RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Exploring Partitioned and Semi-partitioned Callback
Scheduling on ROS 2 Multi-threaded Executors

Hoora Sobhani, Daniel Enright, Tejas Milind Deshpande, Hyoseung Kim
University of California, Riverside

What is ROS 2

ROS 2: An important open-source middleware framework for the

development of robotic applications
- Provides modular integration of software components for complex robotic

p p Nodel |, A 77T rTT3
---------------- » —»
n 6 > e > @ booe Lo >
= Ut _¢_ F ________ r
© R R R TR
= L__! . *i
- -
5|t ©
2, i T~ Muli-thrcaded
& Node 2 Node 3 L ——
— e — — — — —— ——————— — — —————— o = '____;_H'—___i
Client Library [Exceutors | :——--Lr:“" b-o-
g rel relepp rclepy L
E; Middleware Library D F
= mw Nemy
:-9 L__! Multi-threaded
s Executor
= DDS Implementation Intra-process & =
API i-]
___________________________ S
Lo
wn . . Lol
') Linux/Windows/RTOS H " Single-threaded
Execulor

RIVERSIDE [8] H. Sobhani, H. Choi, and H. Kim, “Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors,”
in 2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2023, pp. 106-118

ROS 2 Architecture

Executors: processes with one or more threads scheduled by OS scheduler

Can be single-threaded processes or multi-threaded processes
Maintains a local wait-set of callbacks to be assigned to a thread for execution

Callbacks: smallest schedulable entity in ROS 2
Scheduled by executors running on the CPU

Five types of callbacks:
Timer, subscription, service, client, and waitable

timer ready?

- When callbacks are released, they are added to their

executor’s wait-set

Nodes: syntactical organization of callbacks

Used to assign callbacks to executors
[TH RIVERSIDE

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Processing Chains in ROS 2

« Semantic abstraction of a sequence of data-dependent callbacks
- Example: Apex.Al’s Autoware Reference System*™

FrontLidarDriver RearLidarDriver PointCloudMap Visualizer LaneletZMap

AN | | /A s | e

4 I ParkingPlanner
intsTransformerFront NointsTransformerRear NPointCloudMapLoader Lanelet2GlobalPlanner LaneletZMapLoader /’jm
S :l —%Planner

) - PointCloudFusi VoxelGridDownsampler

EuclideanClusterSettings ~ BehaworPIanner /
@ = NDTLocaliz 25 T]

\ / / 25

y.
= ﬁ\ e =
¢ RayGroundFilter > uclideanClusterDetector : ol
\w ObjectCollisionEstimator MPCController

— —> ..
{ Chain criticality: :I; > Med > Low : Nodes (color = executor ID) n n : Callbacks (p = priority)]

VehicleDBWSystem

Vehiclelnterface

m RIVERS I DE * ROS 2 Real-time Working Group> Reference System. https://qgithub.com/ros-realtime/reference-system/

https://github.com/ros-realtime/reference-system/

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Scheduling Callbacks on Multi-CPU Systems

ROS Executor Types:

- Single-threaded executor:

One thread that pulls ready callbacks from the wait set to execute on the
CPU

User can create n single-threaded executors for an n-CPU system

- Multi-threaded executor:

Multiple threads that pull ready callbacks from the wait-set to execute on
one or more CPUs

By default, ROS creates n-threads for an n-CPU system

[TH RIVERSIDE

Callback Scheduling within ROS 2 Executors

1. Callbacks are executed on the CPU cores non-preemptively

2. Each executor maintains a single wait-set for ready callbacks

3. Callbacks in the wait-set are prioritized to execute in the following order:
 Timer, subscription, service, client, and waitable

4. Wait-set is only updated when it is empty

[TH RIVERSIDE

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Example: Callback Scheduling with MT Executor

/ Multi-threaded Executor \

Wait Set

Incoming
Callback 1 Callbacks

Callback 6
Callback 2

Callback 7
Callback 3

Callback 8
Callback 4

Callback5 77

\\

[TH RIVERSIDE

/

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Literature Review

« Multiple single-threaded executors vs. Single multi-threaded executor

Multiple single-threaded executors Single multi-threaded executor
- Partitioned Scheduling - Global Scheduling
* Per-thread wait-set: less contention * Allows a single process memory space,
* Better for isolation between workloads allowing more efficient inter-callback data
* No migration (potentially less overhead) transfers (via intra-process API)
* Difficult to determine callback-to-executor e Better to reclaim unused CPU time
assignment * Noisolation: potentially longer blocking time
* One node cannot be split into two executors low-priority callbacks and more interference
e Potential resource underutilization among different chains
Related Work
- Daniel Casini et al. "Response-time analysis of ROS 2 processing chains - X. Jiang, et. al., “Real-time scheduling and analysis of processing chains
under reservation-based scheduling." in ECRTS. 2019. on multi-threaded executor in ROS 2,” in RTSS, 2022.
- H. Choi, et. al, “PiCAS: New design of priority-driven chain-aware - H. Sobhani, et. al., “Timing Analysis and Priority-driven Enhancements of
scheduling for ROS2,” in RTAS, 2021. ROS 2 Multi-threaded Executors,” in RTAS, 2023

[TH RIVERSIDE

Proposed Idea

Implement partitioned and semi-partitioned scheduling within
the default ROS 2 multi-threaded executor
* New thread affinity APl introduced to the rclcpp library

* Allows developers to bind callbacks to specific threads within the
multi-threaded executor

* Facilitates the reservation of execution bandwidth for high priority
callbacks*

m RIVERSIDE * When executor threads are applied the SCHED DEADLINE policy and cgroups are used to set their CPU masks

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Thread Affinity APl Implementation Details
// Set thread (CPU) affinity

void Executor::set_thread_affinity(rclcpp::TimerBase::SharedPtr ptr, int* affinity_threads, int size);

void Executor::set_thread_affinity(rclcpp::SubscriptionBase::SharedPtr ptr, int* affinity_threads, int size);
void Executor::set_thread_affinity(rclcpp::ServiceBase::SharedPtr ptr, int* affinity_threads, int size);
(

void Executor::set_thread_affinity(rclcpp::ClientBase::SharedPtr ptr, int* affinity_threads, int size);

// Calculate final thread affinity based on threads assighed (Called by each of
the above APl methods)

size_t Executor::get_final_affinity_value(int* affinity_threads, int size);

// Default Parameters

| N
#ifdef PICAS

int callback_priority = 0;
#endif

- thread affinity=0;
U

J

Thread Affinity APl Implementation Details

// Check thread affinity for current thread
4 N

((callback->thread_affinity >= 0) && !((callback->thread_affinity & (1 << thread_affinity_id)))) {
++callback_iterator; === Skip this callback; check next ready callback
continue;

Runs inside:
get_next_timer(),
get_next_subscription(),
get_next_service(),
get_next_client(),
get_next_waitable()

[TH RIVERSIDE

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Experiment: Platform and Taskset

Implemented on ROS 2 Galactic

————————————————————————————————————

* Performed on an Intel Core i7- et | Global plannc J
. |!--'E'--- obal costma E i
10875H (4 cores, pinnedto i P—— Local_planner |

. BT 13 E=39ms Ty E=3.0 ms Ts E=4.1 ms I
maximum frequency) g ';00”’:5 I‘.'::"‘ M --->| local_costmap |----->| local planl i i
__ !
. o fro . E=12.6 ms E=12.4ms |
* Using our modified rclcpp library -ioom : -H+| depth_ esﬂmatlonf---q “maffic_prediction], |
incorporating the thread affinit o o Edm le B0m
API p g y :—27;)(; f:i I‘P? dlllsthpt’;ie;zgi/n --p| object detection L-pf object_tracking ,ll

------- \x______________Chgiﬁs__________________,’/
O Timer callback (7 period, £: execution time) =10 1] s=[1e T2 Ta
* Followed default ROS 2 callback o cuiuck —op pusdepentency Footetirmy o

priority ordering

[TH RIVERSIDE

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Experiment: Allocation and Results

- Partitioned scheduling: each thread .
IS assigned a group of callbacks as 600 |
follows g 5w
{t12, T1, T2}, {73, T4, 75}, {76, T7, T8}, {79, T10, T11) E 400
- Semi-partitioned scheduling: N
callbacks 4, 76, and T, are statically | “ | |
assigned to separate threads. Other N Eze B ﬂﬂ LD
callbacks can migrate between S DSemi_p;ﬁmd a
threads 1-4.

[TH RIVERSIDE

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Conclusion

« What would be the best way to utilize multiple CPUs in ROS 27

Prior Work This Work
Partitioned Scheduling Global Scheduling Semi-Partitioned Scheduling
(via multiple single-thread | (via multi-threaded executor) (within multi-threaded executor)
executors) Pros:
- Daniel Casini et al. "Response- - X. Jiang, et. al., “Real-time scheduling * Better isolation and pred'Ctab'I'ty Compared to
time analysis of ROS 2 processing | and analysis of processing chains on global scheduling
chains under reservation-based multi-threaded executor in ROS 2,” in . Better resource utilization compared to
scheduling." in ECRTS. 2019. RTSS, 2022. -) P
- H. Choi, et. al, “PiCAS: New - H. Sobhani, et. al., “Timing Analysis partitioned scheduling
design of priority-driven chain- and Priority-driven Enhancements of cons:
aware scheduling for ROS2,” in ROS 2 Multi-threaded Executors,” in)
RTAS, 2021. RTAS, 2023 * Complexity in maintaining predictability and
managing task migration between cores

*Source code: https://github.com/rtenlab/ros2-picas (branch: multi_threaded partitioned scheduling)

[TH RIVERSIDE

https://github.com/rtenlab/ros2-picas

RTSOPS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Questions

[TH RIVERSIDE

	Slide 1: Exploring Partitioned and Semi-partitioned Callback Scheduling on ROS 2 Multi-threaded Executors
	Slide 2: What is ROS 2
	Slide 3: ROS 2 Architecture
	Slide 5: Processing Chains in ROS 2
	Slide 6: Scheduling Callbacks on Multi-CPU Systems
	Slide 7: Callback Scheduling within ROS 2 Executors
	Slide 8: Example: Callback Scheduling with MT Executor
	Slide 9: Literature Review
	Slide 14: Proposed Idea
	Slide 16: Thread Affinity API Implementation Details
	Slide 17: Thread Affinity API Implementation Details
	Slide 18: Experiment: Platform and Taskset
	Slide 19: Experiment: Allocation and Results
	Slide 20: Conclusion
	Slide 21: Questions

