
as memory bank conflicts and memory bus contention. We plan to study these
issues in the future.
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Figure 12: Response time of tasks with cache sharing on a single core
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Figure 13: Total CPU utilization with and without cache sharing
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Figure 14: Minimum amount of cache required to schedule given tasksets
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Figure 16: Total CPU utilization required to schedule given tasksets
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