
Exploring Partitioned and Semi-partitioned Callback
Scheduling on ROS 2 Multi-threaded Executors

Hoora Sobhani Daniel Enright Tejas Milind Deshpande Hyoseung Kim
University of California, Riverside

{ hsobh002, denri006, tdesh006, hyoseung }@ucr.edu

Abstract

In recent studies aimed at enhancing the analyzability and real-time performance of ROS 2, there has been insufficient emphasis
on the importance of different scheduling options, including global, partitioned, and semi-partitioned approaches, particularly when
multiple CPU cores are involved. In this work, we enabled the partitioned and semi-partitioned scheduling for ROS 2 multi-threaded
executors and discussed the opportunities and the potential issues associated with it.

I. INTRODUCTION

The Robot Operating System (ROS) is a versatile middleware platform widely used for developing robotic systems and
applications. The increasing need for robust, real-time capabilities in modern robotic applications such as autonomous drones,
fully autonomous vehicles, and mobile robots has driven the development of ROS 2. This successor to ROS offers a modular
architecture and an extensive set of tools and libraries, forming a flexible framework that enhances performance, increases
reliability, and provides real-time system support. Numerous recent studies from the real-time community underscore the
importance of ROS 2 in enabling serious, safety-critical industrial applications, highlighting its pivotal role in modern robotic
system development [1]–[12].

ROS 2 introduces key abstractions such as executors, which are OS-level processes, and callbacks, which are the smallest
schedulable units within these processes. One notable feature of ROS 2 is the support for both single-threaded and multi-threaded
executors. Multi-threaded executors enable the parallel execution of callbacks across multiple threads and is currently utilizing
a global scheduling approach for these callbacks. However, there is an ongoing debate in the real-time systems community
about the real-time performance of partitioned scheduling, semi-partitioned scheduling, and global scheduling. While global
scheduling offers the most flexibility and resource-sharing capabilities, exploring other scheduling approaches may provide
additional benefits. Specifically, partitioned scheduling offers strong predictability through temporal isolation of tasks, while
semi-partitioned scheduling strikes a balance between resource sharing, isolation, and flexibility.

We intend to enable partitioned and semi-partitioned callback scheduling approaches for ROS 2 multi-threaded executors
and compare their performance with the global scheduling approach.

II. BACKGROUND & RELATED WORK

A. ROS 2 Architecture

ROS 2 middleware is built on top of the operating system and provides a comprehensive suite of tools and libraries.
This includes the client library (rcl), which comprises language-specific APIs such as rclcpp for C++ and rclpy for Python,
and the middleware libraries (rmw), which handle communication between nodes. The rmw libraries support publisher-
subscriber interfaces, services, and actions, facilitating both inter-process and intra-process communication. Figure 1 illustrates
the architecture and application model of ROS 2 [8].

A ROS 2 application is organized around the abstraction of nodes, each node comprising a set of callbacks. These callbacks
can be one of five types: timer, subscription, service, client, or waitable. Timer callbacks are triggered periodically, while the
others are event-triggered. Once a node is assigned to an executor, all its callbacks are subsequently managed by that executor.
Each executor, whether single-threaded or multi-threaded, maintains an exclusive ReadySet of pending callbacks and selects a
callback for execution based on its priority [1], [2], [8]. In ROS 2, the priority of a callback within an executor is determined
by its type. Timer callbacks always have the highest priority. Among non-timer callbacks, the priority order is predefined,
typically following this sequence: subscription, service, client, and waitable. For single-threaded executors, the executor will
execute a single callback from the ReadySet on the CPU while multi-threaded executors may dynamically execute multiple
callbacks simultaneously across as many threads as it is allocated. The current practice for executing ready callbacks on threads
in multi-threaded executors is through a work-conserving global scheduling approach.

B. Global and Partitioned Scheduling Approaches

Global and partitioned scheduling are essential approaches in multi-processor real-time systems, each with distinct advantages
and disadvantages. Global scheduling offers flexibility and maximizes resource utilization by enabling tasks to run across



multiple processors. However, it can increase overhead due to the complexity of managing tasks and resource contention
across processors, making it less ideal for hard real-time systems that require consistent predictability and strict timing.

In contrast, partitioned scheduling enhances predictability and reduces overhead by statically assigning tasks to specific
processors. This approach simplifies the scheduling process and minimizes interference from other processors, although it
might not utilize processor resources as effectively as global scheduling [13].

Semi-partitioned scheduling serves as a compromise, allowing constrained task migration to enhance resource utilization while
maintaining more predictability than global scheduling. This method seeks to increase resource utilization while simultaneously
satisfying the need for reliable task execution [14].

C. Scheduling Callbacks within ROS 2 Executors

Scheduling approaches in the real-time domain are overwhelmingly well-documented, yet the exploration of scheduling
methodologies within ROS 2, especially in multi-core environments, remains comparatively sparse. Previous research has
primarily focused on response-time analysis and enhancements in the overall real-time capabilities within ROS 2, as seen in
several pioneering studies [1]–[9]. These papers typically adopt one of two approaches when involving scheduling callbacks
on multiple CPU cores: enforcing partitioned scheduling across multiple single-threaded executors [3], [5] or employing the
default global scheduling behavior within a multi-threaded executor [7], [8]. Despite these contributions, to the best of our
knowledge, there are no studies addressing the integration of partitioned and semi-partitioned callback scheduling strategies
for multi-threaded executors in ROS 2.

III. PARTITIONED AND SEMI-PARTITIONED SCHEDULING WITHIN THE ROS 2 MULTI-THREADED EXECUTOR

To enable partitioned and semi-partitioned scheduling in ROS 2 multi-threaded executors, we have introduced a new thread
affinity API to the rclcpp library. This API allows developers to specify which specific threads within the multi-threaded
executor a callback may execute on, thus offering precise control over task scheduling across the executor’s threads. The scope
of this API extends beyond the multi-threaded executor class to modifications in callback-related classes, supporting both the
default and priority-driven executors for all types of ROS 2 callbacks. 1

This enhancement enables developers to choose between global, partitioned, and semi-partitioned scheduling strategies by
designating specific threads for certain callbacks. Additionally, it facilitates the reservation of execution bandwidth for high-
priority callbacks, thereby improving predictability for hard real-time systems. By default, each callback can execute on any
thread unless developers explicitly restrict its thread affinity. This API also brings enhancements to ROS 2’s multi-threaded
executors by offering greater determinism compared to global scheduling and improving resource utilization over traditional
partitioned scheduling. However, these changes introduce some complexities and overhead. For instance, in the current ReadySet
implementation, there is no guarantee that an idle thread attempting to retrieve ready callbacks will be able to execute any of the
callbacks in the set. This can result in some idle executor threads while some callbacks might be deprived of compute resources.
A significant challenge is the need for advanced callback-to-thread allocation algorithms within the executor that can consider
information about callback utilization and execution times. Given ROS 2’s reliance on publisher-subscriber communication
and event-triggered callbacks, determining the most effective allocation strategy is complex. This complexity emphasizes the
necessity for ongoing discussions and developments within the ROS community to address these challenges and optimize
callback scheduling within multi-threaded executors.

To assess the potential benefits and validate the practical utility of implementing partitioned and semi-partitioned scheduling
in ROS 2 multi-threaded executors, we conducted an experiment based on a case study referenced in [8]. Our setup involved
running a set of processing chains on a multi-threaded executor configured with four threads. For the fully partitioned scheduling
scenario, we assigned three callbacks to each thread. For the semi-partitioned scenario, we specified thread affinities for each
timer callback, while allowing the remaining callbacks to execute on any thread as per the default global scheduling policy.
Figure 2a shows the processing chain configuration for our case study, where a lower chain index denotes a higher priority.
We measured the response time of each chain as our primary metric to evaluate the effectiveness of both partitioned and
semi-partitioned scheduling strategies within a multi-threaded executor. Preliminary results, depicted in Figure 2b, highlight
the potential benefits of these alternative scheduling approaches.

IV. CONCLUSION

In this paper, we discussed the debate between different scheduling options within the context of ROS 2 and explored the
advantages and drawbacks of each approach. Furthermore, we implemented partitioned and semi-partitioned scheduling for
ROS 2 multi-threaded executors and conducted an experiment to encourage further investigation into the optimal scheduling
options for ROS 2.

1Implementation details are available at https://github.com/rtenlab/ros2-picas.

2



A
p
p
li

ca
ti

o
n
s

M
id

d
le

w
ar

e
O

S

Linux/Windows/RTOS

DDS Implementation
Intra-process

API

Middleware Library

Client Library Executors

rcl rclcpp rclcpy

rmw

Node 3

Node 1

Node 2

Multi-threaded

Executor

𝑟1

𝑟3
𝑟2

𝑟4

Multi-threaded

Executor𝑟2
𝑟1

Single-threaded

Executor
𝑟1

Fig. 1: ROS 2 architecture and application model [8]

local_plan

depth_estimation traffic_prediction

local_costmapposeLIDAR

CAMERA1

Global_planner

Local_planner

Timer callback (T: period, E: execution time)

Regular callback Data dependency

T=50 ms
E=3.0 ms

T=100 ms
E=10.8 ms

E=3.9 ms E=3.0 ms E=4.1 ms

E=12.6 ms E=12.4 ms

Chains

global_costmap
E=3.0 ms

pre_processing/
depth_estimation

object_detectionCAMERA2
T=200 ms
E=22.1 ms

object_tracking

𝜏6 𝜏7 𝜏8

𝜏9

𝜏9

𝜏10 𝜏11 𝜏12E=42.5 ms E=42.4 ms E=23.0 ms

𝜏5

Γ1:=[𝜏1, 𝜏2]

Γ2:=[𝜏1, 𝜏3, 𝜏4, 𝜏5] Γ4:=[𝜏9, 𝜏10, 𝜏11, 𝜏12]

Γ3:=[𝜏6, 𝜏7, 𝜏8]

 

(a) Chain set for case study [8]

0

100

200

300

400

500

600

700

Γ1 Γ2 Γ3 Γ4

R
es

po
ns

e 
T

im
e 

(m
s)

Global Partitioned Semi-partitioned

(b) Comparison of response time

Fig. 2: An experiment of global, partitioned, and semi-partitioned scheduling in ROS 2

REFERENCES

[1] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg, “Response-time analysis of ROS 2 processing chains under reservation-based scheduling,” in
31st Euromicro Conference on Real-Time Systems. Schloss Dagstuhl, 2019, pp. 1–23.

[2] Y. Tang, Z. Feng, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi, “Response time analysis and priority assignment of processing chains on ROS2
executors,” in 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2020, pp. 231–243.

[3] H. Choi, Y. Xiang, and H. Kim, “PiCAS: New design of priority-driven chain-aware scheduling for ROS2,” in 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2021, pp. 251–263.

[4] T. Blaß, D. Casini, S. Bozhko, and B. B. Brandenburg, “A ROS 2 response-time analysis exploiting starvation freedom and execution-time variance,” in
2021 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2021, pp. 41–53.

[5] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg, “Automatic latency management for ROS 2: Benefits, challenges, and open
problems,” in 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2021, pp. 264–277.

[6] A. A. Arafat, S. Vaidhun, K. M. Wilson, J. Sun, and Z. Guo, “Response time analysis for dynamic priority scheduling in ROS2,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, 2022, pp. 301–306.

[7] X. Jiang, D. Ji, N. Guan, R. Li, Y. Tang, and Y. Wang, “Real-time scheduling and analysis of processing chains on multi-threaded executor in ROS 2,”
in 2022 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2022, pp. 27–39.

[8] H. Sobhani, H. Choi, and H. Kim, “Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors,” in 2023 IEEE 29th Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, 2023, pp. 106–118.

[9] D. Enright, Y. Xiang, H. Choi, and H. Kim, “PAAM: A Framework for Coordinated and Priority-Driven Accelerator Management in ROS 2,” in IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2024.

[10] H. Choi, D. Enright, H. Sobhani, Y. Xiang, and H. Kim, “Priority-driven real-time scheduling in ROS 2: Potential and challenges,” in 1st International
Workshop on Real-time And intelliGent Edge computing (RAGE), 2022.

[11] H. Teper, T. Betz, M. Günzel, D. Ebner, G. von der Brüggen, J. Betz, and J.-J. Chen, “End-To-End Timing Analysis and Optimization of Multi-Executor
ROS 2 Systems,” in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2024.

[12] X. Luo, X. Jiang, N. Guan, H. Liang, S. Liu, and W. Yi, “Modeling and Analysis of Inter-Process Communication Delay in ROS 2,” in 2023 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2023, pp. 198–209.

[13] B. B. Brandenburg and M. Gül, “Global scheduling not required: Simple, near-optimal multiprocessor real-time scheduling with semi-partitioned
reservations,” in 2016 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2016, pp. 99–110.

[14] D. Casini, A. Biondi, and G. Buttazzo, “Task splitting and load balancing of dynamic real-time workloads for semi-partitioned edf,” IEEE Transactions
on Computers, vol. 70, no. 12, pp. 2168–2181, 2020.

3


