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What is ROS 2

ROS 2: An important open-source middleware framework for the

development of robotic applications
- Provides modular integration of software components for complex robotic
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ROS 2 Architecture

Executors: processes with one or more threads scheduled by OS scheduler

Can be single-threaded processes or multi-threaded processes
Maintains a local wait-set of callbacks to be assigned to a thread for execution

Callbacks: smallest schedulable entity in ROS 2
Scheduled by executors running on the CPU

Five types of callbacks:
Timer, subscription, service, client, and waitable

timer ready?

- When callbacks are released, they are added to their

executor’s wait-set

Nodes: syntactical organization of callbacks

Used to assign callbacks to executors
[TH RIVERSIDE
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Processing Chains in ROS 2

« Semantic abstraction of a sequence of data-dependent callbacks
- Example: Apex.Al’s Autoware Reference System*™
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Scheduling Callbacks on Multi-CPU Systems

ROS Executor Types:

- Single-threaded executor:

One thread that pulls ready callbacks from the wait set to execute on the
CPU

User can create n single-threaded executors for an n-CPU system

- Multi-threaded executor:

Multiple threads that pull ready callbacks from the wait-set to execute on
one or more CPUs

By default, ROS creates n-threads for an n-CPU system
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Callback Scheduling within ROS 2 Executors

1. Callbacks are executed on the CPU cores non-preemptively

2. Each executor maintains a single wait-set for ready callbacks

3. Callbacks in the wait-set are prioritized to execute in the following order:
 Timer, subscription, service, client, and waitable

4. Wait-set is only updated when it is empty
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Example: Callback Scheduling with MT Executor

/ Multi-threaded Executor \
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Literature Review

« Multiple single-threaded executors vs. Single multi-threaded executor

Multiple single-threaded executors Single multi-threaded executor
- Partitioned Scheduling - Global Scheduling
* Per-thread wait-set: less contention * Allows a single process memory space,
* Better for isolation between workloads allowing more efficient inter-callback data
* No migration (potentially less overhead) transfers (via intra-process API)
* Difficult to determine callback-to-executor e Better to reclaim unused CPU time
assignment * Noisolation: potentially longer blocking time
* One node cannot be split into two executors low-priority callbacks and more interference
e Potential resource underutilization among different chains
Related Work
- Daniel Casini et al. "Response-time analysis of ROS 2 processing chains - X. Jiang, et. al., “Real-time scheduling and analysis of processing chains
under reservation-based scheduling." in ECRTS. 2019. on multi-threaded executor in ROS 2,” in RTSS, 2022.
- H. Choi, et. al, “PiCAS: New design of priority-driven chain-aware - H. Sobhani, et. al., “Timing Analysis and Priority-driven Enhancements of
scheduling for ROS2,” in RTAS, 2021. ROS 2 Multi-threaded Executors,” in RTAS, 2023
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Proposed Idea

Implement partitioned and semi-partitioned scheduling within
the default ROS 2 multi-threaded executor
* New thread affinity APl introduced to the rclcpp library

* Allows developers to bind callbacks to specific threads within the
multi-threaded executor

* Facilitates the reservation of execution bandwidth for high priority
callbacks*

m RIVERSIDE * When executor threads are applied the SCHED DEADLINE policy and cgroups are used to set their CPU masks
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Thread Affinity APl Implementation Details
// Set thread (CPU) affinity

void Executor::set_thread_affinity(rclcpp::TimerBase::SharedPtr ptr, int* affinity_threads, int size);

void Executor::set_thread_affinity(rclcpp::SubscriptionBase::SharedPtr ptr, int* affinity_threads, int size);
void Executor::set_thread_affinity(rclcpp::ServiceBase::SharedPtr ptr, int* affinity_threads, int size);
(

void Executor::set_thread_affinity(rclcpp::ClientBase::SharedPtr ptr, int* affinity_threads, int size);

// Calculate final thread affinity based on threads assighed (Called by each of
the above APl methods)

size_t Executor::get_final_affinity_value(int* affinity_threads, int size);

// Default Parameters

| N
#ifdef PICAS

int callback_priority = 0;
#endif

- thread affinity=0;
U

J




Thread Affinity APl Implementation Details

// Check thread affinity for current thread
4 N

((callback->thread_affinity >= 0 ) && !((callback->thread_affinity & (1 << thread_affinity_id)))) {
++callback_iterator; === Skip this callback; check next ready callback
continue;

Runs inside:
get_next_timer(),
get_next_subscription(),
get_next_service(),
get_next_client(),
get_next_waitable()
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Experiment: Platform and Taskset

Implemented on ROS 2 Galactic
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Experiment: Allocation and Results

- Partitioned scheduling: each thread .
IS assigned a group of callbacks as 600 |
follows g 5w
{t12, T1, T2}, {73, T4, 75}, {76, T7, T8}, {79, T10, T11) E 400
- Semi-partitioned scheduling: N
callbacks 4, 76, and T, are statically | “ | |
assigned to separate threads. Other N Eze B ﬂﬂ LD
callbacks can migrate between S DSemi_p;ﬁmd a
threads 1-4.
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Conclusion

« What would be the best way to utilize multiple CPUs in ROS 27

Prior Work This Work
Partitioned Scheduling Global Scheduling Semi-Partitioned Scheduling
(via multiple single-thread | (via multi-threaded executor) (within multi-threaded executor)
executors) Pros:
- Daniel Casini et al. "Response- - X. Jiang, et. al., “Real-time scheduling * Better isolation and pred'Ctab'I'ty Compared to
time analysis of ROS 2 processing | and analysis of processing chains on global scheduling
chains under reservation-based multi-threaded executor in ROS 2,” in . Better resource utilization compared to
scheduling." in ECRTS. 2019. RTSS, 2022. - ) P
- H. Choi, et. al, “PiCAS: New - H. Sobhani, et. al., “Timing Analysis partitioned scheduling
design of priority-driven chain- and Priority-driven Enhancements of cons:
aware scheduling for ROS2,” in ROS 2 Multi-threaded Executors,” in )
RTAS, 2021. RTAS, 2023 *  Complexity in maintaining predictability and
managing task migration between cores

*Source code: https://github.com/rtenlab/ros2-picas (branch: multi_threaded partitioned scheduling)
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Questions

[TH RIVERSIDE
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