Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi and Hyoseung Kim

University of California, Riverside

IEEE Real-Time Systems Symposium (RTSS) 2022
Motivation

- In a multi-GPU system, workload allocation methods can be categorized to:
 - Load distribution
 - Idle energy consumption from computing units causes energy inefficiency
 - Load concentration
 - Different tasks have different energy-preferred GPU

- The problem is more complicated in a real-time system
 - Real-time tasks have different arriving patterns with different timing constraints
Related Work

- Real-time GPU Scheduling
 - Temporal multitasking\(^1\ 2 \ 3\): focus on the time-sharing of the GPU
 - Poor energy efficiency and lack of support for heterogeneous GPUs
 - Spatial multitasking\(^4\)
 - No consideration of energy efficiency as well as multi-GPUs
- GPU Energy Efficiency\(^5\ 6\ 7\)
 - Focuses on regulating the number of active SMs
 - Problem: SM-level power gating is not yet available in today’s GPUs
- Our previous work – sBEET framework\(^8\)
 - Combines spatial and temporal multitasking to balance energy consumption and schedulability
 - We extend this work to a heterogeneous multi-GPU system through offline task allocation and runtime job migration

Contributions

We propose sBEET-mg:
✓ An energy-efficient real-time GPU scheduling framework for heterogeneous multi-GPU systems

- Analyzed the power usage characteristics on a multi-GPU system with our customized power monitoring tool
- Proposed a framework to address the timeliness and energy efficiency simultaneously in a heterogeneous multi-GPU environment
- Developed a custom power monitoring tool that obtains precise power measurements
- The proposed work outperforms the conventional load concentration and distribution approaches in both real hardware and simulation

Proposed Work Overview

- Custom power sensing tool
- Scheduling framework
 - Centralized scheduler – one single CUDA context
 - Two worker threads dedicated for each GPU
System Model

- **Platform Model**
 - A single-ISA system Π consisting with ω heterogeneous GPUs
 - A GPU π_k containing M_k SMs

- **Task Model**
 - A taskset Γ consists of n periodic GPU tasks:
 - Non-preemptive
 - W/ Constrained deadlines
 - Each task τ_i consists of a sequence of jobs $J_{i,j}$
 - Each job can execute with a different number of SMs on a different GPU

WCET of a job $J_{i,j}$:
$$G_{i,j}(m, \pi_k) = G_i^{hd}(\pi_k) + G_i^e(m, \pi_k) + G_i^{dh}(\pi_k)$$

- Memcpy H2D $G_i^{hd}(\pi_k)$
- Memcpy D2H $G_i^{dh}(\pi_k)$

$$\tau_i := (G_i, T_i, D_i)$$

WCET, period, deadline
Power and Energy Model

- **Power model**
 - Power model: \(P = P_s + P^d + P^{idle} \)
 - For a set of jobs \(J = \{ J_1, J_2, \ldots, J_n \} \):
 \[
 P = P_s + \sum_{i=1}^{n} P^d_i(m_i) + P^{idle}(M - \sum_{i=1}^{n} m_i)
 \]
 - For a taskset \(\Gamma \), energy consumption in \([t_1, t_2]\):\[
 E_k(t_1, t_2) = \int_{t_1}^{t_2} \left(P^s_k + \sum_{j_i \in J} \left(p_{k,i}^d \left(\sum_{m=1}^{M_k} x_i^m(t) \right) \right) + p_k^{idle} \left(M_k - \sum_{j_i \in J} \sum_{m=1}^{M_k} x_i^m(t) \right) \right) dt
 \]
 - Energy consumption of all GPUs:
 \[
 E([t_1, t_2]) = \sum_{\forall \pi_k \in \Pi} E_k([t_1, t_2])
 \]

\(x_i^m(t) = \begin{cases}
0, & \tau_i \text{ is not active on SM}_k \\
1, & \tau_i \text{ is active on SM}_k
\end{cases} \)
Insights on Conventional Approaches (1)

- Baseline Scheduling Approaches
 - **Load Concentration**
 - It assigns a GPU job to the most packed GPU
 - **Load Distribution**
 - It chooses an idling GPU first (or a GPU with the highest number of idling SMs)
Insights on Conventional Approaches (2)

- Homogeneous GPUs
 - Example 1

<table>
<thead>
<tr>
<th>Task</th>
<th>Application</th>
<th>$G^c_i(\pi_0, 6)$</th>
<th>$G^c_i(\pi_0, 4)$</th>
<th>$G^c_i(\pi_0, 3)$</th>
<th>$G^c_i(\pi_0, 2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_1 = \tau_2$</td>
<td>Histogram</td>
<td>32.67 ms</td>
<td>47.95 ms</td>
<td>63.724 ms</td>
<td>95.53 ms</td>
</tr>
</tbody>
</table>

Load distribution

- GPU 0 T400
 - $f = 1425$ MHz
 - E = 2.3 J

- GPU 1 T400
 - $f = 1425$ MHz

Load Concentration

- GPU 0 T400
 - $f = 1425$ MHz
 - E = 2.05 J

Load concentration is better in this case
Insights on Conventional Approaches (3)

- Homogeneous GPUs
 - Example 2
 - Same taskset, but τ_1 executes slightly earlier with 4 SMs

Table III: Taskset in Examples 1 and 2

<table>
<thead>
<tr>
<th>Task</th>
<th>Application</th>
<th>$G^c_1(\pi_0, 6)$</th>
<th>$G^c_1(\pi_0, 4)$</th>
<th>$G^c_1(\pi_0, 3)$</th>
<th>$G^c_1(\pi_0, 2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_1 = \tau_2$</td>
<td>Histogram</td>
<td>32.67 ms</td>
<td>47.95 ms</td>
<td>63.724 ms</td>
<td>95.53 ms</td>
</tr>
</tbody>
</table>

Load distribution

GPU 0
T400
$f=1425$MHz

GPU 1
T400
$f=1425$MHz

Load Concentration

E=2.12J

E=2.18J

A small difference made load distribution the winner
Heterogeneous GPUs
Example 1

Table IV: Taskset in Example 3 and 4

<table>
<thead>
<tr>
<th>Task</th>
<th>Application</th>
<th>$C_t^n(30, \pi_0)$</th>
<th>$C_t^n(16, \pi_0)$</th>
<th>$C_t^n(6, \pi_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>MatrixMul</td>
<td>11.98 ms</td>
<td>21.55 ms</td>
<td>-</td>
</tr>
<tr>
<td>τ_2</td>
<td>Hotspot</td>
<td>12.00 ms</td>
<td>22.31 ms</td>
<td>73.188 ms</td>
</tr>
</tbody>
</table>

Load distribution

GPU 0
RTX3070

f = 1725MHz

Load Concentration

GPU 1
T400

f = 1425MHz

$E = 7.35J$

$E = 7.24J$
Insights on Conventional Approaches (5)

- Heterogeneous GPUs
- Example 2

Table IV: Taskset in Example 3 and 4

<table>
<thead>
<tr>
<th>Task</th>
<th>Application</th>
<th>$G_{\pi}^m(30, \pi_0)$</th>
<th>$G_{\pi}^m(16, \pi_0)$</th>
<th>$G_{\pi}^m(6, \pi_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>MatrixMul</td>
<td>11.98 ms</td>
<td>21.55 ms</td>
<td>-</td>
</tr>
<tr>
<td>τ_2</td>
<td>Hotspot</td>
<td>12.00 ms</td>
<td>22.31 ms</td>
<td>73.188 ms</td>
</tr>
</tbody>
</table>

Load distribution
- GPU 0: RTX3070, $f = 1725$ MHz
- GPU 1: T400, $f = 1425$ MHz

- $E = 7.19$ J

Load Concentration

- $E = 7.3$ J
Insights on Conventional Approaches (6)

- To improve energy efficiency…

 - Neither approaches should be preferred regardless of whether the GPUs are homogeneous or not

 - If we can make all tasks on the same GPU finish at similar time, active-idle power consumption of unused SMs can be minimized

 - However, it is hard to realize with real-time tasks since they have different arrival patterns and timing constraints
Energy-Efficient Multi-GPU Scheduling (1)

- Energy Optimality:
 - Definition 1. (*Energy optimal SMs*) The energy-optimal number of SMs $m_{k,i}^{opt}$, for a task τ_i on a GPU π_k is defined as the number of SMs that leads to the lowest energy consumption when it executes in isolation on the GPU during an arbitrary time interval.

- Definition 2. (*Energy preferred GPU*) The energy-preferred GPU for a task τ_i in a multi-GPU system Π is the GPU that consumes the least amount of energy when τ_i executes with $m_{k,i}^{opt}$ SMs on it.

\[
\arg\min_{\pi_k \in \Pi} \int_0^\delta P_k^s + P_{k,i}^d(m_{k,i}^{opt}) + P_{k,\text{idle}}(M_k - m_{k,i}^{opt})dt
\]
Energy-Efficient Multi-GPU Scheduling (2)

- sBEET-mg Overview:
 - Adaptively chooses the GPU and SM configuration of each job of real-time GPU tasks such that it brings the minimum expected energy consumption to all GPUs in the system.

- Approach:
 - An offline task distribution algorithm
 - As a guideline for the runtime scheduler
 - A heuristic runtime scheduler
 - Two worker threads per GPU to enable parallel execution of jobs
 - Decides whether to execute a job on the preassigned GPU or migrate it to another GPU.
Energy-Efficient Multi-GPU Scheduling (3)

- Offline Task Distribution:
 - Main idea: For each task, the algorithm tries to assign it to the energy-preferred GPU

- Step 1: Sort all tasks in the decreasing order of priority

- Step 2: For each task, it obtains a list of GPUs in an order of energy-preference

- Step 3: Simple utilization check for admission

- Step 3: Assign the unassigned tasks in Step 3 to the GPUs that will have the minimum utilization

Algorithm 1 Offline Task Distribution

1. **procedure** TASK DISTRIBUTION
2. Sort tasks in Γ in decreasing order of priority
3. for $\tau_i \in \Gamma$ do
4. Get a list Π_i of GPUs in non-increasing order of expected energy consumption for τ_i
5. for $\pi_k \in \Pi_i$ do
6. if $U(\pi_k) + U_i(\pi_k, m_{opt}) \leq 1$ then
7. Assign τ_i to π_k
8. break
9. end if
10. end for
11. if τ_i is not assigned then
12. Assign τ_i to the GPU that has a minimum utilization after τ_i is assigned
13. end if
14. end for
15. **end procedure**
Energy-Efficient Multi-GPU Scheduling (4)

- Runtime Job Migration:
 - Main idea: Migrate and pack jobs at runtime to further reduce energy consumption since the GPUs are not SM-level power-gated

- Decide at runtime:
 - Consider the energy consumption of a given job on each GPU
 - Choose the one that can meet all deadlines with the minimum predicted energy consumption
 - If no GPU can meet the deadline, select the one with the minimum energy consumption
Energy-Efficient Multi-GPU Scheduling (5)

- Runtime Job Migration – Case Study 1

Table VII: Taskset used in case study 1

<table>
<thead>
<tr>
<th>Task</th>
<th>$D_i = 0.5 \times T_i$ (ms)</th>
<th>Offset (ms)</th>
<th>GPU assigned by Alg. [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>60</td>
<td>0</td>
<td>RTX3070</td>
</tr>
<tr>
<td>τ_2</td>
<td>45</td>
<td>1</td>
<td>RTX3070</td>
</tr>
<tr>
<td>τ_3</td>
<td>40</td>
<td>2</td>
<td>RTX3070</td>
</tr>
</tbody>
</table>

- All three jobs are schedulable w/ migration

The first instance of τ_3 is migrated

The first instance of τ_3 is schedulable

The first instance of τ_2 is migrated

The first instance of τ_3 is skipped
Energy-Efficient Multi-GPU Scheduling (6)

- Runtime Job Migration – Case Study 2

Table VIII: Taskset used in case study 2

<table>
<thead>
<tr>
<th>Task</th>
<th>$D_i = 0.5 \times T_i$ (ms)</th>
<th>Offset (ms)</th>
<th>GPU assigned by Alg. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_1</td>
<td>100</td>
<td>0</td>
<td>RTX3070</td>
</tr>
<tr>
<td>τ_2</td>
<td>100</td>
<td>1</td>
<td>T400</td>
</tr>
</tbody>
</table>

✔ Energy consumption in two schedules:
 - w/o migration - 6.51 J
 - w/ migration - 6.49 J
Evaluation

- Multi-GPU System
 - NVIDIA RTX3070 + NVIDIA T400
 - Ubuntu 18.04 + CUDA 11.6
- Benchmark pool & Power parameters

(a) Dynamic power of benchmarks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>$P_{d,i}(1)$</th>
<th>$P_{d,i}^{d}(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MatrixMul</td>
<td>3.77 W</td>
<td>2.06 W</td>
</tr>
<tr>
<td>Stereodisparity</td>
<td>1.63 W</td>
<td>0.98 W</td>
</tr>
<tr>
<td>Hotspot</td>
<td>1.14 W</td>
<td>0.81 W</td>
</tr>
<tr>
<td>DXTC</td>
<td>1.67 W</td>
<td>1.15 W</td>
</tr>
<tr>
<td>BFS</td>
<td>0.98 W</td>
<td>1.07 W</td>
</tr>
<tr>
<td>Histogram</td>
<td>0.91 W</td>
<td>1.19 W</td>
</tr>
</tbody>
</table>

(b) Idle and static power of each GPU

<table>
<thead>
<tr>
<th>GPU_k</th>
<th>P_s^k</th>
<th>P_{idle}^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_0 (RTX 3070)</td>
<td>46 W</td>
<td>0.445 W</td>
</tr>
<tr>
<td>π_1 (T400)</td>
<td>8 W</td>
<td>0.652 W</td>
</tr>
</tbody>
</table>

- Scheduling Approaches
 - sBEET-mg
 - The complete version of the proposed framework
 - sBEET-mg Offline Only
 - The offline part of the proposed framework
 - LCF (“Little-Core-First”)
 - BCF (“Biggest-Core-First”)
 - Load concentration
- Load-Dist (load distribution):
 - Load distribution
Hardware Setup

- Multi-GPU System
 - NVIDIA RTX3070 @ 1725 MHz
 - NVIDIA T400 @ 1425 MHz
- Custom Power Measurement Tool
 - nRF52832 SoC
 - INA260 power sensor
Performance Evaluation

- Taskset Generation
 - 100 randomly generated tasksets
 - Running for 15s on our multi-GPU system

- Experiment Settings
 - 24 SMs are allowed on RTX3070
 - Results of other settings can be found in the paper

- Up to 23% and 18% less deadline misses compared to Load-Dist and BCF
- sBEET-mg has lower energy consumption
Power Prediction Accuracy

- Randomly generated one taskset under each utilization
- Average mean-absolute-error is 10.80 W (≈6% of 180W)
- More results can be found in the paper
Comparison with Previous Work - sBEET

- Taskset Generation
 - 100 randomly generated tasksets
 - Running for 15s on our multi-GPU system

- Experiment Settings
 - 24 SMs are allowed on RTX3070

- Scheduling Approaches
 - Proposed approaches
 - sBEET-mg, sBEET-mg Offline Only
 - sBEET w/ other allocation methods
 - WFD, FFD, BFD

- Note that the results of BFD+sBEET and FFD+sBEET are overlapped
- sBEET-mg has the lowest deadline miss ratio
Simulation w/ Multiple GPUs

- Simulating a Multi-GPU System
 - RTX3070 w/ 12 SMs
 - RTX3070 w/ 12 SMs
 - T400 w/ all 6 SMs
Conclusion

- We observed that the existing simple task allocation approaches are not a preferred option for energy efficiency regardless of whether the GPU is homogeneous or heterogeneous.

- We extended the prior work and proposed sBEET-mg, the multi-GPU scheduling framework that improves both schedulability and energy efficiency.

- We designed a power monitoring setup for precise power measurement for our experiments.

- Various experiments on both real hardware and simulation shows our proposed work can simultaneously reduce deadline misses and energy consumption.

Source code available at https://github.com/rtenlab/sBEET-mg/
Towards Energy-Efficient Real-Time Scheduling of Heterogeneous Multi-GPU Systems

Yidi Wang, Mohsen Karimi, and Hyoseung Kim

Thank you!

https://github.com/rttenlab/sBEET-mg/