
RTSOPS 2024

Exploring Partitioned and Semi-partitioned Callback
Scheduling on ROS 2 Multi-threaded Executors

Hoora Sobhani, Daniel Enright, Tejas Milind Deshpande, Hyoseung Kim

University of California, Riverside

1

RTSOPS 2024

What is ROS 2

ROS 2: An important open-source middleware framework for the
development of robotic applications

• Provides modular integration of software components for complex robotic
applications

[8] H. Sobhani, H. Choi, and H. Kim, “Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors,”

in 2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2023, pp. 106–118

RTSOPS 2024

ROS 2 Architecture

Executors: processes with one or more threads scheduled by OS scheduler
• Can be single-threaded processes or multi-threaded processes

• Maintains a local wait-set of callbacks to be assigned to a thread for execution

Callbacks: smallest schedulable entity in ROS 2
• Scheduled by executors running on the CPU

• Five types of callbacks:

• Timer, subscription, service, client, and waitable

• When callbacks are released, they are added to their

executor’s wait-set

Nodes: syntactical organization of callbacks
• Used to assign callbacks to executors

RTSOPS 2024

Processing Chains in ROS 2

• Semantic abstraction of a sequence of data-dependent callbacks
– Example: Apex.AI’s Autoware Reference System*

* ROS 2 Real-time Working Group> Reference System. https://github.com/ros-realtime/reference-system/

23
FrontLidarDriver

22
RearLidarDriver

25 24

26
19

EuclideanClusterSettings

21
IntersectionOutput

28
RayGroundFilter

29
EuclideanClusterDetector

35
MPCController

34

VehicleInterface 25
VehicleDBWSystem

1
PointCloudMap

6
Visualizer

9
Lanelet2Map

10

Lanelet2MapLoader 12
ParkingPlanner

16
BehaviorPlanner

13
LanePlanner

27

20
30

ObjectCollisionEstimator

3
PointCloudMapLoader

2
VoxelGridDownsampler

4
NDTLocalizer

7

Lanelet2GlobalPlanner

5

8

18

25

14 15
17

32

33

: Nodes (color = executor ID) > >
High LowMed

p p : Callbacks (p = priority)Chain criticality:

PointsTransformerFront PointsTransformerRear

PointCloudFusion

https://github.com/ros-realtime/reference-system/

RTSOPS 2024

Scheduling Callbacks on Multi-CPU Systems

ROS Executor Types:
– Single-threaded executor:

• One thread that pulls ready callbacks from the wait set to execute on the
CPU

• User can create n single-threaded executors for an n-CPU system

– Multi-threaded executor:
• Multiple threads that pull ready callbacks from the wait-set to execute on

one or more CPUs

• By default, ROS creates n-threads for an n-CPU system

RTSOPS 2024

Callback Scheduling within ROS 2 Executors

1. Callbacks are executed on the CPU cores non-preemptively

2. Each executor maintains a single wait-set for ready callbacks

3. Callbacks in the wait-set are prioritized to execute in the following order:

• Timer, subscription, service, client, and waitable

4. Wait-set is only updated when it is empty

RTSOPS 2024

Example: Callback Scheduling with MT Executor

Wait Set

Multi-threaded Executor

Executor Threads

Callback 1

Callback 2

Callback 3

Callback 4

Callback 5 ??

Threads can migrate freely across the CPU cores

Incoming

Callbacks

Callback 6

Callback 7

Callback 8

RTSOPS 2024

Literature Review

• Multiple single-threaded executors vs. Single multi-threaded executor

Multiple single-threaded executors
→ Partitioned Scheduling

Single multi-threaded executor
→ Global Scheduling

• Per-thread wait-set: less contention
• Better for isolation between workloads
• No migration (potentially less overhead)
• Difficult to determine callback-to-executor

assignment
• One node cannot be split into two executors
• Potential resource underutilization

• Allows a single process memory space,
allowing more efficient inter-callback data
transfers (via intra-process API)

• Better to reclaim unused CPU time
• No isolation: potentially longer blocking time

low-priority callbacks and more interference
among different chains

Related Work

- Daniel Casini et al. "Response-time analysis of ROS 2 processing chains
under reservation-based scheduling." in ECRTS. 2019.

- H. Choi, et. al, “PiCAS: New design of priority-driven chain-aware
scheduling for ROS2,” in RTAS, 2021.

- X. Jiang, et. al., “Real-time scheduling and analysis of processing chains
on multi-threaded executor in ROS 2,” in RTSS, 2022.
- H. Sobhani, et. al., “Timing Analysis and Priority-driven Enhancements of
ROS 2 Multi-threaded Executors,” in RTAS, 2023

RTSOPS 2024

Proposed Idea

Implement partitioned and semi-partitioned scheduling within
the default ROS 2 multi-threaded executor

• New thread affinity API introduced to the rclcpp library

• Allows developers to bind callbacks to specific threads within the
multi-threaded executor

• Facilitates the reservation of execution bandwidth for high priority
callbacks*

* When executor threads are applied the SCHED_DEADLINE policy and cgroups are used to set their CPU masks

RTSOPS 2024

Thread Affinity API Implementation Details

// Set thread (CPU) affinity
void Executor::set_thread_affinity(rclcpp::TimerBase::SharedPtr ptr, int* affinity_threads, int size);

void Executor::set_thread_affinity(rclcpp::SubscriptionBase::SharedPtr ptr, int* affinity_threads, int size);

void Executor::set_thread_affinity(rclcpp::ServiceBase::SharedPtr ptr, int* affinity_threads, int size);

void Executor::set_thread_affinity(rclcpp::ClientBase::SharedPtr ptr, int* affinity_threads, int size);

// Calculate final thread affinity based on threads assigned (Called by each of
the above API methods)

size_t Executor::get_final_affinity_value(int* affinity_threads, int size);

// Default Parameters
#ifdef PICAS

int callback_priority = 0;
#endif

size_t thread_affinity = 0;

RTSOPS 2024

Thread Affinity API Implementation Details

// Check thread affinity for current thread

if((callback->thread_affinity >= 0) && !((callback->thread_affinity & (1 << thread_affinity_id)))) {
++callback_iterator; Skip this callback; check next ready callback
continue;

}

Runs inside:
get_next_timer(),

get_next_subscription(),
get_next_service(),
get_next_client(),

get_next_waitable()

RTSOPS 2024

Experiment: Platform and Taskset

Implemented on ROS 2 Galactic
• Performed on an Intel Core i7-

10875H (4 cores, pinned to
maximum frequency)

• Using our modified rclcpp library
incorporating the thread affinity
API

• Followed default ROS 2 callback
priority ordering

RTSOPS 2024

Experiment: Allocation and Results

• Partitioned scheduling: each thread

is assigned a group of callbacks as

follows
• 𝜏12, 𝜏1, 𝜏2 , 𝜏3, 𝜏4, 𝜏5 , 𝜏6, 𝜏7, 𝜏8 , 𝜏9, 𝜏10, 𝜏11

• Semi-partitioned scheduling:

callbacks 𝜏1, 𝜏6, and 𝜏9 are statically

assigned to separate threads. Other

callbacks can migrate between

threads 1-4.

RTSOPS 2024

Conclusion

• What would be the best way to utilize multiple CPUs in ROS 2?

Prior Work This Work

Partitioned Scheduling
(via multiple single-thread

executors)

- Daniel Casini et al. "Response-
time analysis of ROS 2 processing
chains under reservation-based
scheduling." in ECRTS. 2019.

- H. Choi, et. al, “PiCAS: New
design of priority-driven chain-
aware scheduling for ROS2,” in
RTAS, 2021.

Global Scheduling
(via multi-threaded executor)

- X. Jiang, et. al., “Real-time scheduling
and analysis of processing chains on
multi-threaded executor in ROS 2,” in
RTSS, 2022.
- H. Sobhani, et. al., “Timing Analysis
and Priority-driven Enhancements of
ROS 2 Multi-threaded Executors,” in
RTAS, 2023

Semi-Partitioned Scheduling
(within multi-threaded executor)

Pros:

• Better isolation and predictability compared to
global scheduling

• Better resource utilization compared to
partitioned scheduling

Cons:

• Complexity in maintaining predictability and
managing task migration between cores

*Source code: https://github.com/rtenlab/ros2-picas (branch: multi_threaded_partitioned_scheduling)

https://github.com/rtenlab/ros2-picas

RTSOPS 2024

Questions

	Slide 1: Exploring Partitioned and Semi-partitioned Callback Scheduling on ROS 2 Multi-threaded Executors
	Slide 2: What is ROS 2
	Slide 3: ROS 2 Architecture
	Slide 5: Processing Chains in ROS 2
	Slide 6: Scheduling Callbacks on Multi-CPU Systems
	Slide 7: Callback Scheduling within ROS 2 Executors
	Slide 8: Example: Callback Scheduling with MT Executor
	Slide 9: Literature Review
	Slide 14: Proposed Idea
	Slide 16: Thread Affinity API Implementation Details
	Slide 17: Thread Affinity API Implementation Details
	Slide 18: Experiment: Platform and Taskset
	Slide 19: Experiment: Allocation and Results
	Slide 20: Conclusion
	Slide 21: Questions

