

EBV: Electronic Bee-Veterinarian for Principled Mining and Forecasting of Honeybee Time Series

Mst Shamima Hossain¹

Christos Faloutsos²

Boris Baer¹

Hyoseung Kim¹

Vassilis Tsotras¹

¹University of California, Riverside; ²Carnegie Mellon University, Pittsburgh

Registration and travel support for this presentation was provided by the Society for Industrial and Applied Mathematics

- Motivation & Background
- Method & Technical Solution
- Empirical Evaluation
- Conclusion

Motivation & Background

- Method & Technical Solution
- Empirical Evaluation
- Conclusion

Motivation

System

Hive temperature gives valuable information about hive health.

Core Area (Near brood nest area) Most Important!

Peripheral Area (Near honey storage area)

Think of hive core temperature as human body temperature....

Change in thermoregulation ability = 1st order response to stressors

Problem Statement

G3: Forecast

SDM 24

Related Work

SDM 24

C2: Effective • In line with Future high accuracy Present Discontinuity $\Delta s_c = -82\%$ C3: Explainable $\Delta s_{\rm h} = -55\%$ Cemperature (⁰C)

Θ(t)Strong

Timeticks (t)

MS. Hossain et al.

 $\nabla^2 \theta \propto \partial \theta / \partial t$

Contributions : EBV

Addresses limitations of prior work

- Thermal diffusion
- Control Theory

• Forecasting with

- Hive strength parameter
- State discontinuity detection

SDM 24

C4: Scalable

- Linear with input size
- **C5:** Informative domain experts

log(No. of time ticks)

- Motivation & Background
- Method & Technical Solution
- Empirical Evaluation
- Conclusion

Dataset & Experimental Setup

Peripheral Area (Near honey storage area) Core Area (Near brood nest area)

Riverside, California, USA (Aug'21 - Sep'21) *Challenge:* Very hot climate → Severely stressed hives *Probable Solution:* Add ice cubes on top of hives

Recorded Temperature Data

Core Temperature Varies More in Control Hives !!

Overview of Proposed Method : EBV

MS. Hossain et al.

UCR

Carnegie

Mellon University

EBV_{model} for Reconstruction & Forecasting UCR Carnegie Mellon Universit $\begin{array}{ll} \theta_{ext}(t) + \theta_{adj}(t) - 2\theta(t) &- s_c \theta(t) & \text{if } \theta_{ext}(t) \ge 0 \\ \theta_{ext}(t) + \theta_{adj}(t) - 2\theta(t) &+ s_h \theta(t) & \text{otherwise} \end{array}$ Heat Flows Cooling : Strength, s_c $\nabla^2 \theta \propto \partial \theta / \partial t$ **Set Point :** Θ_{ideal} Heating : Strength, s_h Environment Env. Hive **Control Theory: Physics:** 'Split' P-Controller **Thermal Diffusion** *Hive Temp.* \propto *Required bees' work Env. Temp.* \propto *Hive Temp.*

Segmentation Algorithm : EBV_{fit&cut} (1/2)

Hypothesis: Bees' strength will not change (*segment*) unless there are any stressors (*cut-point*).

Q: How to find segments and cut-points?

A: (a) *Occam's Razor:* Simple & Accurate(b) *Greedy Algorithm:* Fast Execution

S1: Represent the sequence with no cuts (m=0) & one set of params (p=3)

SDM 24

Outline

- Motivation & Background
- Method & Technical Solution
- Empirical Evaluation

- Q1 Effective: (a) Forecasting (G3) & (b) Event Detection (G2)
- Q2 Explainable: (a) Event Detection (G2) & (b) Treatment Effect (G2)
- Q3 Scalable: Linear on input size
- Q4 Informative: Observation coincides with experts (G2)
- Conclusion

Q1(a) Effective: Forecasting (G3)

Timeticks (t)

Carnegie Mellon University UCR Q1(a) Effective: Improved Accuracy (G3) **Control Hive Treated Hive** Forecast Error (RMSE) 2.0 1.5 21% **49%** 1.0 0.5 0.0 ARX ARX Seasonal ARX Holt Winters EBV Holt Winters EBV DeepAR Seasonal ARX DeepAR

Carnegie Mellon University UCR Q1(a) Effective: Improved Accuracy (G3) **Treated Hive Control Hive** Forecast Error (RMSE) 2.0 1.5 EBV wins!! 1.0 0.5 ARX Seasonal ARX Holt Winters EBV Holt Winters EBV Seasonal ARX DeepAR AR Deep

Q2(b) Explainable: Treatment Effect (G2)

Q4 Informative (G2: 1/3)

Observation (1): Heating is easier than cooling $(s_h > s_c)$

Observation (2): *Bees in treated hives are stronger, i.e. better thermoregulation*

Control (= un-treated) hives suffer more from hive-openings.

- Motivation & Background
- Method & Technical Solution
- Empirical Evaluation
- Conclusion -

Registration and travel support for this presentation was provided by the Society for Industrial and Applied Mathematics