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ABSTRACT With the increasing complexity of recent autonomous platforms, there is a strong demand to
better utilize system resources while satisfying stringent real-time requirements. Embedded virtualization is
an appealing technology to meet this demand. It enables the consolidation of real-time systems with different
criticality levels on a single hardware platform by enforcing temporal isolation. On multi-core platforms,
however, shared hardware resources, such as caches and memory buses, weaken this isolation. In particular,
due to the resulting cache interference, a large last-level cache in recent processors can easily jeopardize
the timing predictability of real-time tasks due to cache interference. While researchers in the real-time
systems community have developed solutions to tackle this problem, existing cache management schemes
reveal two major limitations when used in a clustered multi-core embedded system. The first is the cache
co-partitioning problem, which can lead to wrong cache allocation and cache underutilization. The second
is the cache interference of inter-virtual-machine (VM) communication because prior work has considered
only independent tasks. This paper presents a cluster-aware real-time cache allocation scheme to address
these problems. The proposed scheme takes into account the cluster information of the system, and finds
the cache allocation that satisfies the timing and memory requirements of tasks. The scheme also maximizes
slack time to meet task deadline, which brings flexibility and resilience to unexpected events. Tasks using
inter-VM communication are also provided with guaranteed blocking time and cache isolation. We have
implemented a prototype of our scheme on an Nvidia TX2 clustered multi-core platform and evaluated the
effectiveness of our scheme over cluster-unaware approaches.

INDEX TERMS Cache interference, clustered multi-core platforms, real-time systems, embedded virtual-
ization, real-time hypervisor, partitioning hypervisor, real-time resource management.

I. INTRODUCTION
Embedded system virtualization offers an opportunity to sig-
nificantly reduce space, power, and cost requirements by con-
solidating multiple systems into a single hardware platform.
It also simplifies retrofitting legacy systems as it causes only
minimal or no change in application software and avoids the
need for rigorous re-certification processes. Fault isolation,
intellectual property protection, and license segregation are
additional benefits virtualization can bring. These features of
embedded virtualization are particularly beneficial in smart
and autonomous systems for automotive, avionics, robotics,
and defense applications.

The associate editor coordinating the review of this manuscript and
approving it for publication was Michele Magno.

For the success of embedded virtualization in safety-critical
domains, ensuring predictable real-time performance is one
of the key requirements. In particular, partitioning hyper-
visors, such as Jailhouse [1], QuestV [27], and Qplus-
Hyper [25], have established a strong foundation for this
purpose. They address the problems of complex hierarchical
scheduling and timing analysis issues by strict partitioning of
CPU and memory, and offer real-time performance close to
native systems. They can also satisfy the increasing demand
for mixed-criticality support, by co-hosting high-critical sys-
tems, e.g., certified real-time OS, together with low-critical
systems, e.g., Linux and Android, on the same platform.
However, these properties are maintained only in an ideal
hardware platform. Shared hardware resources on recent
multi-core platforms, such as a last-level cache (LLC) and a
memory bus, can introduce a significant amount of temporal
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interference among real-time workloads, e.g., up to 12×
slowdown in a quad-core machine [16]. Without considering
these issues, the requirement of timing predictability cannot
be fully satisfied even on partitioning hypervisors.

Cache interference, which is the timing penalty caused
by contention on an LLC, has been studied extensively in
native multi-core real-time systems [17], [31], [38], [40].
They use an OS-level cache partitioning technique, called
page coloring, to explicitly manage the cache allocation of
tasks in software. Recently, the technique has been extended
to the virtualization environment [21], [23] such that it is
possible to allocate a portion of the LLC to individual tasks
running within a virtual machine (VM). However, all these
real-time cachemanagement schemes have focused on homo-
geneous multi-core processors. In recent clustered multi-core
embedded platforms, such as Nvidia TX2 and ODROID
XU4, cluster-unaware page coloring-based techniques may
cause significant cache wastage and memory requirement
violation due to the cache co-partitioning problem, which we
will discuss in Section II.

In addition, existing real-time cache management tech-
niques assume that each task is independent of each other and
involves no interaction with other tasks. However, in embed-
ded virtualization, tasks running in different VMs often need
to communicate to achieve their goals. Shared memory-based
inter-VM communication [9] is widely used for this pur-
pose due to its efficiency. To prevent race conditions and
achieve bounded blocking time, one may consider adopting
a virtualization-aware real-time locking mechanism [24] for
inter-VM communication, but it does not solve the prob-
lem of cache interference when tasks access shared memory
regions.

In this paper, we propose a cluster-aware cache allocation
scheme to simultaneously address the problems of cache
management and inter-VMdata communication in a real-time
partitioning hypervisor. Our scheme explicitly considers the
cluster structure and per-cluster LLC information of target
multi-core processors, and finds cache allocation that guar-
antees task schedulability, maximizes slack time, and sat-
isfies memory requirements. In addition, tasks involved in
inter-VM communication are provided with bounded block-
ing time and cache performance isolation for shared memory
access. We have implemented a prototype of our scheme
on an Nvidia TX2 embedded platform and evaluated our
scheme with randomly-generated tasksets. To the best of our
knowledge, this is the first work to address real-time cache
management in clustered multi-core systems and the first
work to ensure cache isolation in shared memory-based inter-
VM communication.

The contributions of this work are built upon findings from
our prior work on cluster-unaware cache management [17],
[21], [23], [38] and cache-unaware critical sections [19], [24].
This paper extends these efforts by simultaneously addressing
the two distinct challenges in a recent clustered multi-core
system with a partitioning hypervisor. Detailed technical dif-
ferences from prior work are discussed in Section VI.

FIGURE 1. Nvidia TX2 clustered multi-core platform.

The rest of the paper is organized as follows. Section II
reviews the background for our work. Section III describes
our system model, notation, and assumptions. Section IV
presents our cluster-aware cache allocation scheme.
Section V provides detailed evaluation. Section VI reviews
related work, and Section VII concludes the paper.

II. BACKGROUND
This section gives a brief description of the execution envi-
ronment and the page coloring technique, and discusses
the cache co-partitioning problem that occurs in a clustered
multi-core system.

A. EXECUTION ENVIRONMENT
1) CLUSTERED MULTI-CORE ARCHITECTURES
This work specifically considers a clustered multi-core archi-
tecture, where each cluster has one or more CPU cores with
an LLC shared among these cores. Due to the success of the
ARM’s big.Little architecture, this clusteredmulti-core archi-
tecture is prevalent in recent embedded platforms. A good
example is an Nvidia TX2 processor illustrated in Figure 1.
It has two clusters, Denver and Cortex A57. The Denver
cluster has twoCPU cores and a shared L2 cache of 2MB. The
Cortex A57 cluster has four CPU cores and a shared L2 cache
of 2MB.

Since each cluster has its own LLC, cache interference
does happen among tasks running on different clusters.
Within each cluster, cache interference can fall into two types:
inter-core and intra-core cache interference [17]. Inter-core
cache interference is hard to be upper-bounded because mul-
tiple tasks on different cores can simultaneously compete
for the LLC at any time. In contrast, intra-core cache inter-
ference can be bounded as cache-related preemption delay,
which accounts for the amount of cache evictions caused by
preemption. Hence, we will focus on preventing inter-core
interference by cache allocation and taking into account
cache-related preemption delay in schedulability analysis.

At the platform level, there also exist other resources
shared among CPU cores. Such resources often require
mutual exclusive access to prevent data corruption and unex-
pected behavior. Shared memory regions for inter-VM com-
munication belong to this category. Tasks running on different
clusters may communicate each other, e.g., RTOS tasks on
the Denver cluster and Linux tasks on the A57 cluster of the
TX2 platform, and no more than one task should be allowed

VOLUME 7, 2019 128629



Y. Lim, H. Kim: Cache-Aware Real-Time Virtualization for Clustered Multi-Core Platforms

FIGURE 2. Physical address to cache mapping under page coloring.

access a shared memory region at a time. Real-time syn-
chronization and locking protocols [24], [34]–[36] have been
developed to ensure mutual exclusion and bounded blocking
time in a multi-core environment.

2) PARTITIONING HYPERVISOR
Many embedded hypervisors have been developed follow-
ing the real-time hierarchical scheduling structure. In this
structure, each virtual CPU (VCPU) of a VM is assigned
a set of timing parameters, such as CPU budget, budget
replenishment period, and resource supply policy. Hence,
the timeliness of tasks running in a VM is affected by the
timing parameters of the corresponding VCPUs. It is also
often considered to pack multiple VCPUs to a single PCPU
to improve resource utilization at the cost of increased (but
still bounded) response time.

On the other hand, partitioning hypervisors [1], [2],
[27], [37] take a simple but strict temporal isola-
tion approach. Instead of time-sharing a single physical
CPU (PCPU) among multiple VCPUs, they assign only
one VCPU to PCPU and there is a one-on-one mapping
between VCPUs and PCPUs. This approach can eliminate
the scheduling penalty caused by conventional hierarchical
scheduling, e.g., VCPU budget depletion and preemption.
If we ignore any runtime overhead caused by virtualization,
they can offer the same scheduling behavior as in the native,
non-virtualized environment. This is particularly appealing
to safety-critical domains requiring guaranteed short latency.
As the core count of embedded processors keeps increasing,
partitioning hypervisors are expected to be used in a broader
range of applications.

B. PAGE COLORING
Page coloring is an OS-level software-based technique that
works for a physically-indexed set-associative cache. Note
that LLCs in most of the recent architectures belong to this
category. Page coloring uses the mapping between cache set
indices and physical memory addresses. Figure 2 shows an
example. Some bits of the physical page number are used
to determine the cache set index. Using these bits, page
coloring identifies the cache mapping of physical pages and
partitions the cache into n cache partitions. The number of
cache partitions, n, is determined by:

n = (LLC size)/(# of ways× page frame size)

Page coloring simultaneously partitions the entire physical
memory into nmemory partitions. The allocation of a specific
cache partition to a task is done by allocating physical pages

FIGURE 3. Page coloring in a clustered multi-core system.

in the corresponding memory partition to that task. If a task
needs more than one cache partitions, physical pages from
the corresponding memory partitions can be allocated in a
round-robin manner to even the memory usage per partition
and to achieve determinism [17]. Due to this coupled nature
of cache and memory partitions, it is important to allocate
enough cache partitions to tasks in order to satisfy their
memory requirements.

Standard page coloring does not work within a VM due
to the additional address translation layer introduced by
the hypervisor. Recent work [21] proposed techniques,
called vLLC and vColoring, to enable page coloring within
a VM. With this technique, each task or a group of
tasks in a VM can be allocated the host machine’s cache
partitions.

C. CACHE CO-PARTITIONING PROBLEM
In a clustered multi-core platform, page coloring partitions
the LLCs of all clusters at the same time. If each cluster
has a different LLC, it may result in a different number of
cache partitions for each cluster. Figure 3 gives an exam-
ple of a two-cluster multi-core system with page coloring.
The LLC of Cluster 2 has a smaller number of cache sets,
thereby yielding a smaller number of cache partitions than
Cluster 1. Interestingly, a single physical page is mapped to
each of the LLCs because page coloring relies on themapping
between physical addresses and cache sets. Hence, if a cache
allocation scheme is unaware of cluster information, it may
choose either the cache-partition counts of Cluster 1 or 2, and
generate wrong cache allocation.

Even if all clusters have the same type of LLCs, the system
may suffer from a cache underutilization issue. For exam-
ple, consider two tasks running on two different clusters,
each with 4 cache partitions ({1, 2, 3, 4}). A cluster-unaware
scheme would allocate a distinct set of cache partitions to
each task to avoid cache interference, e.g., {1, 2} and {3, 4}.
However, the two tasks do not cause cache interference with
each other and the rest cache partitions on each cluster are
unnecessarily left unused. It is desired to utilize all cache
partitions on each cluster to reduce task response time and
help meet the deadline. This problem cannot be easily solved
by modeling each cluster as a standalone system because
the physical pages corresponding to cache partitions are
tied across clusters. Doing so may cause memory overbook-
ing and fail to provide the required amount of memory to
tasks.
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III. SYSTEM MODEL
Our system model considers a clustered multi-core sys-
tem with the last-level cache (LLC) structure described in
Section II-A. The system has a set of CPU clusters, L, and
each cluster L ∈ L has one or more CPU cores. Each cluster
has its own LLC that is shared among all CPUs within that
cluster. In line with the design of recent clustered embedded
processors, e.g., Nvidia TX2, we assume that CPUs within
the same cluster are identical, but CPUs in different clusters
may use different architectures or run at different clock speed.
The LLC is divided into cache partitions by page coloring.

The system hosts multiple guest virtual machines (VMs),
each of which has one or more virtual CPUs (VCPUs).
Following the concept of partitioning hypervisors described
in Section II-A, each VCPU is fully assigned one physical
CPU (PCPU). Each VM is assumed to be homogeneous; thus,
the VCPUs of a VM are assigned to one cluster in the system.
In other words, a single VM cannot be assigned across more
than one cluster, but multiple VMs can be assigned to a single
cluster as long as there are enough PCPUs. VCPU-to-PCPU
allocation is statically given and is unchanged at runtime in
order not to cause unexpected timing delay. Guest operating
systems (OSs) running in VMs use partitioned fixed-priority
preemptive scheduling for task scheduling, which is widely
used in practical real-time applications. Hence, each task is
assigned to one VCPU and does not migrate to another one.

A. TASK MODEL
This paper considers tasks following the sporadic task
model [32] with constrained deadlines. This means that a task
releases its job in a recurrent manner and each job execution
should be done by the deadline. Each task τi is characterized
by the following parameters:

τi := (Ci(k),Ti,Di,Mi)

• Ci(k): The worst-case execution time (WCET) of a sin-
gle job of τi when k cache partitions of its cluster are
assigned to it.

• Ti: the minimum time interval between any two con-
secutive job releases of τi (also called the minimum
inter-arrival time).

• Di: the relative deadline of each job τi (Di ≤ Ti).
• Mi: the maximum memory requirement of τi in bytes.

Note that Ci(k) does not include any external cache-
or scheduling-induced interference (e.g., preemption) from
other tasks. The sum of the τi’s WCET and such extrinsic
interference forms the response time of τi, and the task τi
is said schedulable if its worst-case response time is smaller
than or equal to Di. As done in the literature [21], [31], [40],
Ci(k) can be obtained by measurement or static analysis tools
and is assumed to be a monotonically decreasing function of
k . As shown in [3], monotonic over-approximation in WCET
values can easily satisfy this assumption. The parameter Mi
indicates the amount of physical memory required by a task
τi. If less than Mi bytes of memory is available for τi, it may
experience page swapping or be terminated in the middle of

execution, thereby making it unschedulable. Each task τi has
a unique priority πi, which can be easily achieved by arbitrary
tie-breaking.

B. INTER-VM COMMUNICATION AND CRITICAL SECTIONS
Some tasks may include codeblocks for inter-VM data com-
munication using shared memory. In our system model, each
shared memory region among VMs is protected by a lock
for mutual exclusion, and any task that attempts to access
the shared memory region must acquire the lock. With this
notion, task execution time is decomposed as follows:

Ci := (Ci,1,Ei,1,Ci,2,Ei,2, ...,Ei,ei ,Ci,ei+1)

whereCi,j and Ei,j are theWCET of the j-th normal-execution
and critical-section segments, respectively, and ei is the num-
ber of critical sections. Each segment execution time, e.g.,
Ci,1 and Ei,1, is also a function of the number of cache
partitions but we omitted it here for the ease of presentation.
We will specifically denote that parameter when it is needed.

We assume that locks and critical sections are managed
by vMPCP [24], which is the virtualization-aware version
of the well-known Multiprocessor Priority Ceiling Protocol
(MPCP) [35], [36]. In the partitioning hypervisor environ-
ment where the entire budget of one PCPU is dedicated to
a single VCPU, vMPCP and MPCP behave the same except
that vMPCP provides system primitives for inter-VM lock-
ing. Under MPCP and vMPCP, a task waiting for a lock is
suspended and inserted to thewaiting queue of that lock. If the
lock is released, the highest-priority task in the lock’s waiting
queue acquires the lock and enters the corresponding critical
section. The priority of the lock-holding task is immediately
boosted to πB+πk , where πB is the base priority level greater
the normal priority of any task in th system and πk is the
highest normal priority of any task using that lock. The task
recovers its normal priority as soon as it releases the lock.

IV. CLUSTER-AWARE CACHE ALLOCATION
This section presents our proposed cluster-aware cache allo-
cation scheme. We first assume that tasks do not have any
inter-VM data communication, i.e., no critical section, and
give the details of the allocation algorithms. We then relax
this assumption by extending our scheme.

A. TASK SCHEDULABILITY ANALYSIS
Before introducing our cache allocation scheme, we will
review the task schedulability analysis that our algorithms
use. As mentioned, we consider tasks with no critical section
first. Hence, ei = 0 for all task τi.
We check the schedulability of a task τi based on the

recursion-based response-time test given in [21]:

Rn+1i = Ci(k)+
∑

τh∈V (τi)∧πh>πi

⌈
Rni
Th

⌉
(Ch(k)+ γ ) (1)

where Rni is the worst-case response time of τi at the nth

iteration,V (τi) is the VCPU of τi, πi is the priority of τi, and γ
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is the cache-related preemption delay (CRPD). The test starts
with R0i = Ci and terminates when Rn+1i = Rni or R

n+1
i > Di.

The task τi is schedulable if Rn+1i ≤ Di. For simplicity,
we assume that all tasks on the same VCPU share all k cache
partitions assigned to that VCPU. Thus, the same k parameter
is used forCi andCh. The CRPD is given by γ = k ·1, where
1 is the maximum time to refill one cache partition with data
from memory. If the LLC uses a write-back policy,1 should
include the extra memory access time to handle dirty cache
lines [21]. To reduce the amount of CRPD, one may consider
per-task cache allocation and CRPD analysis, e.g., [10], [17],
which can also be used with our algorithms presented in the
next subsection.

B. CACHE ALLOCATION
In many practical applications, it is good to have sufficient
slack time so that even under unexpected interference or
workload surges, tasks have higher chances to satisfy their
deadlines. Such slack time can also be used for executing
non-real-time tasks or for cooling down the processor. To bet-
ter represent the relative importance of each task’s slack,
we define the weighed worst-case slack time of a task τi as
follows:

Si =
Di − Ri
Ti

·
πi

n
(2)

where n is the total number of tasks in the system and πi is
the priority level of τi. Eq (2) uses task period and relative
priority order as normalized weights. Recall that each task is
assumed to have a unique priority. Thus, there are n distinct
priority levels and the second term of the equation gives the
normalized priority order of τi. In the first term, the numerator
is the worst-case slack of τi. It is then divided by the task
period Ti to obtain the normalized slack of τi. With this,
we can compare each task’s slack time in a quantitative
manner. The weighted slack of a VCPU vj is given by:

Svj =
∑
τi∈vj

Si (3)

C. GOAL
The goal of our cache allocation scheme is to maximize slack
time (and thus minimize response time) as long as the system
resources permit.

1) WEIGHTED SLACK OF VCPU
To do so, we first present Algorithm 1 that derives each
VCPU’s weighted slack with respect to the number of cache
partitions. This algorithm takes the target VCPU vi and the
number of cache partitions available to that VCPU. If vi has
no cache partition, tasks on vi cannot execute and the resulting
slack is set to−∞. The algorithm then iterates from one to the
maximum number of cache partitions. For k cache partitions,
the algorithm checks if all tasks of vi are schedulable by
using Eq (1) (line 3). If so, the slack time of vi with k cache
partitions, Svi (k), is obtained. It also checks the memory usage

Algorithm 1 VcpuWeightedSlack(vi,Ncache)
Input: vi: VCPU, Ncache: the number of available cache

partitions
Output: Svi and MP

v
i

1: Svi (0)←−∞
2: for k ← 1 to Ncache do
3: if schedulable(vi, k) then
4: Svi (k)←

∑
τj∈vi Sj(k)

5: MPvi (k)← d
∑
τj∈vi

Mj

k e

6: else
7: Svi (k)←−∞
8: end if
9: if Svi (k) < Svi (k − 1) then
10: Svi (k)← Svi (k − 1)
11: MPvi (k)← MPvi (k − 1)
12: end if
13: end for
14: return Svi (0...Ncache), MP

v
i (0...Ncache)

of vi per memory partition, MPvi . At line 5, the numerator
within the ceiling function gives the total memory usage
of all tasks and it is divided by the number of cache (thus
memory) partitions. This memory usage per partition which
will be used later by another algorithm. From lines 9 to 12,
the algorithm ensures Svi (k) to be a monotonic increasing
function. Finally, Svi and MPvi are returned. The time com-
plexity of Algorithm 1 is bounded by O(Ncache · |0v|), where
|0v| denotes the number of tasks per VCPU.

2) CACHE ALLOCATION TO VCPUS
Once the set of weighted slack values is obtained for each
VCPU, we can now determine the number of cache partitions
for eachVCPU.Algorithm 2 presents our cluster-aware cache
allocation algorithm that maximizes the overall slack time
while satisfying the memory requirements of tasks. For each
cluster L, the algorithm first determines ML , which is the
maximum amount of physical memory available to be used
by L. It is a fraction of the total memory availability Mtotal ,
and is computed as the proportion of the cumulative memory
requirements of VCPUs in L to those in the entire system.
Note that MPvi (1) is precomputed by Algorithm 1 for all
VCPUs. The number of cache partitions in L is Ncache. Other
clusters may have a different number of cache partitions
depending on their LLC structures. The algorithm then finds
kmini for each VCPU vi, where kmini is the minimum number
of cache partitions required for non-negative valid slack time,
i.e., Svi (k

min
i ) ≥ 0. The sum of all kmini , z, gives the minimum

number of cache partitions needed to schedule all VCPUs in
the cluster L. (line 5). If there are not enough cache partitions
in L, then the algorithm returns fail.

At line 9 of Algorithm 2, ki,z denotes the number of cache
partitions assigned to vi when z cache partitions are given.
The algorithm assigns kmini to ki,z because this is the only
schedulable allocation with z partitions. Using these, the total
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Algorithm 2 ClusterAwareCacheAlloc(L,Mtotal)
Input: L: a set of clusters, Mtotal : the amount of system

memory available for real-time tasks
Output: Success or Fail
1: for all L ∈ L do
2: ML ← Mtotal ·

∑
vi∈L

MPvi (1)∑
vj∈LMP

v
j (1)

/* max cluster memory */

3: Ncache← # of caches in the cluster L
4: Find kmini for each VCPU vi ∈ L
5: z←

∑
vi∈L k

min
i

6: if Ncache < z then
7: return Fail
8: end if
9: ∀vi ∈ L : ki,z← kmini
10: SL(z) ←

∑
vi∈L S

v
i (ki,z) /* total weighted slack

*/
11: /* maximize SL with remaining cache partitions */
12: for p← z+ 1 to Ncache do
13: Find SL(p) using Eq. (5). and Alg. 3
14: ∀vi ∈ L : ki,p ← # of partitions assigned to vi for

SL(p)
15: end for
16: /* final check for memory size validity */
17: if Alg. 3 is Invalid for {ki,Ncache} then
18: return Fail
19: end if
20: end for
21: return Success

weighted slack of the cluster L for z cache partitions, SL(z),
is obtained (line 10).

Starting from line 12, the algorithm maximizes the total
weighted slack, SL , by utilizing remaining cache partitions
in the cluster L. Suppose that, for q given cache partitions,
ki,q cache partitions have been assigned to a VCPU vi. Since
the slack of vi, Svi (k), is monotonically increasing with k , any
additional cache partition to vi will give either zero or positive
gain in the slack. Let ESvi (α, q) denote the amount of extra
slack time obtained by assigning α additional cache partitions
to vi:

ESvi (α, q) = Svi (ki,q + α)− S
v
i (ki,q) (4)

Using these properties, we can find SL(p = z+ 1) by

SL(z)+max
vi∈L

ESvi (1, z)

and SL(p = z+ 2) by

max(SL(z)+max
vi∈L

ESvi (2, z), SL(z+ 1)+max
vi∈L

ESvi (1, z+ 1)).

This can be generalized to any p > z as follows:

SL(p) = max
z≤x<p

(
SL(x)+max

vi∈L
ESvi (p− x, x)

)
(5)

This recurrence can be solved by dynamic programming. The
algorithm uses it at line 13 to find the maximum SL(p).

Algorithm 3 MemoryUsageCheck(L, {k ′i,p},ML)

Input: L: a cluster, {k ′i,p}: a set of the number of cache parti-
tions of each VCPU vi when a total of p cache partitions
of L are used, ML : the maximum memory size available
for tasks in L

Output: Valid or Invalid
1: MPvmax ← maxvi∈L MP

v
i (k
′
i,p)

2: Mused ← MPvmax × p /* total memory used by VCPUs
*/

3: if Mused > ML then
4: return Invalid
5: end if
6: return Valid

FIGURE 4. Physical memory usage of VCPUs on three clusters.

In addition, it is important to check if the memory require-
ments of tasks are satisfied while determining cache alloca-
tion to VCPUs. Algorithm 3 is the function performing this
check for a given cluster L with cache allocation k ′i,p to each
VCPU vi. It first finds MPvmax , the maximum per-partition
memory usage among all VCPUs of L. It is multiplied by p,
which is the total number of cache partitions used, to upper
bound the total memory usage of the cluster L (Mused ).
IfMused exceeds the maximum available memory of the clus-
ter L (ML), then the function returns invalid. The reasoning
behind pessimistically upper-bounding the cluster memory
usage, i.e., Mused = MPvmax × p, is to facilitate the mem-
ory usage analysis of clusters with different cache-partition
counts. Figure 4 gives the example of three CPU clusters,
each with a different number of cache partitions. Since page
coloring divides physical memory into the same number of
memory partitions, the size of eachmemory partition is differ-
ent in all three clusters, which makes it complex to precisely
compare the memory usage of individual VCPUs located
in different clusters. Hence, we take this upper-bounding
approach to simplify the memory check procedure.

For each cache configuration considered by Eq.(5),
we check the validity of the resulting memory usage by using
Algorithm 3, and discard any configuration that is invalid
with respect to thememory requirements. Once the remaining
cache allocation is done, Algorithm 2 checks thememory size
validity of the final cache allocation ({ki,Ncache} in line 17) and
updates Mused .

The time complexity of Algorithm 2 is bounded by O(|L| ·
(Ncache)2 · |L|2), where |L| is the number of clusters and |L|
is the number of VCPUs per cluster.
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D. CACHE ISOLATION FOR INTER-VM DATA
COMMUNICATION
We now relax our assumption that tasks do not have any
critical section for shared memory-based inter-VM data com-
munication. As discussed in Section II, accessing shared
memory can cause cache interference to other tasks. In order
to prevent such interference and achieve cache performance
isolation, we propose to assign a separate set of cache par-
titions to each shared memory region. This can be done by
creating a shared memory region using the physical pages
corresponding to the cache partitions separately assigned.
These cache partitions are not used by any normal execution
segments of tasks, and are not shared among different shared
memory regions. Therefore, this approach ensures that while
a task on one VCPU is accessing a critical section, tasks on
other VCPUs do not experience any cache interference.

The analysis given in Eq. 1 should be extended to consider
critical sections. Based on the MPCP and vMPCP analy-
sis [24], [26], we present an extended schedulability test that
considers both cache-related preemption delay and blocking
time caused by critical sections:

Rn+1i = Ci(k)+ Bli + B
r
i

+

∑
τh∈V (τi)

⌈
Rni + Jh
Th

⌉
(Ch(k)+ γ ) (6)

where Bli and Bri are local and remote blocking time,
respectively, and Jh is the term to capture the dynamic
self-suspending behavior of high-priority tasks accessing
critical sections [6]. Jh is given by:

Jh =

{
Wh − Ch(k) : if eh > 0
0 : otherwise

where eh is the number of critical sections of τh. The terms Bli
and Bri can be obtained directly by the analysis in [24], [26].
Bli is given by:

Bli = (ei + 1) ·
∑

τl∈V (τi)∧πl<πi

max
1≤u≤el

El,u(k ′)

where k ′ is the number of cache partitions corresponding to
the critical section El,u. Bri is given by:

Bri =
∑

1≤j≤ei

Bri,j

Bri,j = max
πl<πi∧

R(τl,u)=R(τi,j)

Wl,u +
∑

πh>πi∧
R(τh,u)=R(τi,j)

(d
Bri,j
Th
e + 1)Wh,u

Wl,u = El,u(k ′)+
∑

τx∈V (τl )

max
1≤y≤ex∧πx,y>πl,u

Ex,y(k ′′)

where R(τl,u) is the index of the shared memory region
accessed by the u-th critical section of τl , and πl,u is the
priority ceiling of the u-th critical section of τl .
There may exist many approaches to determine the num-

ber of cache partitions for each shared memory region.

Here we present two simple approaches that can be used
together with the cache allocation scheme presented in the
previous subsection. The first approach is to assign the mini-
mum cache partitions which are just enough to satisfy the size
requirement of a sharedmemory region. If thememory region
is shared among only the VCPUs within the same cluster,
the number of cache partitions can be easily computed by
k = dMr/(ML/p)e, where Mr is the memory requirement
of the shared region r , ML is the total amount of memory
available for the cluster, and p is the total number of cache
partitions of the cluster. If the memory region is also shared
with the VCPUs of other clusters, the actual number of cache
partitions for the shared region in each cluster may differ
because the clusters may have different partition counts.
Hence, the lowest cache partitioning granularity (smallest
partition counts) among the clusters should be chosen and
this granularity needs to be used for allocation. The second
approach is to assign more cache partitions to those accessed
by cache-sensitive critical sections. This approach can begin
with finding out the minimum number of cache partitions
(based on the first approach) and then increase cache par-
titions one at a time until the system becomes schedulable.
These two approaches for cache allocation to shared memory
regions can be done before executing Algorithm 2. We will
explore in the evaluation section the impact of critical sections
and their allocated cache size on task schedulability.

V. EVALUATION
This section first presents the prototype implementation of
our scheme on an Nvidia TX2 platform and our measure-
ments of cache interference. It then shows our experimental
results with randomly-generated tasksets.

A. IMPACT OF CACHE INTERFERENCE
1) PROTOTYPE IMPLEMENTATION
We have used Virt/RK [22] as a partitioning hypervisor in
order to construct an open-source based evaluation environ-
ment. Virt/RK is a real-time multi-core virtualization frame-
work, originally developed as an extension to the Linux KVM
hypervisor for x86 and 32-bit ARMv7 machines. It sup-
ports virtualization-aware multiprocessor synchronization
and page coloring techniques, vMPCP [24] and vLLC [21],
respectively. While Virt/RK supports real-time hierarchical
scheduling interfaces, we configured it to follow the schedul-
ing structure of the partitioning hypervisor discussed in
Section II.We also used the vLLC implementation of Virt/RK
for cache allocation to tasks running in VMs.

Our target hardware, Nvidia TX2, has two clusters of 64-bit
ARMv8 Cortex A57 and Denver cores. We used Tegra L4T
R28.2.1, Linux kernel v4.4.38, and QEMU v2.12.1 (latest as
of Aug 8, 2018) as the baseline for our implementation. Since
Virt/RK was only available for old Linux kernels (v3.8),1 we
have ported the Linux kernel and KVM part of Virt/RK to

1The source code of the original Virt/RK implementation is available at
http://rtml.ece.cmu.edu/redmine/projects/rk/.
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our baseline version. The major change conducted was for
supporting the 64-bit ARMv8 architecture. Since both Cortex
A57 and Denver cores of TX2 are in ARMv8, this was a
mandatory step for our work. QEMU performs device emu-
lation for KVM-based virtualization which Virt/RK is built
upon. Hence, we have also modified the QEMU emulation
code of AAach64 system registers required for vLLC and
made miscellaneous changes to QEMU for Virt/RK resource
configurations.

2) EXPERIMENTAL SETUP
On Nvidia TX2, each cluster has a shared L2 of 2 MB with
16-way associativity and 2048 cache sets. This gives 32 cache
partitions per cluster. During all experiments, we disabled the
dynamic clock frequency scaling of the processor to reduce
measurement inaccuracies. Processor clock frequencies are
fixed to either 1.4 GHz or 2.0 GHz depending on experimen-
tal settings.

We used a total of two VMs, each assigned to a different
cluster. The first VM has four VCPUs. In accordance with
a partitioning hypervisor, each VCPU of the first VM is
allocated to exactly one Cortex A57 CPU core with 100% of
budget. The second VM has two VCPUs and each allocated
to one Denver core. Each VM is assigned all the 32 cache
partitions of the corresponding cluster. On the host side,
the QEMU process and VCPU threads are assigned real-time
priorities, which prevents unexpected delays from indispens-
able system services that could not be disabled. For the guest
OS, we have used Linux/RK [18] based on the kernel v4.4.38.

3) RESULTS
In a multi-core environment, the major amount of cache
interference happens among tasks running on different phys-
ical cores. Hence, we measure the impact of cache inter-
ference on TX2. For the Cortex-A57 VM, we execute
four instances (tasks) of the latency program [44] on
four different VCPUs simultaneously. latency traverses a
randomly-ordered linked list and its execution time is highly
dependent on memory access time. The working set size of
latencywas configured to 1MB to make it cache sensitive.
For the Denver VM, two latency tasks are run on two
different VCPUs. Then, we measure the execution time of
the task running on the first VCPU (v1) to capture cache
interference caused by other tasks. When cache partitioning
and allocation are not used (Baseline), all the four tasks share
the 32 cache partitions of the corresponding cluster. Next,
to check the effect of cache isolation, we manually assigned
31 private cache partitions to the task on v1, and let the three
other tasks share the remaining 1 partition.

The execution time results of the task on v1 are shown
in Figure 5. The results are normalized to the case when it
runs in isolation with all 32 cache partitions. As can be seen,
the amount of cache interference is significant. We observed
almost 5× increase in task execution time on the Cortex
A57 cluster running at 2 GHz and 3× increase on the Denver
cluster at 2 GHz. In other words, when the system is suffering

FIGURE 5. Execution time of a cache-sensitive task on Nvidia TX2 while
other interfering tasks are executing on different cores simultaneously.

TABLE 1. Parameters for taskset generation.

from cache interference due to the lack of cache isolation,
it may be better to use just a single CPU core rather than turn-
ing on other cores! With cache partitioning and allocation,
the execution time is almost unaffected; only 1% increase
on A57 and 9% on Denver. These results of this experiment
clearly show that cache interference can be very significant
in clustered multi-core platforms like Nvidia TX2, and cache
partitioning and allocation are effective in preventing cache
interference in real-time virtualization.

B. BENEFIT OF PROPOSED ALGORITHM
1) TASKSET GENERATION
We used randomly-generated tasksets to evaluate the benefit
of our cache allocation scheme. Table 1 shows the base
parameters used in the experiment. These parameters are
based on those used in other prior work [17], [21], [34].
To generate a WCET function (Ci(k)) for each task τi, we use
the method given in [8]. This method first calculates a cache
miss rate for given cache size, neighborhood size, locality,
and task memory usage, by using the analytical cache behav-
ior model proposed in [39]. It then generates an execution
time with the calculated cache miss rate, the timing delay
of a cache miss, and the number of memory accesses. With
this method, we were able to generate WCETs with different
cache sensitivities. Then, the total taskset utilization is split
into n random-sized pieces, where n is the total number of
tasks. The size of each piece represents the utilization of the
corresponding task when one cache color is assigned to it.
The period of a task τi is calculated by dividing Ci(1) by
its utilization. Once a taskset is generated, they are evenly
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FIGURE 6. Percentage of schedulable tasksets as the number of cache
partitions increases.

FIGURE 7. Percentage of schedulable tasksets with respect to the size of
available system memory.

distributed to two clusters, each of which has four VCPUs.
The priorities of tasks are assigned by the Rate-Monotonic
(RM) [29] scheduler. For tasks using inter-VM data com-
munication, we considered one critical section per task and
assumed a single shared memory region for all such tasks to
impose higher blocking delay.

2) RESULTS
We compared our cluster-aware scheme with two recent
cache allocation schemes, CAVM [21] and CaM [51], which
are both cluster-unaware. It is worth noting that the two
existing schemes also have other features, e.g., VMparameter
design in CAVM and bandwidth allocation in CaM, but we
limit our focus to their cache allocation part. While imple-
menting CAVM and CaM, we made three changes to enable
comparison with our work. First, since CAVM and CaM do
not consider task memory usage, we implemented them such
that they check the memory requirements of tasks by using
Algorithm 3 after completing the entire allocation process.
Second, schedulability during cache allocation is checked by
Eq. (1). Third, tasks are pre-allocated to VCPUs based on the
worst-fit decreasing (WFD) heuristic, and in accordance with
our system model, they cannot be moved to other VCPUs
during cache allocation. Besides, since CAVM and CaM do
not consider inter-VM communication and critical sections,
we used only the tasks with no critical section here. Experi-
mental results with tasks using inter-VM communication will
be shown later.

Figures 6, 7, and 8 illustrate the comparative results
of the cluster-aware (Ours) and the two cluster-unaware
schemes (CAVM and CaM) under different settings. In each
graph, the y-axis indicates the percentage of schedulable

FIGURE 8. Percentage of schedulable tasksets in the presence of
additional delay in task execution time.

FIGURE 9. Percentage of tasksets with memory violations.

tasksets2 (higher is better), and the results are obtained using
the schedulability analysis given by Eg. (1). As can be
seen, our cluster-aware scheme significantly outperforms the
cluster-unaware approach in all three cases. The main reason
for such a large difference is that our scheme utilizes the
LLCs of the given clusters efficiently by using the dynamic
programming approach given in Eq. (5). The improvement is
particularly high in Figure 7, with upto 84% point and 60%
point higher schedulability than CaM and CAVM, respec-
tively. This is due to that memory budget is tight in this figure,
but our scheme keeps track of memory usage during cache
allocation and find an allocation that does not lead to memory
violation. The issue of memory violation will be presented
later with another experiment. Figure 8 considers the addi-
tional delay to task execution time, which may happen due
to various reasons such as unexpected overload and impre-
cise WCET estimation. In this figure, the amount of delay
on the x-axis is applied to the highest-priority task in each
taskset. As the amount of delay increases, the difference in
schedulability between ours and the other schemes becomes
larger. This is because the slack time made by our scheme
adds tolerance to such additional delay. We will assess the
slack time achieved by our work in later experiments.

The proposed cluster-aware scheme is designed to tackle
the cache co-partitioning problem that causes cache under-
utilization and memory violation issues. In order to evaluate
the effectiveness of the proposed scheme, the two issues need
to be checked. We first show in Figure 9 the percentage of
tasksets that experience memory violations (lower is bet-
ter). Since memory violation is one of the two reasons to
make a taskset unschedulable (the other is deadline viola-

2A schedulable taskset means all tasks in this taskset are guaranteed to
meet their deadlines.
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FIGURE 10. Reduction in the worst-case response time by our scheme.

tion), the results of this figure can be compared with those
in Figure 7 to understand the negative impact of memory
violation. As can be observed from the two figures, the major-
ity of unschedulable tasksets in Figure 7 are due to memory
violations and our scheme achieves higher schedulability by
significantly reducing the occurrence of memory violations.

Unlikememory violation, the exact degree of cache utiliza-
tion is difficult to measure. If we simply compare the number
of cache partitions used by tasks, the proposed scheme can be
reported to outperform CAVM and CaM by L times, where L
is the number of clusters. This is because CAVM and CaM
do not distinguish cache partitions with the same partition
index from different clusters, and treat them as the same cache
partition. Even if the same number of cache partitions are
used, the resulting effect may vary depending on how the
cache partitions are assigned to tasks.

We therefore introduce two metrics that can indirectly
check the effectiveness of our work in cache utilization.
The first metric is the improvement of our scheme in the
worst-case response time (WCRT) over CAVM and CaM.
This can be checked by comparing the WCRT of each task
under all three schemes and averaging the WCRT reduction
of our scheme. The second is the amount of utilization slack,
which can be obtained by subtracting the final taskset uti-
lization from the given processor utilization. Note that both
metrics should be measured only from the tasksets that are
schedulable by all the schemes because it is not possible to
compare correct WCRT and utilization values for unschedu-
lable tasksets. The results for these two metrics are shown
in Figures 10 and 11 (higher is better in both). The WCRT
improvement and utilization slack of our scheme become
larger as more cache partitions are available. This means that
our scheme utilizes cache partitions more effectively than
the other schemes, thereby contributing to solving the cache
underutilization issue. Based the results, we conclude that
our scheme yields substantial benefits in mitigating the cache
co-partitioning problem in clustered multi-core systems.

Next, we have examined the impact of tasks using
inter-VM communication under our scheme. The results are
obtained using Eq. (6) and shown in Figure 12. Four differ-
ent numbers of cache partitions are used for the inter-VM
shared memory region and the corresponding critical sec-
tions. Assigningmore cache partitions to inter-VMcommuni-
cation means that the execution time of critical sections can

FIGURE 11. Utilization slack with respect to the number of cache
partitions.

FIGURE 12. Percentage of schedulable tasksets where tasks use inter-VM
data communication (Ncache = 32).

be reduced but fewer cache partitions are available for the
normal execution segments of tasks. Hence, for example, with
8 cache partitions for inter-VM communication, the system
yields the lowest schedulability among all the four caseswhen
the percentage of inter-VM tasks is low, but the highest when
the percentage of such tasks exceeds 25%.

The proposed scheme is developed primarily for use in
static cache allocation. The allocation algorithm can run
offline or during the initialization phase of the system, and
the running time of the algorithm does not affect the runtime
behavior of real-time tasks. Nonetheless, it is interesting to
check the running time of the algorithm, which is reported
in Figure 13. It was implemented in C++with a single thread
and the running time was measured on the Cortex A57 core
of Nvidia TX2 running at 1.4GHz. As can be seen, while
the running time increases with the number of tasks, it is
acceptably small even in an embedded platform. Thus, it can
be potentially applicable to runtime systems.

VI. RELATED WORK
A. CACHE MANAGEMENT
With cache partitioning, system performance is largely
affected by how cache partitions are allocated to tasks. This
has motivated developing cache allocation algorithms for
various objectives, such as multi-core scheduling [43], [50],
[51], non-preemptive tasks [15], [33], low-power manage-
ment [13], and mixed-criticality systems [40], [45], [46].
Specifically, [51] is the latest work on cache allocation for
real-time tasks scheduled in multi-core systems. It presents
a variant of the bin-packing heuristics to allocate tasks
and memory bandwidth to cores, in addition to cache
allocation. While it uses the same scheduling policy
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FIGURE 13. Running time of the proposed scheme on TX2 (A57@1.4GHz).

(partitioned scheduling) as in our work, it does not aim to
minimize response time and to tackle the memory require-
ments of tasks. Hence, a system can be fragile to additional
delays and suffer from memory violations, as shown in our
experimental results. More importantly, it does not consider
the cache co-partitioning problem in clustered multi-core
systems.

Many researchers have studied system software issues
in cache management. Wolfe [41] and Liedtke et al. [28]
used page coloring to for uniprocessor real-time systems.
Bui et al. [8] focused on improving task schedulability
when page coloring is used for uniprocessor systems. Man-
cuso et al. [31] proposed the Colored Lockdown technique
that combines page coloring and cache lockdown to bet-
ter keep the frequently accessed pages of tasks in a cache.
Page coloring has been also used for general-purpose multi-
core systems [11], [42]. Valsan et al. [49] studied additional
delay caused by miss status holding registers in non-blocking
caches. Kim et al. [48] considered cache interference caused
by shared libraries and proposed to replicate some of the
libraries which are read only. However, due to the nature of
replication, it is not applicable to shared data regions in our
work.

While all the aforementioned approaches (both allocation
algorithms and systems support) have been developed for a
non-virtualized environment, there also exist some studies for
a virtualized environment. Researchers [27], [30], [47] have
developed software-based cache management in a hyper-
visor to allocate cache partitions to virtual machines, but
their approaches cannot perform task-level cache allocation.
Motivated by this, Kim and Rajkumar [21] proposed vLLC
and vColoring, which enable task-level cache allocation in a
virtualization environment. All of these approaches, however,
are cluster-unaware approaches, meaning that they are subject
to the cache co-partitioning problem. Xu et al. [52] developed
cache-aware compositional analysis for virtualized compo-
nents with hybrid EDF scheduling. It assumes each core has
a private cache; hence, it can potentially benefit from the
cache allocation of our work. vCAT [53] is a dynamic cache
allocation technique for virtualization based on Intel’s Cache
Allocation Technology (CAT). Our work is different in that
it is independent of specific hardware features and applicable
to most embedded processors like ARM.

This paper addresses the above limitations by extend-
ing our own prior efforts [17], [21], [23], [38]. We clarify

the technical differences between this paper and our ear-
lier work. Reference [17] focuses on cache partitioning in
a non-clustered multi-core system with no virtualization.
It presents a bin-packing heuristic to allocate caches to
tasks and tasks to cores. On the other hand, this work
presents a cache allocation algorithm based on dynamic pro-
gramming and does not rely on the bin-packing heuristic.
Reference [21] proposes hypervisor-level cache allocation
techniques, and [23] is an extended journal version with
additional discussions on implementations and experiments.
However, they do not consider the cache co-partitioning prob-
lem of a clustered multi-core system and the cache inter-
ference issue of shared-memory-based inter-VM communi-
cation, which are the main concerns of this paper. Refer-
ence [38] presents techniques to partition both shared cache
and DRAM banks in a non-clustered, no-hypervisor envi-
ronment. For cache allocation, it uses complete partitioning,
meaning that even the tasks on the same core do not share
any cache partition and suffer from low cache utilization.
The disadvantage of the complete cache partitioning has been
reported in [21], [46], and this work allows cache sharing
among tasks on the same core at the cost of cache-related
preemption delay.

B. LOCKING AND TASK SYNCHRONIZATION
Real-time locking and task synchronization have been exten-
sively studied in the literature. The Multiprocessor Priority
Ceiling Protocol (MPCP) [26], [35], [36] is a well-known
technique to offer bounded blocking time on accessing shared
resources in partitioned fixed-priority multi-core systems.
MPCP has been extended to virtualization [24] and access
control for shared hardware accelerators, such as graphics
processing units (GPUs) [7], [20], [34]. The Multiprocessor
Stack-based Resource Policy (MSRP) [14] is an extension of
the uniprocessor SRP [5] for resource sharing under parti-
tioned EDF scheduling. The FlexibleMultiprocessor Locking
Protocol (FMLP) [7] supports both partitioned and global
EDF scheduling. There also exist prior studies conducted
for a hierarchical scheduling environment. The Hierarchical
Stack Resource Policy (HSRP) [12] is developed for unipro-
cessor systems and uses budget overrun and payback mech-
anisms to limit priority inversion. The Rollback Resource
Policy (RRP) [4] uses a rollback mechanism to avoid a
lock-holding task to be blocked while holding a lock. In the
context of virtualization, vMPCP [24] is the first technique
developed for real-time tasks running in multi-core virtual
machines. However, all these techniques have assumed no
cache interference, which is addressed in our work with
the consideration of clustered architectures. Specifically, our
work extends the schedulability analysis of [24], [26] to
capture cache interference in critical sections and evaluates
the impact of cache allocation for shared-memory-based
inter-VM communication.

VII. CONCLUSION
In this paper, we proposed a real-time cache management
scheme for partitioning hypervisors in clustered multi-core
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systems. Our work is motivated by the two critical issues:
cache underutilization and memory violation caused by the
co-partitioning of last-level caches in clustered architectures,
and cache interference caused by shared memory regions
in inter-VM communication. Our scheme simultaneously
addresses these two issues, and provides bounded response
time andminimized slack time.We have examined the impact
of cache interference on a recent Nvidia TX2 platform and
evaluated the effect of our scheme.

Intelligent autonomous platforms, such as unmanned aerial
vehicles (UAVs), are expected to be more prevalent in future
safety-critical application domains. Embedded hypervisor
technologies coupled with predictable real-time resource
management can be effectively used for developing complex
embedded systems with safety and reliability guarantees.
We are currently developing a new type-1 partitioning hyper-
visor, called EARTH, with a particular focus on its use in
safety-critical UAV platforms. The proposed cluster-aware
cache management techniques will be integrated into this
hypervisor and the practical aspects of the hypervisor will
be investigated in the context of UAVs with self-adjusting
maneuvers. There also exists plenty of interesting research
topics in this area, such as GPU, power and thermal manage-
ment, and we plan to tackle these issues in the future.
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