Modeling and Scheduling of Fusion Patterns in
Autonomous Driving Systems

Hoora Sobhani[0009—0009—6611—9374] and Hyoseung Kim[0000—0002—8553—732X]

University of California, Riverside (UCR)
{hsobh002, hyoseungl}@ucr.edu

Abstract. In Autonomous Driving Systems (ADS), Directed Acyclic
Graphs (DAGs) are widely used to model complex data dependencies
and inter-task communication. However, existing DAG scheduling ap-
proaches oversimplify data fusion tasks by assuming fixed triggering
mechanisms, failing to capture the diverse fusion patterns found in real-
world ADS software stacks. In this paper, we propose a systematic frame-
work for analyzing various fusion patterns and their performance im-
plications in ADS. Our framework models three distinct fusion task
types: timer-triggered, wait-for-all, and immediate fusion, which com-
prehensively represent real-world fusion behaviors. Our Integer Linear
Programming (ILP)-based approach enables an optimization of multiple
real-time performance metrics, including reaction time, time disparity,
age of information, and response time, while generating deterministic
offline schedules directly applicable to real platforms. Evaluation using
real-world ADS case studies, Raspberry Pi implementation, and ran-
domly generated DAGs demonstrates that our framework handles di-
verse fusion patterns beyond the scope of existing work, and achieves
substantial performance improvements in comparable scenarios.

1 Introduction

Research in Autonomous Driving Systems (ADS) has attracted strong interest
from academia and industry, aiming to develop safe and reliable autonomous
vehicles. The ADS software stack consists of tightly interconnected components
with intricate data dependencies, interacting through a deep processing pipeline
[14, 19, 39]. These components include sensors, algorithms, and actuators, all
working together under strict timing constraints to ensure safety. They are often
represented as nodes in Directed Acyclic Graphs (DAGs), capturing the system’s
workflow, task dependencies, and inter-task communication.

DAGs have been instrumental in studying task scheduling and resource al-
location in ADS, especially to improve key performance metrics like end-to-
end latency, sensor time disparity, data freshness, and responsiveness in safety-
critical, real-time environments. However, existing DAG scheduling models of-
ten fall short in fully capturing the diverse behaviors of real-world ADS, such
as Autoware [2]. One major challenge is accurately modeling data fusion nodes,
which aggregate multiple inputs to generate outputs. In ADS, numerous sen-
sors operate at different sampling rates, passing their data through these fusion

2 H. Sobhani et al.

nodes. Dealing with the varying sampling rates of sensors is inevitable due to
the limited flexibility of sensor hardware (e.g., lidar and camera cannot choose
arbitrary sampling periods). Enforcing rate uniformity may cause all tasks to
run with the shortest period or with the GCD of all periods. In addition, the
fusion nodes add complexity as they can be triggered either by their own timers
or by external events with unpredictable arrival times. This complexity deepens
in event-triggered cases, where any of the inputs to a fusion node can inde-
pendently initiate its activation. Such variability in activation timing and pat-
terns complicates modeling and scheduling, as traditional DAG models often
assume more uniform or simpler task activation mechanisms. For instance, au-
thors in [32,33,37] assumed that a fusion node is triggered by a single dominant
input edge, while authors in [25] assumed all nodes, including fusion nodes, are
triggered solely by timers. While these models may fit certain applications, ex-
isting work focuses on only one type of fusion behavior, overlooking the various
types found in real-world ADS such as Autoware.

Beyond fusion node limitations, existing studies typically optimize individual
chains, rather than considering the entire DAG holistically with multiple met-
rics (25,32, 36]. Even studies that include both timer- and event-triggered tasks
[11,31,32] fail to capture real-world ADS configurations like branch-then-fusion
paths (where multiple outputs fork from a common node and later converge
into a single node) and diverse triggering mechanisms. Addressing these gaps is
essential to reflect the dynamic and interconnected nature of ADS workflows.

In this paper, we offer a systematic framework for analyzing various fusion
patterns in ADS and their impact on real-time performance. To explore the best
achievable performance under different fusion strategies, we formulate the DAG
scheduling problem and diverse fusion patterns as Integer Linear Programming
(ILP) constraints, as ILP allows us to obtain optimal schedules while offering
extensibility in constraint modeling. Our approach enables a quantitative com-
parison of how different fusion strategies affect key performance metrics such as
worst-case response time (WCRT), maximum reaction time (MRT), maximum
time disparity (MTD), and peak age of information (PAol), while also uncovering
trade-offs of different fusion nodes in ADS design. The optimal schedule gener-
ated by our framework can be directly applicable to real-world ADS with static
non-preemptive scheduling, such as NVIDIA’s STM [7]. We evaluate our frame-
work through comparison against state-of-the-art methods, implementation on
a Raspberry Pi, and experiments with randomly generated complex DAGs. Ex-
perimental results show that our framework successfully handles various fusion
patterns beyond the scope of prior work and achieves substantial improvements
over existing methods in comparable scenarios.

2 Related Work

Prior work on DAG scheduling in real-time systems, particularly for ADS ap-
plications, can be categorized by the type of chains used to construct DAG
models, which differ in data communication and task-triggering mechanisms.

Modeling and Scheduling of Fusion Patterns in ADS 3

Generally, a chain is a sequence of tasks, where each task depends on data from
its predecessor. Tasks within a chain can be triggered by either timers or events.
A widely adopted model is the cause-effect chain, traditionally representing
multi-rate real-time tasks triggered solely by timers at different rates [3,29, 34].
These chains have evolved to include event-triggered tasks, enabling responses to
specific events rather than relying entirely on timers [28,30,31,33,37]. We refer
to the former as multi-rate cause-effect chains and the latter as enhanced
cause-effect chains throughout this section.

Many studies on cause-effect chains aim to minimize metrics like maximum
reaction time (MRT) and maximum data age (MDA), which are typically used
to evaluate system responsiveness and data freshness, respectively. For example,
Becker et al. eliminated data paths in a DAG that exceed age constraints to
improve MRT and MDA [3,4]. A common goal across these studies is to model
task communication across the DAG and explore solutions that streamline data
flow and fusion for faster responsiveness to sensor data and improved data fresh-
ness. For multi-rate cause-effect chains, Tang et al. [29] compared communication
paradigms (implicit, LET, DBP), while Maia et al. [18] explored strategies to
adjust communication intervals. Saidi et al. [20] introduced a graph transforma-
tion approach to establish execution order, and Verucchi et al. [34] presented
a method for converting multi-rate DAG chains into single-rate DAGs. Beyond
the focus on upper-bounding MRT and MDA [8,17], Jiang et al. [13] examined
maximum time disparity (MTD)—typically used to measure deviations in sensor
sampling times—between multi-sensor data, emphasizing the need for accurate
synchronization for fusion. For enhanced cause-effect chains, Tang et al. [28] re-
duced MRT via buffer limits and data refreshing, and later proposed a dynamic
priority inheritance and buffer manipulation protocol to lower MRT and MDA
in their sporadic variant of these chains [30]. Regarding upper-bounding MTD
alongside end-to-end latency, Sun et al. [26] proposed a mechanism to select
which sensor data is used by an actuator and fused along the path from sensor
to actuator, assuming fusion nodes are triggered only when a new data arrives.

Data communication and fusion in cause-effect chains are also addressed in
ROS 2-related studies. Li et. al. [16] explored the potential and limitations of
ROS 2 message synchronizer in multi-sensor data fusion, while Sun et. al. [27]
proposed a novel message synchronization policy for ROS 2 to improve MTD
when fusing multi-sensor data. Saito et. al. [21] proposed a priority-based mes-
sage transmission and a synchronization node to address MTD of sensor data.
Later, in [22], they introduced a synchronization system that buffers the highest-
rate sensor to align periods, converting multi-rate DAGs into single-rate ones.
Sun et al. [25] proposed an ILP-based model to optimize MRT and MDA by re-
ducing redundant workload and unnecessary messages. For enhanced cause-effect
chains, the model in [9-11,31,32] stands as one of the most advanced implemen-
tations. They analyzed MRT and MDA within a single-threaded executor setup
by classifying intra- and inter-task data communication patterns [32] and later
demonstrated cases in which MRT and MDA can be equivalent [11]. This analy-
sis was extended to multiple single-threaded executors, incorporating additional

4 H. Sobhani et al.

el P .
’ \‘ I’ \\
! L:
@ Camera ﬁ—!’ Imag; — ane Control
i processing detection \
i i Planning
i
1 iec
&Camera) —— Image |__ | Object / Throttle
!\ processing detection
I 1
h f
L
i

) Radar — Space —_ Object _, Prediction

detection trw
®® @
Localization © “LS i s
T ® ¢ Actuators

———— [lphbtusintyiebs

&, GPS

\
i
1
1
1
1
1
1
1
1
1
1
1
1

. . 1

= Lidar ——+> Segmentation — Recognition 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

' \
i |
! 1

1
! 1
1 1
1 1
1 |
! 1
! 1
! 1
1 1
1 1
! 1
! 1
! 1
1 |
 Steer !
! 1
! 1
1 |
1 |
1 |
! 1
! 1
! 1
1 |
1 |
! 1
! 1
! 1
! 1
1 1
\)

Fig. 1: Holistic overview of the ADS software stack, inspired by [15, 36].

communication paradigms [31]. Yano et al. [38] proposed a scheduling model
that decomposes the Autoware DAG into multi-deadline sub-DAGs, aiming to
bypass challenges related to synchronization, queue consumption patterns, and
intricate data dependencies.

In summary, existing approaches do not fully capture the complexity of real-
world ADS that feature multiple triggering options for fusion nodes and branch-
then-fusion paths. While each prior work addresses specific fusion patterns, none
provides a comprehensive framework that handles all fusion behaviors found in
practice (more details in Sec. 4). Moreover, integrating these approaches to ana-
lyze complete ADS is non-trivial, since each work employs different assumptions,
abstractions, and analytical approaches, making them often incompatible with
one another. This highlights a gap in modeling fusion nodes within complex ADS
structures, which motivates our work.

3 Background and System Model

3.1 Overview of ADS software stack

ADS consists of tightly integrated software components, each essential to the
vehicle’s safe operation. As shown in Fig. 1, these components can be cate-
gorized into three main classes: sensors, algorithm stack, and control systems
(actuators). Sensors, including LiDAR, radar, cameras, GPS, and others, gather
real-time data from the environment, which serves as input for the system’s
perception. The algorithm stack, which includes object and lane detection, lo-
calization, prediction, planning, etc., processes sensor data and interprets it to
real-time situational-aware decisions. Finally, actuators execute these decisions
to control vehicle dynamics, including steering, acceleration, and braking.
Communication between these interdependent software components happens
through a deep processing pipeline. Data sampled by sensors is processed and,
at various points along the pipeline, combined with data from other sensors or

Modeling and Scheduling of Fusion Patterns in ADS 5

outputs from intermediate components in the algorithm stack, such as predic-
tion or planning nodes, as shown in Fig. 1. These nodes, called fusion nodes,
integrate multiple inputs to produce outputs, with their activation timing and
triggering patterns varying based on the ADS application’s specifications. The
interaction between components, the diverse data fusion patterns, and the pres-
ence of branch-then-fusion paths create a complex structure that demands a
robust framework to manage real-time constraints, as delays in any component
can compromise vehicle safety. Motivated by this, the real-time systems commu-
nity has introduced several key metrics to ensure timely responses.

— Maximum Reaction Time (MRT): The longest time interval from the
occurrence of an external event (which can happen between sensor instances)
to the first actuator response to that event [8].! For a DAG with multiple
sensors contributing to an actuator, MRT should consider the maximum value
across all sensor-to-actuator paths.

— Maximum Time Disparity (MTD): The maximum time difference be-
tween the release times of the oldest and newest sensor data contributing to an
actuator output instance, measured across all instances of that actuator [13].

— Worst-Case Response Time (WCRT): The maximum duration of each
chain in a DAG, measured from a sensor task’s release time to an actuator
task’s completion time [23].

— Peak Age of Information (PAol): Aol represents the time elapsed since
the generation of the latest data sample to the current time [35]. PAol is the
maximum Aol value across all sensors in the system [5].

3.2 System Model

This section presents our system model, defining DAG, chain, and task repre-
sentations on a multi-core platform with identical CPU cores. The summary of
notations is provided in Table 1.

DAG. A Directed Acyclic Graph (DAG) is used to represent the ADS soft-
ware application. We denote the DAG as G = (V, E), where V represents the
set of vertices and F represents the set of edges. Each vertex or node in the
DAG corresponds to a task, and the terms “vertex”, “node”, and “task” are used
interchangeably throughout the paper. Each edge E;/ ; € E indicates a data de-
pendency, where the output of task ¢’ serves as the input to task i. Without loss
of generality, we assume inter-task communication occurs through a unit-sized
buffer between consecutive tasks, following the “last-is-best” principle [17], which
ensures that only the most recent data is retained. Additionally, the buffer is
non-blocking [1], which is easily achievable through double-buffering techniques
within the implicit communication paradigm [17]. Source and sink nodes of the
DAG, respectively, are the representative of tasks from the sensor and actuator
classes mentioned in Sec. 3.1. We assume the DAG under analysis, GG, comprises
m sensor nodes and n non-sensor nodes, with a total size of |V| =m + n.

L A recent study has reported that MRT is equivalent to the maximum data age
(MDA) [11]; hence, we use MRT as a representative of both in this work.

6 H. Sobhani et al.

Table 1: Table of Notations
Symbol |Description
G = (V, E) |IDAG G with the set of vertices V and edges F

T The task i where 7, € V
ei, Ti, D; |The execution time, the period, and the deadline of 7;
0; The type of 7; where 0; € {“sen”, “sub”, “t-fus”, “w-fus”, “i-fus”}.
pred; The set of adjacent predecessors of 7; where pred; = {7/|VE; ; € E}
Tij The j-th instance of 7;

Sij, fi,j, di,j| The start time, finish time, and absolute deadline of instance 7; ;
m,n, I |The number of sensors, non-sensor tasks, and cores

Ts, T® A source and a sink node in the DAG

Chain. A chain represents a path within the DAG, running from a source node
(sensor) to a sink node (actuator) and capturing a sequence of dependent tasks
in a set order. Together, these chains form the complete DAG, showing all in-
terdependencies in the system. Since our focus is on the overall DAG structure
rather than individual chains, we use DAG notations.

Tasks. A task 7; is a software component represented as a node in the DAG
(iie., V.= {71,..., Tm1n}), which can be triggered either by a timer or by an
external event. The task 7; is characterized as 7; = {e;, T}, D;, 0;, pred; }; where e;
is the worst-case execution time (WCET) of 7;; T; and D; denote its period and
relative deadline, respectively; 0; represents the type of 7; (e.g., sensor, fusion,
etc; details will be followed); and pred; is the set of adjacent predecessor tasks
of 7; in the DAG, i.e., pred; = {7|VE; ; € E}. Note that for an event-triggered
task, we define T; = 0. We assume that the execution of each task follows the
read-execute-write semantics, where input data is read at the task’s start time,
and output data is written at its finish time [3,6,32|. Tasks are scheduled non-
preemptively, like callbacks in ROS 2 and runnables in AUTOSAR.

Task Instances. Each task, whether triggered by a timer or an event, generates
a sequence of task instances. We denote the j-th instance of task 7 as 7; ;.
The start and finish times of execution of 7; ; are represented by s; ; and f; ;,
respectively. For simplicity, we assume that a task instance is released (ready for
execution) immediately upon being triggered, and its absolute deadline, denoted
as d; j, is calculated by this release time 7; ; plus its relative deadline D;. Also,
the first instance of each sensor task is assumed to arrive at time 0.

4 Task Types and Fusion Patterns in ADS

In this section, we characterize the diverse behaviors of various types of tasks in
ADS, with a particular focus on fusion tasks. Based on various triggering factors
and the number of precedent inputs, we categorize a task 7; into one of five
distinct types, which are detailed in the following paragraph.

— Sensor (f; = “sen”): Sensor task is a periodic timer-triggered task, sampling
real-time data and generating output for a successor task. Considering a sensor

Modeling and Scheduling of Fusion Patterns in ADS 7

task is a source node in DAG, it has no predecessor dependencies. Therefore,
pred; = @ is an empty set for a sensor task ;.

— Subscription (6; =“sub”): Subscription task is event-triggered, activated upon
receiving one input message and publishing one output message accordingly.
For these tasks, the size of the pred; is always 1, meaning ||pred;|| = 1.

— T-fusion (6; = “t-fus”): T-fusion task is timer-triggered and periodic, gathering
inputs from multiple preceding tasks and merging them into a unified output.
A real-world ADS example of this type can be found in Autoware, such as the
ndt_scan_matcher component [2]. Notably, an intermediate or sink node in
a DAG that is timer-triggered but has only one input can also be considered
a special form of T-fusion.

— W-fusion (0; = “w-fus”): W-fusion is a wait-for-all fusion task, triggered when
it has received inputs from all its predecessor tasks, only generating an output
once all required inputs are available. A real-world ADS example of this type
in Autoware is tracking_object_merger component [2].

— I-fusion (6; = “i-fus”): In contrast to W-fusion, an I-fusion task is triggered as
immediately as any of its predecessor tasks publishes a new message, reacting
without waiting for all inputs to arrive. An example of this type in Autoware
is the traffic_light_occlusion_predictor component [2].

Among these task types, sensor and subscription nodes have been extensively
studied in prior work. Their modeling and scheduling are relatively straightfor-
ward, and we include them here for the sake of completeness. However, unlike
prior work where each study considered only one type of fusion node, our main
focus is on all three fusion types described above. For example, Toba et al. [33]
considered trigger and update edges, where only trigger edges activate the fu-
sion node’s execution. Similarly, Teper et al. [32] used passive and trigger edges,
with the fusion node triggered solely by the one dominant trigger edge. These
behaviors fall into our W-fusion category, which can also handle cases where
the triggering edge is not predetermined. Multi-rate DAG analysis [17,25] as-
sumes that all fusion nodes are time-triggered, which can be represented using
our T-fusion nodes. Sun et al. [26] assumed that only sensors and actuators
are timer-triggered and all other intermediate nodes, including fusion nodes, are
event-triggered, which our I-fusion node can model.

To better illustrate these task types, Fig. 2 presents an example DAG with
the node types defined above. Nodes 11 to 74 represent sensors, 75 and 79 are
subscription nodes, and 75, 719, and 711 correspond to I-fusion, T-fusion, and W-
fusion nodes, respectively. Our model supports not only multiple sink nodes but
also branch (or fork) nodes. A branch node whose output diverges into multiple
paths can be any of the above node types. If the immediate successor of a branch
node is a subscription node, e.g., 7¢ and 77, it is modeled as “i-fus” for formulation
purposes (for details, see Appendix A.4 of our extended manuscript [24]).

Based on task types, the number of instances of each task can be calcu-
lated. Consider the time interval of interest A that is an integer multiple of the
hyperperiod (HP), i.e., A = k- HP where HP is the least common multiple
(LCM) of all time-triggered tasks (sensors and T-fusion nodes). The interval A

8 H. Sobhani et al.

starts at time 0, and all sensor tasks initially arrive at time 0. Alg. 1 details
the calculation of the instance count, n-ins, for a task 7; within this interval A.
For timer-triggered tasks like sensor and T-fusion nodes, the instance count is
straightforward to compute by n-ins(1;, A) = % because A is an integer multi-
ple of HP (lines 2-3). For event-triggered tasks, the instance count calculation
varies. The instance count of a W-fusion node is determined by the least fre-
quent adjacent predecessor’s n-ins (lines 4-5), as the W-fusion has to wait for
all predecessors by its definition. An I-fusion node is triggered by any updated
input from its predecessors. But at the very beginning, it still has to wait for
every predecessor to produce at least one input for fusion. Hence, the instance
count of an I-fusion node (lines 6-7) is obtained by the sum of instance counts
of its predecessors (> n-ins(pre, A)) subtracted by the number of predecessor
instances to wait (||pred;|| — 1). In the case of a subscription task, the instance
count matches the n-ins of its adjacent predecessor, as it has a single predecessor
and is triggered whenever input is received from its predecessor. (lines 8-9).

Algorithm 1 n-ins(7;,A4)

1: n-ins <0
2: if 0; € {“sen”,“t-fus”} then
3 n-ins <— TAi
4: else if 0; == “w-fus” then
5: N-ins < Milpreepred; (n-ins(pre, A))
6: else if 0; == “i-fus” then
7 n-ins <
(Zpreépredi n_ins(pre7 A)) - (Hpredlu - 1)
8: else if §; == “sub” then
Fig. 2: Task types in a DAG 9 n-ins < n-ins(pred;, A)
10: end if return n-ins

Example: Instance Counts. Let us apply Alg. 1 to the DAG example in
Fig. 2, assuming A = 1- HP = 60. For the sensor tasks 71, 72, 73, 74, Alg. 1 gives
n-ins(ty, HP) = 6, n-ins(ra, HP) = 3, n-ins(r3, HP) = 4, n-ins(14, HP) = 2. For
the subscription task 75, it inherits 71, so n-ins(75, HP) = n-ins(m, HP) = 6. For
the I-fusion tasks with single predecessors, 7¢ and 77, Alg. 1 gives n-ins(rg, HP) =
n-ins(te, HP) — (1 — 1) = 3 and n-ins(r7, HP) = n-ins(ra, HP) — (1 — 1) = 3,
showing that they are triggered by every instance of their predecessors. For the
other I-fusion task 75, n-ins(rs, HP) = n-ins(rs3, HP) + n-ins(t4, HP) — (2 —
1) = 5 because the first instance 75 is triggered only after both 731 and 743
have arrived. For the subscription task 79, n-ins(rg, HP) = n-ins(1s, HP) =
3. For the T-fusion task 719, n-ins(ti9, HP) = 3. For the W-fusion task 711,
n-ins(t11, HP) = min(n-ins(r7, HP), n-ins(rs, HP)) = min(3,5) = 3 because
711 waits for new inputs from both 77 and 75 before triggering a new instance.

Example: Scheduling Behavior. To clarify the behavior of fusion nodes in
the scheduling context, we provide illustrative examples for the three fusion
types, shown in Fig. 3a, which is a subset of the ADS software stack in Fig. 1. In
this DAG, the prediction node serves as a fusion node, while all other non-sensor

Modeling and Scheduling of Fusion Patterns in ADS 9

Object
tracking
Te

| | | = o

o

~

o & | |efee| e

Prediction
)

Core1 Core2

ol oyl oy e

Core1 Core2
Core1 Core2

Timefms) Timefms)

(b) DAG scheduling with T-fusion node (d) DAG scheduling with I-fusion node

Fig. 3: Illustrative examples on fusion nodes

tasks are subscription nodes. We set the WCET of sensor and subscription nodes
to 2 ms and assigned a period of 20 ms to each sensor. The WCET of the fusion
node was set to 4 ms, and we explored its behavior by varying its type among
T-fusion, W-fusion, and I-fusion. We first configure the prediction task as a T-
fusion node with a period of 15 ms and examine its effect on DAG scheduling, as
shown in Fig. 3b. In this case, the prediction task is triggered once per its period
(= 15), regardless of input arrivals. Next, to illustrate W-fusion, we change the
prediction task to have the type 8 = “w-fus”. The scheduling behavior of W-
fusion, waiting for all its dependencies before execution, is depicted in Fig. 3c.
Finally, we demonstrate I-fusion by setting the prediction task to have 8 = “i-fus”.
As shown in Fig. 3d, I-fusion triggers the prediction task immediately upon the
arrival of any input, except the first instance, highlighting its responsiveness
compared to the other fusion types. The first instance of each fusion node requires
all its predecessors to be executed at least once. The arrows in the figures indicate
the triggering time of each fusion instance.

Now that we have a clearer understanding of fusion tasks and their impact
on scheduling and real-time performance, we formulate their diverse behaviors
and analyze their effects on key metrics such as MRT, MTD, PAOI, and WCRT
in the following section.

5 Formulation of Fusion Tasks

In this section, we begin by providing a brief formulation of the general require-
ments for resource allocation and task scheduling in a multi-core system, using
ILP constraints. We then focus on task-specific behaviors, particularly fusion
tasks, and explore how these tasks influence scheduling and timing, especially
their impact on the start and finish times of other tasks. Finally, we explain how
to model and formulate key real-time performance metrics for ADS into ILP,
enabling the study of the effects of different fusion types on these metrics.

10 H. Sobhani et al.

The DAG under analysis, G, operates on a multi-core platform equipped with
II identical CPU cores. We do not restrict tasks to be bound to specific cores,
allowing instances of the same task to execute on different cores. To achieve this,
we define a binary variable y; that equals 1 if an instance 7; ; is assigned to core
7 (where 1 < 7 < IT), and 0 otherwise. In a scheduling problem, once a task
instance is assigned to a core, its start and finish times need to be determined.
Since tasks are non-preemptible, each task runs uninterrupted once it starts.
Therefore, given the start time, we can calculate the finish time by adding the
WCET e; of the task. As a result, the scheduling problem reduces to determining
the start time of each task instance; once the start time is known, the finish
time follows directly. To ensure each task instance 7; ; meets its deadline, we
compare its finish time f; ; with its absolute deadline d; ;. Since expressing basic
scheduling requirements, such as task-to-core mapping, overlap prevention, task
deadline constraints (D; and d; ;), in ILP is well-known and not the main focus
of our work, we discuss it in Appendix A of [24].

Before focusing on how to formulate the different fusion types into ILP con-
straints, we briefly review sensor and subscription nodes for the sake of com-
pleteness. For sensor nodes, which have no preceding data dependencies, the
start time is determined solely by their timer period and instance release time,
following the standard definition of periodic tasks. To ensure that a sensor in-
stance 7; ; (where 6; = “sen”) starts after its release time and finishes before the
next instance arrives, we define the following constraints:

sij>Ti-(j—1), Y eV A 6 ="en"Vje€ [l nins(r;, A)
Sij = fl"jfl, Vr; € VA 0; =“en” Vj € [17 n-ins(Ti,A)]

(1)

For subscription nodes, the start time is determined by their dependency
on a single predecessor node. Specifically, the start time of a subscription task
instance must follow the finish time of its preceding task instance with the same
instance index. Therefore, for a subscription task instance 7; j (where 6; = “sub”),
the following equation holds, with 7;; representing its sole predecessor:

Sij > fij, V€V A 0; =%ub”, pred; = 1],V € [1,n-ins(1;, A)] (2)

5.1 Fusion Task Constraints

Unlike subscription tasks, fusion tasks (like T-fusion, W-fusion, or I-fusion) have
multiple predecessors with different arrival rates. Hence, it is not straightforward
to establish the relationship between the instance index of a fusion task and those
of its predecessors.

To address this issue, we first introduce the concept of producer tasks. Pro-
ducer tasks are sensor and fusion nodes; they generate and provide data to
subsequent tasks, establishing the root for a new instance for subsequent non-
producer tasks. Hence, any non-producer tasks (i.e., subscription tasks) use the
same instance indices as those of their producers’ instances.

Let us use producer(r;) to denote the producer task of 7;. If 7; is a sub-
scription task, producer(r;) obviously gives only one task: the closest preceding

Modeling and Scheduling of Fusion Patterns in ADS 11

sensor or fusion task of 7; in the DAG hierarchy. If 7; is either a sensor or fusion
task, producer(r;) = 7; because 7; is a producer by itself. Note that producer(r;)
should not be confused with pred;: if 7; is a fusion task, it can have multiple
predecessors (|pred;| > 1) and each of its predecessors has its own producer
(producer(ry)|y € pred;). We also define pred _producers(t;) as the set of pro-
ducers of 7;’s predecessors:

pred__producers(t;) = {producer(t;)|V1; € pred;}

For example, consider the DAG in Fig. 3a. The sink node 79 has predy =
{76, 77,78} and pred_producers(tg) = {71, T2, 73}. Note that producer(rg) = 79
because 19 is a fusion node.

Next, to represent which instances of predecessors contribute to a fusion task
instance, we define a binary decision variable as follows:

Definition 1. Consider a fusion task 7; and one of its predecessors’ producer T,
where 1, € pred_producers(r;). A binary decision variable U(i), (p.jp) indicates
whether the fusion task’s instance 7; ; uses the j,-th instance of Tp:

(3)

1, if 7 ; uses the j,-th instance of Tp
(1.3),(Pdp) 0, otherwise

With this definition, for a fusion task instance 7; j, we can determine which
instance j’ of producer(r;; € pred;) is used by 7; ;. Recall that producer(7;)
determines the instance index of the subsequent task 7;/; this applies to any
type of task, because if 7/ is either a sensor or fusion task, producer(r;) = 7.
Therefore, we can set constraints on the start time of the fusion task instance
7i,; by linking it to the finish time of the predecessor instance 7y j/ it uses. This
ensures that each fusion instance begins only after the appropriate predecessor
instance completes.

Hence, we establish the following lemma for all three types of fusion nodes.

Lemma 1 (Constraint: start time of fusion nodes). The start time of a

fusion task instance 7; ;, i.e., 0; € {“t-fus”, “w-fus”, “i-fus”}, should satisfy the
following condition:

Si,j > fi/,j’ *U(4,5),(producer(t;1),5') VT’L" € pred’iavj/ € [17 n'ins(Ti'7 A)] (4)

Proof. Here, T is one of 7;'s predecessors (V1 € pred;), and u(; j) (producer(r,/).j')
indicates whether T; j uses j'-th instance of 7;: ’s producer. To prove this equation,

we consider two cases for U(; jy (producer(ry).,j')* (i) If U(i,5), (producer(r;),j)) = 0;

the right-hand side is zero, which is always valid as start times are never nega-
tive. (1) If u(; j),(producer(r,),j) = 1, meaning the j'-th instance of T ’s producer

is used by 7; 5, we have two sub-cases:

(ii-A) If 7y is a sensor or fusion node, producer (1) = Ty, and U jy (producer(r,),j') =
Ui gy, i) = L. This means 7y j contributes to 7; j, s0 s;; > fir jr.

(#i-B) If 7 is a subscription node, it inherits the instance index of its producer.
Thus, the j'-th instance of T is used by 7; ;, and s; j > fir j+ holds. O

12 H. Sobhani et al.

Each instance of a fusion task uses only one instance from each of its pre-
decessors’ producers, specifically the most recent instance available from each
producer. This imposes the following constraints.

Lemma 2 (Constraint: used only once by an instance). Since a fusion
task instance 7; ; uses only one instance from each of its predecessors’ producers,
»” »” ey

the following constraint must hold for any 7; € V', where 0; € {“t-fus”, “w-fus”, “i-fus”},
and any j € [1, n-ins(r;, A)]:

n-ins(7;s,A)

Z U(4,5),(producer(r;r),§') = 1, Vrir € pred; (5)

=1

Proof. We prove by contradiction. Assume for a fusion instance 7; ; and its pre-
decessor Ti, the summation can be other than 1. We consider two cases:

(Z) Z;L'_:;S(Ti/7A) U(4,5),(producer(r;),j') — 0: This means U(i,5),(producer(r;),j') = 0
for all j', meaning no instance of producer(r;) or 7y contributes to 7; ;. This
contradicts our system model, which requires that at least one of the predecessors
must execute to perform a fusion operation.

(i1) Z?fﬂs(n"m Ui,) (producer(r,),j1) > Lo If the summation is greater than 1,
multiple instances of T, contribute to a single fusion instance 7; ;. This contra-
dicts fusion node requirements, as each fusion node uses only the most recent
instance from each predecessor. While some instances may be dropped (T-fusion
or W-fusion) or reused (T-fusion or I-fusion), only one instance of T, should
contribute to 7; ;.

Thus, by contradiction, the summation must be 1, proving the lemma. a

Lemma 3 (Constraint: most recent instance is used). Since a fusion
task instance 7; ; uses the most recent instance from each of its predecessor
tasks’ producers, the following constraint must hold for any 7, € V, where
0; € {“t-fus”, “w-fus”, “i-fus”}, and any j € [1, n-ins(r;, A)]:

n-ins(7;s,A) n-ins(t;,A)
-/ -/
§ J " U(4,5),(producer(T;),5") < E JUG,541),(producer(T;),5') V1 € pred;
j'=1 Jj'=1

(6)

Proof. By Lemma 2, for any fusion instance 7; ; and predecessor T, only one
instance j' in [1, n-ins(7ir, A)] has u(;) (producer(r,),j) = 1, with all other terms
being 0. Multiplying each term by j', we get j" - ug j) (producer(r,).j1) = J' for
the contributing instance and 0 for others. Summing over all instances gives
the instance index j' of the single contributing instance, which represents the
instance of T used in 7 ;. The inequality ensures that the instance of Ty used
in T; j41 15 the same or newer than in 7; ;. O

Having established the constraints for all fusion node types, we now outline
the specific constraints for each type.

Modeling and Scheduling of Fusion Patterns in ADS 13

T-fusion: For T-fusion tasks, which are timer-triggered, Equation (1) applies,
along with the fusion-specific lemmas mentioned above.

‘W-fusion: For W-fusion tasks, where an instance is triggered only after receiving
inputs from all its predecessor tasks, an instance of each predecessor’s producer
can be used at most once by the fusion task instances. This leads to the following
constraint.

Lemma 4 (Constraint: used once by “w-fus”). Since, for a fusion task
T;, an instance of each predecessor’s producer can be used at most once by the
fusion task instances, the following constraint must hold for any 7, € V with
0; = “w-fus”:

n-ins(;,A)

Z U(i,5),(producer(r;),5') < 1, Vri €pred;,Vj' € [1, n-ins(rir, A)] (7)

=1
Proof. We prove by contradiction. Assume for a W-fusion task 7; and its pre-
decessor Ty jr, the summation value is greater than 1. This implies at least two
instances of T; use the same j'-th instance of Ty, which contradicts the W-fusion
property. A W-fusion waits for all predecessor inputs to arrive, and once Ty ji is
used, the next instance of T; must wait for a new instance of Ty, not reuse Ty jr.

Unlike W-fusion, T-fusion and I-fusion tasks can use the same producer in-
stance multiple times across different instances of the fusion task.

I-fusion: In the case of I-fusion tasks, an instance of the fusion node is triggered
by the arrival of any instance of its predecessor tasks. The key distinction here
is that, for I-fusion, at least one of the predecessor tasks must provide a new
instance to trigger an I-fusion task instance.

Lemma 5 (Constraint: at least one new instance for “i-fus”). The fol-
lowing constraint ensures that the I-fusion task T; progresses from instance 7; ;
to T; j+1, only when at least one of its predecessors’ producer has triggered a new
instance; where 7, € V. with 0; = “i-fus” and j € [1, n-ins(r;, A)]:

n-ins(;r,A) n-ins(7;,A)
(i s L — i)) > 1
3" U4 1) (producer(ry),5*) 3" W) producer(ri), i) =
T, Epred; 3'=1 j'=1

(8)

. . . n-ins(t;r,A) o
Proof. For a fusion instance 7; ; and its predecessor Ty, the term Zj,:1 o :

Ui 5),(producer(r;),j/) gives the instance index of T used in 7; ;. Similarly, for

. n-ins(7r;,,A) . .
Tij+1, the expression Zj,:l J' Ui, j41), (producer(ry),j7) JIves the instance

index of Ty used in that fusion instance. According to Lemma 3, the difference
between these two sums must be greater than or equal to 0. If the difference
is 0, the same instance of Ty is used in both 7; ; and 7; j+1. If the difference is
positive, a newer instance is used in 7; j11. To ensure that at least one predecessor
triggers the I-fusion node with a newer instance, we sum these differences across
all predecessors and confirm that the total is non-zero. ad

14 H. Sobhani et al.

5.2 Real-Time Performance Metric Constraints

Based on the formulation of fusion task behavior in Sec. 5.1, this section ex-
plains how to model and derive key real-time performance metrics—such as
MRT, MTD, PAol, and MS—using our proposed ILP optimization method.
These metrics are essential for assessing system responsiveness and ensuring
optimized performance. As they reflect the timing relationships between source
(sensor, 75) and sink (actuator, 7g) nodes in the DAG, we must identify which
instances of sensor nodes are linked to each instance j of a sink node 7y, i.e.,
Tg,j» When there is a directed path from a sensor 7, to 7g.

To determine which instances of sensor nodes contribute to each fusion or
sink node instances, we define an additional binary variable Uy; jy (s ;.), Where
7;,; is the j-th instance of task 7; (either a sink or fusion node) and 75 ;, is the
js-th instance of a sensor task 7,. Specifically:

(9)

1, if instance 75 ; uses the js-th instance of sensor 7s

Ui (s.30) = {0 ,
, otherwise

Note that U differs from the decision variable u (Def. 1). While w(; j) (p.j,) rep-

resents direct relationships between fusion instances and their immediate pre-

decessors’ producers (determined by the ILP solver), U ;) (s,5,) captures the

end-to-end relationships between any task instance and sensor instances (com-

puted using the u variables). The computation of U; ;) (s ;.) is done as follows.

1. If 7 is a sink and subscription node. It means 7; has only one immediate
preceding producer, i.e., producer(7;) = Tp.
— If 7; is directly connected to a sensor 7, (7, = Ts), every j-th instance of
7; is triggered by j-th instance of 7,. Hence, U(; j) (s,j) = 1
— If 7;’s producer, 7, is a fusion node, we have:

U(i,j),(s,js) = U(p,j),(s,js)a V7, € V,95 = “sen”,js (S [1, n-ins(TS,A)]

This is obvious because any sensor instance 7, ;, used by 7, ; is in turn
used by 7 ;.

2. If 7; is a fusion node (either sink or intermediate node). Since 7; may have
multiple preceding producers through 7;’s predecessors, we need to consider
the following cases for all 7, € pred_producers(r;).

— If 7, is a sensor 7, (7, = Ts), we can directly use u(jy,(s,j.):

Utii).(s.3e) = Wig)(s.50)s Vs € [L, neins(7s, A)]

— If 7, is a fusion node, we should take into account whether any instance
of 7, uses 7, ;, or not. Also, we need to consider all paths that may exist
between 7; and 75, as the DAG may contain branch nodes, resulting in
multiple paths. These can be determined by the following lemma.

Modeling and Scheduling of Fusion Patterns in ADS 15

Lemma 6 (Constraint: U for fusion nodes). The binary variable U ;) (s.5.)
for any fusion node T; and any sensor node Ts is equal to 1 if the following
inequality holds:

n-ins(tp,A)

> > waiwin) Ui 2 1 (10)

TpEpred_producers(r;) Jp=1
where j € [1, n-ins(r;, A)], and js € [1, n-ins(s, A)].

Proof. Consider an instance 7; ; that uses data from sensor instance 7, ; . This
data flows through an intermediate fusion node 7,. For 1; ; to use data from 7 ;_,
there must exist some instance j, of 7, such that: (i) 7; ; uses 1, j, (represented
by @i gy (pg,) = 1), and (ii) 75, uses Tsj. (U j,).(s..) = 1). The product
Ui 5),(psdn) " Ulpjp)s(s.js) €quals 1if and only if both conditions are met for instance
Jp- The summation over all possible instances j, of T, captures every potential
instance through which data from 7, ;, could reach 7; ;. Similarly, the summation
over all T, € pred_producers(t;) ensures that all possible paths in the DAG from
Ts,j, to Tij are considered. Therefore, U jy (s.5.) = 1 if there exists at least one
instance jp of 7, on at least one path from 7, ;. to T; j, which is exactly what the
> 1 condition represents. O

With the calculation of U, we can determine, for each sensor that has at
least a path to a sink, exactly which instances of the sensor 75 contribute to each
instance of the sink node 7g. However, multiple sensors may converge through
fusion nodes to contribute data to a sink node. Among the end-to-end latency
metrics discussed, MRT needs to identify the oldest data among all contributing
sensor instances for a given sink instance 7g ;, i.e., the earliest released sensor
instance. To find this earliest release time among sensor instances contributing
to a task instance 7; j, we define the function OT'S(r; ;) as follows:

OTS(7i;) = min{Ts - (js — 1)|V7s € V, 0, = “sen”,

. . : (11)
Vs € [1, n-ins(rs, A)], - if Ui gy (s.50) = 1}

Similarly, to compute the MTD metric for a sink node, in addition to OT'S(7; ;),
we must identify the newest data among all contributing sensor instances for
the given sink instance 7g ;. To capture this latest release time among sensor
instances contributing to 7; ;, we define the function NT'S(7; ;) as follows:

NTS(7,5) = maz{Ts - (js — 1)|V7s € V,0s = “sen”,

12
Vjs € [1, n—ins(Ts, A)], if U(i,j),(s,js) = 1} ()

Once we determine the OTS and NTS values for each sink instance, we
can derive the reaction time and time disparity. To obtain the maximum values
across all sink node instances within the interval A, OT'S and NT'S need to be
calculated for each instance. We define MRT following the first-to-first concept
from [8], and MTD according to the worst-case time disparity definition in [13].
Using our ILP model, these metrics for a sink node 7g, are formulated as follows:

MRT (1) = max{fg,; — OTS(1g,;-1)|Vj € [1, n-ins(1g, A)]} (13)

16 H. Sobhani et al.

MTD(1g) = max{NTS(rg, ;) — OTS(1%,;)|Vj € [1, n-ins(1g, A)]} (14)

To compute PAol, we determine the time interval between the initiation of
each sensor instance and its most recent update for every sensor contributing
to a sink node. We then take the maximum interval across sensors per sink
instance, and finally, the maximum among all sink instances. We formalize PAol
as follows, where s, ;. denotes the start time of the sensor instance 7 j,:

PAol(tg) = maz{(ss,j, — Ss,js—1) " Ut®,5),(s,5s)]

15
Vjs € [1, n-ins(1s, A)], V7s €V, Vj €[l n-ins(rg, A)|} (15)

The metrics above are formulated for each sink node for the entire DAG. In
addition, we can determine the worst-case response time (WCRT) of individual
chains from each sensor 75 to each sink node 7, as follows:

WCORT (7, 7g) = max{(fg,; — Ts - (js — 1)) - U®,5)(s.)]

Vi € [1, n-ins(te, A)], Vjs € [1, n-ins(7s, A)]} (16)

Note that, unlike MRT, MTD, and PAol, which consider all sensors contributing
to an actuator, WCRT is specified for a single sensor.

Another metric modeled in our work is the makespan (MS), often used to
enhance resource efficiency. Makespan is the total time taken to complete a
set of tasks, and in our model, it corresponds to the maximum finish time of
a sink instance across all its instances. In ADS, however, where tasks can be
triggered by events or on a timer, minimizing MS may seem less relevant since
tasks cannot begin before their designated trigger times. Still, including MS as
an optimization objective may provide insights for fine-tuning and calibrating
the system. MS is formulated as follows for a sink node 7g:

MS(1¢) = max{ fg,;|Vj € [1, n-ins(rg, A)]} (17)

Determining Time Interval A. Recall that we define the time interval A as
A =k-HP, where HP is the hyperperiod (Sec. 4). In conventional static sched-
ule generation, k = 1 is sufficient to check task-level schedulability because the
same schedule will repeat afterwards. However, for end-to-end metrics like MRT,
the initial hyperperiod serves as a warm-up phase [31], where all tasks and paths
within the DAG complete at least one execution cycle (e.g., ensuring data avail-
ability when T-fusion and I-fusion nodes are triggered subsequently). Therefore,
in our ILP-based framework, we use A = 3 - HP consisting of three phases: (i)
first HP: a warm-up phase for the second HP and is excluded from performance
evaluation; (ii) second HP: the optimized schedule that will repeat afterwards;
(iii) third HP: an exact copy of the second HP’s schedule with the same rela-
tive start and finish times for all task instances. The third HP is essential for
evaluating end-to-end latency metrics (MRT, MTD, and PAol), as data flows
may span across hyperperiod boundaries. Hence, we optimize these metrics for
two consecutive hyperperiods (the second and third) to capture cross-boundary
data flows. Once an optimized schedule is determined, it can be applied to run-
time systems by enforcing the predetermined start and finish times of the task
instances and repeating the second hyperperiod’s schedule.

Modeling and Scheduling of Fusion Patterns in ADS 17

With these metrics formulated by our ILP model, we define our ILP objective
function to minimize these metrics using a hierarchical-blended approach [12],
where metrics are first optimized using lexicographic ordering by priority, and
within the same priority level, a weighted sum is applied. This approach provides
configurable priorities and weights that let us choose which metric(s) to focus
on. It is worth mentioning that while each metric is defined as a maximum
(upper bound) value among different instances, our optimization objective is to
minimize these maximum values.

6 Evaluation

Our evaluation begins with case studies derived from existing literature, with ex-
tensions to capture additional fusion task types. We further evaluate our frame-
work using randomly generated DAGs, varying the number of nodes, edges,
and task types. The framework is implemented using Gurobi, a state-of-the-art
ILP solver capable of efficiently handling linear, mixed-integer, and quadratic
problems, and the optimal schedule from the framework has been tested on
a Raspberry Pi. We also provide additional customized case studies in Ap-
pendix B.2 in [24], focusing on unique features of our framework to highlight
how our model handles diverse DAG configurations. Throughout this section,
the relative deadlines of timer-triggered tasks are set equal to their periods,
while for event-triggered tasks, the relative deadline is set to the largest period
among the timer-triggered tasks. Additionally, the multi-objective function in
our framework includes all metrics—MRT, MTD, PAol, WCRT, and MS—with
weights and priorities set to 1, unless stated otherwise.

6.1 Case Studies from [32] and Beyond

We compare our ILP-based framework to the approach proposed in [32], which
focuses on optimizing MRT for chains within DAGs while supporting only certain
types of fusion nodes. Their method represents one of the most advanced existing
models for cause-effect chains and is evaluated using two case studies. To ensure
a fair comparison, we align our setup by configuring the number of CPU cores to
II = 1, matching their single-core assumption. We apply our work to the same
case studies and expand the task configurations beyond their model’s support.

Fusion System with Two Chains. To facilitate comparison, we adopted the
DAG structure shown in Fig. 4a from [32] with minor adjustments. In [32], the
authors explored two types of fusion nodes and two types of actuator nodes across
four different configurations. In our setup, we mapped their “subscription-fusion”
node type to our W-fusion node type; “timer-fusion” node to our T-fusion node;
“timer actuator” node to our T-fusion sink node with a single predecessor; and
“subscription-actuator” node to a subscription node in our model. In addition, to
evaluate the MTD metric, we introduced a new configuration in which sensors
have non-harmonic periods. Therefore, we used five configurations in total: (i)
WS: W-fusion node with Subscription actuator, (i) WT: W-fusion node with

18 H. Sobhani et al.

(b) Task configurations

Config| 05 07 Task periods (ms)
WS [“w-fus”| “sub” Ty =1T> =360
WT |“w-fus”|“t-fus” Ty =T> =420, Ty = 840
TS |“t-fus” | “sub” Ty =T =420, T5 = 840
TT |“t-fus” [“t-fus”| T1 = T> = 480, Ts = T7 = 960
(a) DAG structure NH [“t-fus” [“t-fus”| Ty = 480, T = 360, 15 = 17 = 960

Fig. 4: Fusion system with two chains

Table 2: MRT comparison with prior work and PAol/WCRT results

Config|[32]’s UB|[32]’s LB[IDS:MRT |[IDS:PAoI|IDS:WCRT of chain 1
WS 2190 510 510 360 150
WT 3780 1320 990 120 150
TS 2420 1410 990 60 150
TT 3830 2490 1110 60 150
NH 3830 2490 1250 40 250

T-fusion actuator, (i) T'S: T-fusion node with Subscription actuator, (iv) TT:
T-fusion node with T-fusion actuator, and (v) NH: Non-Harmonic periods for
the TT configuration. The period T; and type 6; of tasks that vary across config-
urations are listed in Table 4b. For all configurations, we set the WCET of the
tasks as follows: e; = eg = 10(ms), e2 = e4 = 20(ms), e5 = eg = ez = 30(ms).

Table 2 summarizes the comparison results, where IDS indicates the re-
sults from our framework (ILP-based DAG Schedule) when optimizing a multi-
objective function of MRT, MTD, PAol, and WCRT metrics. We include the
analytical upper-bound (UB) and the simulation lower-bound (LB) on MRT
computed using [32]’s implementation?; however, note that these are for reference
only as [32] analyzes MRT bounds under ROS2 scheduling while our framework
finds the performance bounds of various metrics through an optimal schedule.
The results show that our optimal schedule can achieve substantially lower MRT
compared to conventional scheduling while also optimizing other metrics. MTD
is not reported in the table since it is zero for the first four configurations due
to the same sensor periods, and equals 120 ms for the NH configuration.

Navigation System. This case study from [32], inspired by a navigation sys-
tem, models its DAG as shown in Fig. 5a. The number of cameras can vary,
allowing us to assess the impact of scaling on system performance. We denote
the optimal result from our framework as IDS. We also report the MRT value
obtained by implementing our optimal schedule as a static user-level scheduler
in Linux and running it for 100 hyperperiods on a Raspberry Pi 4 (64-bit quad-
core ARM Cortex-A72), denoted as the observed MRT. We then compare this
against the maximum UB and LB on MRT across all chains computed by [32], as
the number of cameras increases. To align with their model, we map their fusion
node to our W-fusion type. We adopt the same WCET values as in [32] for all
other nodes. Table 5b shows that our observed MRT matches their simulation LB
at lower camera counts and stays lower when their MRT increases at 10 cameras.
Results for other metrics are as follows: MTD = 0 and PAol = 100 ms for all

2 [32] analyzes only the MRT of each chain. Hence, we report the maximum MRT
upper-bound and lower-bound across all chains in the DAG.

Modeling and Scheduling of Fusion Patterns in ADS 19

(b) MRT comparison between [32] (UB and LB) and our
@ oo @ IDS output executed on Raspberry Pi 4
m|[32]’s UB|[32]’s LB|IDS:MRT |observed MRT (ms)
1 480 155 155 155.06
2 515 160 160 159.85
3 840 165 165 164.94
4 890 170 170 170.37
5 940 175 175 175.38
6 990 180 180 180.31
7| 1040 185 185 184.94
8] 1090 190 190 190.48
(a) Navigation system 9] 1140 105 195 104.93
With m cameras 10[1190 530 200 200.01

Fig. 5: Navigation System Case Study

camera counts (due to fixed camera periods); MS increases from 255 ms to 300
ms; and WCRT increases from 55 ms to 100 ms, both rising in 5 ms increments
per additional camera. We introduce additional configurations beyond [32]’s case
study, where the fusion node is a T-fusion or I-fusion. Due to space limits, the
results are provided in our extended manuscript [24] (Appendix B.1).

6.2 Randomly-Generated DAGs

To evaluate our framework with more complex DAGs with diverse fusion types,
we use randomly generated DAGs. We conducted this set of experiments on a
Linux server equipped with two AMD EPYC 7452 processors (32 cores each),
providing a total of 64 cores and 256GB (16GB x 16) of DDR4 RAM.

The size of each experiment is set to 100 randomly generated DAGs. The
WCET of event-triggered tasks was randomly selected from [1, 5](ms). For timer-
triggered tasks, we assigned a random utilization from [0.1,0.4] and chose a
period from {20,40,50,100}(ms), calculating their WCET as the product of
utilization and period. The number of cores used for scheduling is set to IT = 2.
Since our model supports multiple sink nodes, we calculated MRT, MTD, and
PAol for the sink with the last index. For WCRT, defined along a chain from a
sensor to a sink node, we focused on the path between the sensor with the first
index and the sink with the last index.

We first explored the impact of fusion types on a set of 100 DAGs, each
consisting of 6 nodes — 3 of which are sensor nodes — and 7 edges. Using
these same DAG structures, we varied the fusion node type by allowing multiple
fusion nodes, but all of the same type — either T-fusion, W-fusion, or I-fusion
— within each DAG. The distribution of optimized metrics across the feasible
cases (out of 100) is shown in Fig. 6a, highlighting the expected effects of each
fusion type. For example, comparing MRT and MTD across fusion types shows
that I-fusion tends to reduce MRT by acting on each new input immediately.
However, this same behavior increases MTD as it leads to multiple reuses of
some inputs, increasing the deviation between the oldest and newest sensor data
used for an actuator. We can also observe that T-fusion may result in high MRT

20 H. Sobhani et al.

200

ooty E o E
ooéuﬁ [ﬁufﬁem"@ T%uugfﬁ%srg@ i

5 o o s

°
W (1@ ool yCRT WRT (iT0 po (RS WS (T p0! (CFE W T0 90! (CFF WS oT0 gpot (R
#nodes:6 #nodes:8 #nodes:10 #nodes:12 #nodes:14

(a) Varying the allowed fusion types (b) Varying #nodes and #edges (W-fusion allowed)

Time (m:

o
o

W (0 ?w\wg\“ W (0 pw‘wdﬂ\m’«‘ Wi© ?N)\\N(,\\‘
t-fus w-fus i-fus

200 s °

Rl AR AR
FLEB s L3 o alTee gl

MR ppo (CRT T ppt (T W ppot (CRT RE ppot (R W o (R T opt (o T ppot (e
random T[Vsen] =20 T[Vsen] =20 T[Vsen] =40 T[Vsen] =40 T[Vsen]=50 T[Vsen] =50
TIVt-fus] = 50 T[Vt-fus] = 100 T[Vt-fus] = 50 T[Vt-fus] = 100 T[Vt-fus] = 40 T[Vt-fus] = 100

(c) Varying the periods (T-fusion allowed)

Fig. 6: Distribution of optimized real-time performance metrics across feasible cases

if task periods are not carefully chosen. To better investigate how task periods
affect these metrics, we conducted another experiment in which only T-fusion
is allowed for fusion nodes, assuming task periods can be configured at design
time, as shown in Fig. 6c. We compared the default case where sensor and T-
fusion node periods are randomly selected from {20, 40, 50, 100}(ms) to cases
with fixed period assignments. For simplicity, we assume all sensors (and T-
fusion nodes) share the same period, denoted as T'[Vsen] (and T[Vi-fus]) in the
figure. We excluded MTD from the results since it is zero in all cases except
the random one, due to uniform sensor and T-fusion periods. The results show
that there exist cases where the random case has better MRT than those with
T-fusion periods much shorter than sensor periods. In fact, MRT improves when
sensor and T-fusion periods are closely aligned. We also found that lower PAol
occurs when sensors have shorter periods and sample data more frequently. In
this experiment, we can see that if periods can be tuned, then our framework
gives valuable insight on their effect on real-time metrics.

In another experiment, we evaluated our framework by increasing DAG com-
plexity through varying the number of nodes and edges. We considered five con-
figurations, assuming the number of sensor nodes to be half the total nodes and
the number of edges to be twice the nodes. The number of edges was kept within
the valid DAG range, [|[V] — 1,|V]- (|[V]| — 1)/2] where |V| = m + n is the total
number of nodes. For each configuration, we generated 100 DAGs and analyzed
the distribution of real-time metrics, as shown in Fig. 6b. In this experiment,
we fixed the fusion type to W-fusion, except for I-fusion following branch nodes.
The results show that real-time metrics, such as MRT, increase with DAG com-
plexity, while the number of feasible cases declines due to the growing workload
on a fixed number of cores (I = 2). We further evaluated the schedulability
ratio and the average runtime of our framework using the same configurations.
The schedulability ratio is the ratio of feasible (schedulable) cases returned by

Modeling and Scheduling of Fusion Patterns in ADS 21

-
)
®
|
®
|
»
N
&

o

©
N
1)

o

o
-
o

-
=)

o
=
over feasible cases

Average Runtime (s)

o]

Schedulability Ratio
(with 10 mins timeout)

9

o

P

6 8 10 12 14 6 8 10 12 14
Number of Nodes Number of Nodes

(a) Schedulability ratio (b) Average runtime

o
o
o

Fig.7: The schedulability ratio (10-minute timeout) and average runtime per
case of our framework

our framework within 10 minutes out of 100 DAGs. As shown in Fig. 7, both the
schedulability ratio and the average runtime for feasible cases are influenced by
the increasing complexity of the DAGs, while the number of resources remains
unchanged. Note that the smaller runtime observed for 14 nodes compared to 12
nodes in Fig. 7b, as well as the lower MTD and PAol values for 14 nodes than
those for 12 nodes in Fig. 6b, are both due to the fewer feasible cases.

To further assess the flexibility of our framework, we increased the number of
cores, which enabled scheduling even more complex DAGs with improved success
rates and scalable average runtimes. The results of this extended evaluation are
provided in [24] (Appendix B.3) due to space limits.

7 Conclusion

In this paper, we introduce flexible and structured modeling for data fusion tasks
in the Autonomous Driving System (ADS) software stack, supporting complex
task types and chains with diverse triggering options that existing models have
not addressed comprehensively and systematically. We present an ILP-based
framework that quantitatively compares different fusion patterns and their im-
pact on real-time performance metrics, providing optimized resource allocation
(task-to-core mapping) and timing schemes for all task instances. Our frame-
work can optimize various real-time performance metrics, such as Maximum
Reaction Time (MRT), Maximum Time Disparity (MTD), Peak Age of Infor-
mation (PAol), Worst-Case Response Time (WCRT), and Makespan (MS), al-
lowing users to adjust fusion strategies and other system parameters. Evaluation
against existing approaches demonstrates that our framework not only better
handles complex DAG structures found in real systems, but also effectively an-
alyzes achievable bounds for key performance metrics. In the future, we plan
to improve the scalability of our framework by incorporating heuristics such as
simulated annealing and learning-based techniques for highly complex ADS.

Acknowledgment

This work was sponsored by the National Science Foundation (NSF) grants
1943265 and 2312395.

22 H. Sobhani et al.
References
1. Abdullah, J., Dai, G., Yi, W.: Worst-case cause-effect reaction latency in systems

10.

11.

12.

13.

14.

with non-blocking communication. In: 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). pp. 1625-1630. IEEE (2019)

Autoware Foundation: Autoware (2024), https://autoware.org

Becker, M., Dasari, D., Mubeen, S., Behnam, M., Nolte, T.: Synthesizing job-
level dependencies for automotive multi-rate effect chains. In: 2016 IEEE 22nd
International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). pp. 159-169. IEEE (2016)

Becker, M., Mubeen, S., Dasari, D., Behnam, M., Nolte, T.: A generic framework
facilitating early analysis of data propagation delays in multi-rate systems. In:
2017 IEEE 23rd International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). pp. 1-11. IEEE (2017)

Cao, A., Shen, C., Zong, J., Chang, T.H.: Peak age-of-information minimization
of uav-aided relay transmission. In: 2020 IEEE International Conference on Com-
munications Workshops (ICC Workshops). pp. 1-6. IEEE (2020)

Choi, H., Karimi, M., Kim, H.: Chain-based fixed-priority scheduling of loosely-
dependent tasks. In: 2020 IEEE 38th International Conference on Computer Design
(ICCD). pp. 631-639. IEEE (2020)

Davies, A., Poorswani, N., Xiang, R., Brown, B., Singh, R., Gupta, S., Vafaee,
A., Han, J.H., Tumati, P., Janapareddy, S., Tadkase, A.: Brief Industry Paper:
STM: A Static Non-preemptive Scheduler for NVIDIA Tegra SoC. In: 2025 IEEE
31st Real-Time and Embedded Technology and Applications Symposium (RTAS).
IEEE (2025)

Diirr, M., Briiggen, G.V.D., Chen, K.H., Chen, J.J.: End-to-end timing analysis of
sporadic cause-effect chains in distributed systems. ACM Transactions on Embed-
ded Computing Systems (TECS) 18(5s), 1-24 (2019)

Giinzel, M., Chen, K.H., Ueter, N., von der Briiggen, G., Diirr, M., Chen, J.J.:
Timing analysis of asynchronized distributed cause-effect chains. In: 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium (RTAS).
pp. 40-52. IEEE (2021)

Giinzel, M., Chen, K.H., Ueter, N., Briiggen, G.v.d., Diirr, M., Chen, J.J.: Com-
positional timing analysis of asynchronized distributed cause-effect chains. ACM
Transactions on Embedded Computing Systems 22(4), 1-34 (2023)

Giinzel, M., Teper, H., Chen, K.H., von der Briiggen, G., Chen, J.J.: On the equiv-
alence of maximum reaction time and maximum data age for cause-effect chains.
In: 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Schloss-
Dagstuhl-Leibniz Zentrum fiir Informatik (2023)

Gurobi Optimization, LLC: Combining blended and hierarchical objectives
(2025), https://docs.gurobi.com/projects/optimizer/en/current/features/
multiobjective.html#combining-blended-and-hierarchical-objectives
Jiang, X., Luo, X., Guan, N., Dong, Z., Liu, S., Yi, W.: Analysis and optimization
of worst-case time disparity in cause-effect chains. In: 2023 Design, Automation &
Test in Europe Conference & Exhibition (DATE). pp. 1-6. IEEE (2023)

Kim, J., Kim, H., Lakshmanan, K., Rajkumar, R.: Parallel scheduling for cyber-
physical systems: Analysis and case study on a self-driving car. In: Proceedings of
the ACM/IEEE 4th International Conference on Cyber-Physical Systems (ICCPS)
(2013)

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Modeling and Scheduling of Fusion Patterns in ADS 23

Kuhse, D., Holscher, N., Gunzel, M., Teper, H., Von Der Bruggen, G., Chen, J.J.,
Lin, C.C.: Sync or sink? the robustness of sensor fusion against temporal misalign-
ment. In: 2024 IEEE 30th Real-Time and Embedded Technology and Applications
Symposium (RTAS). pp. 122-134. IEEE (2024)

Li, R., Jiang, X., Dong, Z., Wu, J.M., Xue, C.J., Guan, N.: Worst-case latency
analysis of message synchronization in ros. In: 2023 IEEE Real-Time Systems Sym-
posium (RTSS). pp. 185-197. IEEE (2023)

Li, X., Ma, Y., Chen, Y., Sun, J., Chang, W., Guan, N., Chen, L., Deng, Q.:
Priority optimization for autonomous driving systems to meet end-to-end latency
constraints. In: 2024 IEEE Real-Time Systems Symposium (RTSS). pp. 402-414.
IEEE (2024)

Maia, L., Fohler, G.: Reducing end-to-end latencies of multi-rate cause-effect chains
in safety critical embedded systems. In: 12th European Congress on Embedded
Real Time Software and Systems (ERTS 2024) (2024)

PerceptIn: RTSS 2021 industry challenge (2021), https://2021.rtss.org/
wp-content/uploads/2021/06/RTSS2021-Industry-Challenge-v2.pdf, ac-
cessed: 2025-02-23

Saidi, S.E., Pernet, N., Sorel, Y.: Automatic parallelization of multi-rate fmi-based
co-simulation on multi-core. In: TMS/DEVS 2017-Symposium on Theory of Mod-
eling and Simulation. pp. Article-No. ACM (2017)

Saito, Y., Azumi, T., Kato, S., Nishio, N.: Priority and synchronization support
for ros. In: 2016 IEEE 4th International Conference on Cyber-Physical Systems,
Networks, and Applications (CPSNA). pp. 77-82. IEEE (2016)

Saito, Y., Sato, F., Azumi, T., Kato, S., Nishio, N.: Rosch: real-time scheduling
framework for ros. In: 2018 IEEE 24th International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA). pp. 52-58. IEEE
(2018)

Sobhani, H., Choi, H., Kim, H.: Timing analysis and priority-driven enhancements
of ros 2 multi-threaded executors. In: 2023 IEEE 29th Real-Time and Embedded
Technology and Applications Symposium (RTAS). pp. 106-118. IEEE (2023)
Sobhani, H., Kim, H.: Modeling and scheduling of fusion patterns in ads (extended
version) (2025), https://doi.org/10.48550/arXiv.2510.23895

Sun, J., Duan, K., Li, X., Guan, N., Guo, Z., Deng, Q., Tan, G.: Real-time schedul-
ing of autonomous driving system with guaranteed timing correctness. In: 2023
IEEE 29th Real-Time and Embedded Technology and Applications Symposium
(RTAS). pp. 185-197. IEEE (2023)

Sun, J., Li, X., Gong, M., Guan, N., Guo, Z., Chen, M., Zhao, J., Deng, Q.:
Jointly ensuring timing disparity and end-to-end latency constraints in hybrid
dags. In: 2025 IEEE 31st Real-Time and Embedded Technology and Applications
Symposium (RTAS). pp. 190-201. IEEE (2025)

Sun, J., Wang, T., Li, Y., Guan, N., Guo, Z., Tan, G.: Seam: An optimal message
synchronizer in ros with well-bounded time disparity. In: 2023 IEEE Real-Time
Systems Symposium (RTSS). pp. 172-184. IEEE (2023)

Tang, Y., Guan, N., Jiang, X., Dong, Z., Yi, W.: Reaction time analysis of event-
triggered processing chains with data refreshing. In: 2023 60th ACM/IEEE Design
Automation Conference (DAC). pp. 1-6. IEEE (2023)

Tang, Y., Jiang, X., Guan, N., Ji, D.; Luo, X., Yi, W.: Comparing communication
paradigms in cause-effect chains. IEEE Transactions on Computers 72(1), 82-96
(2022)

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Tang, Y., Jiang, X., Guan, N., Liu, S., Luo, X., Yi, W.: Optimizing end-to-end
latency of sporadic cause-effect chains using priority inheritance. In: 2023 IEEE
Real-Time Systems Symposium (RTSS). pp. 411-422. IEEE (2023)

Teper, H., Betz, T., Giinzel, M., Ebner, D., Von Der Briiggen, G., Betz, J., Chen,
J.J.: End-to-end timing analysis and optimization of multi-executor ros 2 systems.
In: 2024 IEEE 30th Real-Time and Embedded Technology and Applications Sym-
posium (RTAS). pp. 212-224. IEEE (2024)

Teper, H., Giinzel, M., Ueter, N., von der Briiggen, G., Chen, J.J.: End-to-end
timing analysis in ros2. In: 2022 IEEE Real-Time Systems Symposium (RTSS).
pp. 53-65. IEEE (2022)

Toba, H., Azumi, T.: Deadline miss early detection method for dag tasks consider-
ing variable execution time. In: 36th Euromicro Conference on Real-Time Systems
(ECRTS 2024). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik (2024)
Verucchi, M., Theile, M., Caccamo, M., Bertogna, M.: Latency-aware generation of
single-rate dags from multi-rate task sets. In: 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). pp. 226-238. IEEE (2020)
Wang, S., Chen, M., Yang, Z., Yin, C., Saad, W., Cui, S., Poor, H.V.: Distributed
reinforcement learning for age of information minimization in real-time iot systems.
IEEE Journal of Selected Topics in Signal Processing 16(3), 501-515 (2022)

Xu, C., Xu, Q., Wang, J., Wu, K., Lu, K., Qiao, C.: Aoi-centric task scheduling
for autonomous driving systems. In: IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. pp. 1019-1028. IEEE (2022)

Yano, A., Azumi, T.: Deadline miss early detection method for mixed timer-driven
and event-driven dag tasks. IEEE Access 11, 22187-22200 (2023)

Yano, A., Azumi, T.: Work-in-progress: Multi-deadline dag scheduling model
for autonomous driving systems. In: 2024 IEEE Real-Time Systems Symposium
(RTSS). pp. 451-454. IEEE (2024)

Zhu, Q., Li, W., Kim, H., Xiang, Y., Wardega, K., Wang, Z., Wang, Y., Liang, H.,
Huang, C., Fan, J., Choi, H.: Know the unknowns: Addressing disturbances and
uncertainties in autonomous systems. In: International Conference on Computer-

Aided Design (ICCAD) (2020)

