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ROS 2 Background

e Callback ™ ((Node \\ ) Node
v" Smallest schedulable unit |chain v Group of callbacks
v' Triggered by timer, ""_ 17 '_'
|

. v" Not a schedulable unit
message arrival, etc.

g
v" Non-preemptable Node
N ) (G|t |2
J

! J
| i
| s i ~
Processing Chain i Node , » Executor ~N
v" A sequence of callbacks ~-1-1 @ v Executes callbacks
v Must execute in a specific N o v’ Either a single-thread
grder (zljue t.o data \_ Executor ) \_ Executor ) orhmsltli—tdhlgeagsprocess
ependencies schedule
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Real-Time Research on ROS 2

e Timing analysis

— Chain response time and schedulability on single-thread executors [1-3]
and multi-thread executors [4-5]

e Framework improvements
— Priority-based scheduling [3]
— Accelerator support [6]
— Starvation prevention [7]

[1] Casini, D., BlaR, T., Litkebohle, 1., Brandenburg, B.: Response-time analysis of ROS 2 processing chains under reservation-based scheduling. In: Euromicro Conference on Real-Time Systems (ECRTS) (2019)

[2] Tang, Y., Feng, Z., Guan, N., Jiang, X., Lv, M., Deng, Q., Yi, W.: Response time analysis and priority assignment of processing chains on ROS2 executors. In: IEEE Real-Time Systems Symposium (RTSS) (2020)

[3] Choi, H., Xiang, Y., Kim, H.: PiCAS: New design of priority-driven chain-aware scheduling for ROS2. In: 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS) (2021)

[4] Jiang, X., Ji, D., Guan, N., Li, R., Tang, Y., Wang, Y.: Real-Time Scheduling and Analysis of Processing Chains on Multi-threaded Executor in ROS 2. In: RTSS (2022)

[5] Sobhani, H., Choi, H., Kim, H.: Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors. In: IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (2023)

[6] Enright, D., Xiang, Y., Choi, H., Kim, H.: PAAM: A Framework for Coordinated and Priority-Driven Accelerator Management in ROS 2. In: 2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)
(2024)

[7] Teper, H., et al.: Thread Carefully: Preventing Starvation in the ROS 2 Multi-Threaded Executor. In: 2024 International Conference on Embedded Software (EMSOFT) (2024)
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How is ROS 2 timing analysis done?

e Most existing analyses rely on supply-bound functions to characterize
executor’s guaranteed resource availability

— e.g., executor thread r, = (C, T3)
e C7 =budget, T} = period

e |In Linux, we can use SCHED DEADLINE

— OS-level resource reservation and enforcement

https://lwn.net/Articles/743946/

/* This creates a 200ms / 1ls reservation */
attr.sched policy = SCHED DEADLINE;

attr.sched runtime = 200000000;

attr.sched deadline = attr.sched period = 1000000000;

[TH RIVERSIDE .
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Problems

e |ittle attention on resource allocation

— Existing analysis work assumes resource allocation is predetermined
by system designers
e How many executor threads to use?
e How much budget should be allocated to individual threads?
e Which chains/callbacks should be assigned to which executors?

e Guarantees may break when deployed in dynamic environments
— For example: —[ CPU frequency throttling due to thermal/power constraints
Changes in sensor data arrival rate

[TH RIVERSIDE .
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Prior Work

PiCAS [1] ROS-Llama [2]
e Explicit priority-based scheduling e Standard ROS 2 scheduling (fair share)
— Best-effort (BE) chains may starve — Real-time (RT) and best-effort (BE) chains

e Static resource allocation may interfere with each other

_ Node to executor assignment e Dynamic resource allocation

— SCHED_DEADLINE budget adjustment

— Executor priority assignment (SCHED_FIFO)

1. Single-threaded executors only
— Cannot run chains with utilization > 1.0 (or user must split them manually)
— Earlier questions remain unanswered (e.g., # of threads, thread budget, etc.)

2. Noisolation between RT and BE chains

[1] Choi, H., Xiang, Y., Kim, H.: PiCAS: New design of priority-driven chain-aware scheduling for ROS2. In: 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS) (2021)
[2] Blass, T., Hamann, A., Lange, R., Ziegenbein, D., Brandenburg, B.B.: Automatic latency management for ROS 2: Benefits, challenges, and open problems. In: IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS) (2021)
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Our Contributions

e LaME: Latency Management Executor

Chains
20O

HOLO

§

%

Latency Management Executor

| Chain-to-threadclass
| allocation algorithm
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Threadclasses

RT Threadclasses

BE Threadclasses

CPU1

65%

[TH RIVERSIDE

Controller
Create
Threadclasses
> Chainset is
Chain-to- Schedulable?
Threadclass
Allocation
] Adjust Threadclass
Budget Budset
Reduction
l" YES
Monitor Chainsetis
Executor Schedulable?

Timing
Violation?

YES

"| Threadclass WCRT

Recompute




[ ) [ ]
Our Contributions _ R

e LaME: Latency Management Executor

— Drop-in replacement for the existing
multi-thread executor

e Threadclasses: New abstraction for managing executor threads
e RT and BE workload isolation

— RT chains: priority-based scheduling with deadline constraints

— BE chains: fair-share scheduling (with starvation freedom when possible)

— By leveraging existing ROS 2 multi-thread timing analysis*
e Adaptive resource controller

— Dynamically adjusts resource and chain allocations

* Sobhani, H., Choi, H., Kim, H.: Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors. In: IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (2023)

[TH RIVERSIDE .



System Model

Callback t; = (E;, ;) Executor thread r, = (C},, Ty,)
e E;: WCET of callback t; * () :budget
* 1;: Priority of 7; within the executor * T :replenishment period
Chain I, = ([t.1, T2 vor Ten) Ecy T, D, C) A set of executor threads

* [T.1 ..-]: Sequence of callbacks Il = (r,7, .., 1)

* E_.:Cumulative WCET of chain I,

* T.: Period of chain I, Existing executor and analysis:

* D.:Relative deadline of I, (D, < T,) * Executor has a single Il

* (.: Criticality of chain I, * Allthreads within II use the same
budget and period params

[TH RIVERSIDE "



Threadclasses

e Challenge: Existing multi-thread executor creates one thread per core
and treats all threads equally. Is it the best approach?

e Qur solution
— Create two threads per CPU core: RT and BE threads

— Group subsets of threads and allow them to behave as individual executors
Threadclasses

« Existing executor: { [T}, where Il = (1,13, ..., T%)

* LaME executor: {HRTl, g, } U {HBEl, g, HBES}

RT threadclasses BE threadclasses

[TH RIVERSIDE "
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Threadclasses

BE Threadclasses:

e Executes callbacks in a
fairness-oriented manner

pE, Hpg,

RT Threadclasses:

I 0 e Executes callbacks in a
s - priority-driven manner

CPU 1 CPU 2 CPU 3 e C(Callback priority assignment
by chain criticality

CPUO

* No interference between threadclasses, thanks to SCHED DEADLINE

 Allows both partitioned and constrained global callback scheduling
within each threadclass

[TH RIVERSIDE .



Callback-to-Threadclass Mapping

Thread Entry

® Challenge: HOW Can We > Execuior::run

. . —
assign callbacks or chains I
. . get_next_executable() Execute Callback
t O S e C Ifl C t h re a d C I a S S e S ? E— get_next_readi_executabIe()
P
get_nexl_ready_exelcutable_from_map(}
° o nexlt ) Ready YES Thread included in YES_
[ ) 0 u r so I ut l O n : Sl Callback? callback’s affinity?
..  a— I NnO | NO
Affinity-based callback B
Ready YES Thread igclud? ir_l =
scheduling that restricts "I""f“ s
¥ NO
the threads that can - B
- Calbackr callback's affnty? —
execute specific callbacks , -
get_next_client()
Ready YES Thread included in =]
Callback? callback’s affinity?
_ wait_for_work()
NO get_nextjwaitable() " "
YES Th;t;elzli gas " Czﬁg::i? YL 1:;%2?: I:[;c:;ﬁ?t;g YES_

[TH RIVERSIDE © i



UNIVERSITY OF CALIFORNIA, RIVERSIDE

Adaptive Resource Controller

e Runtime monitoring
— Callback execution time: using thread-local timers (CLOCK_THREAD CPUTIME_ID)

— End-to-end chain response time: using timestamps
e Both are monitored during chain execution paths

e Adaptive Resource Controller e
Threadclasses
— Runs as a standalone thread with non real-time L
priority in Linux Alooation

Adjust Threadclass
Budget

— By default, it activates periodically (e.g., 10s) Budget

Reduction

e Performs resource adjustment when needed Moim
(e.g., changes in max. callback execution time)

Chainsetis
Schedulable?

Executor

Timing
Violation?

Recompute
Threadclass WCRT

e Also triggered immediately when RT chain deadline is
violated

[TH RIVERSIDE y




Adaptive Resource Controller

e Challenge: Difficult to find optimal resource allocation at runtime

— Due to inter-dependent choices: # of threadclasses, # of threads for each
threadclass, budget for RT & BE threadclasses, chain assignment

e Qur solution: Two-step approach

Chain-to-Threadclass Allocation:
e Assigns chains to Threadclasses based on their criticality class and a WFD heuristic.

e Merges Threadclasses to make otherwise unschedulable chains, schedulable.
e Ensures that all RT chains will be schedulable.

Dynamic Budget Reduction:

e Reduces the resources allocated to servicing RT chains.

e Remaining budget is allocated to BE Threadclasses on the same CPU cores.

e Monitors executor for timing violations and adjusts budgets accordingly at runtime.

[TH RIVERSIDE s
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Online Timing Analysis

e Performed by the resource controller

i . Theorem 1 (from [19]). The response time of a chain I, = [T.  Teys s Te, |
. | | C C1 3 C2 3 3 Cn
For RT Cha INS: with a constrained deadline on a priority-driven ROS 2 cxecutor with |I1|
. threads is upper-bounded by R. = A+ sbf, (E. —1), if dbf(A) < sbfr(A) holds
- CheCk |f WCRT RC S DC for the following demand bound function dbf(A):
— Schedulability dbf(A) = 0| (Bc— E.,)+ Y. WiAD.—E)+ Y min(E—14)
F:L‘E»SYRT\{FC} VTEE”LIP(Tcl)
ATTg >Te
PY For BE Chalns: Theorem 3 (from [19]). The response time of a chain I'e = [Te,, Teyy ooy Te, |

with an arbitrary deadline on o standard ROS 2 executor with |I1| threads

' i is upper-bounded by R. = A+ sbf (E,, —1), if dbf(A) < sbfr(A) holds for t
— Check if WCRT RC is bounded }ol?fif:zq ;g?(z)y 0. ). if dbf(A) < sbfrr(A) holds for the
and R. < controller period BFA) = || (B B4 (3 WA Dy~ Ea))— B
I'€SBE

— If so, it executes at least once
—> Starvation freedom

[TH RIVERSIDE
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Case Study 1: Autoware Reference System

T,:E=01ms; p=22 T, E=10.1ms; p =24 1, E=10.005ms; p =27

. . . .
N VI d I a J etso n AG X 7|——PT=D ?OBES:S Points Transformer Front

XaV|er p|atf0rl n r &r. ar. wiE=0Imsip=9 ¢ .p=102ms;p=11  t,:E=10.1ms; p=12 T,.:E=0.00Ims; p=17
BE1 BE 2 BE3
T =100ms a?:alt Lanelet 2 Map Loader

T, E=101ms; p=2

PointCloud Fusion —

v

T, E=10.1ms; p=13 T, E=0.00Ims; p=16 T,:E=10.1ms; p =28

e 15 chains executed
by 3 threads

e Arbitrary overloads:

—> Ray Ground Filter —

T, E=0.00Ims; p=15

T:E=101ms; p=29
Euclidean Cluster
Detector

T, E=10.1ms; p =30

B E h 1 4 d 5 Ts:E=01Imsip=1 Ty E=101ms;p=3 T, E=101ms;p=5 T... E=0.00Ims; p = 18 Object Collision Estimator —
C a I n S a n Maes & Moes Pointcloud Map Loader NDT Localizer “E = “p =
T =120ms p P > T,: E=0.001ms; p = 25

Behavior planner input  |<+—

T, E=102ms; p=28 T,,: E=0.00Ims; p = 14

were duplicated with «.e—oimip-s
each callback running

T =60ms
for 100”]5 1., E=01Ims;p=23 T,:E=100ms;p=25 v, :E=21ms: p=26
Mers Points Transformer PointCloud Fusion
T =200ms Rear Input

T E=0.1ms; p=32

. E=21ms; p=10

Behavior T,. E=10.Ims; p=35 1, E=10.1ms; p =34 1.,.E=1ms; p=25
BT Planner MPC Controller |~  Vehicle Interface | Vehicle DBW System
T=100ms Timer

L E=2.1ms; p =33

T.,-E=0.1ms; p=19

T, E=102ms; p =20 T, E=1ms; p=21

rBE 9

T=25ms
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Case Study 1: Autoware Reference System

e RT chains
+ T T
800 r + Default ROS 2 Executor
700 + %
g 600 | % .
£ 500 i =
= == ¥+
S 400 + _
5 + = |
& 300 F |
s D =200ms D =B00ms :
200 -
D = 100ms
100 - T
I
0 1 | I
RT Chain 0 RT Chain 1 RT Chain 2

e Deadline misses for all RT chains

[TH RIVERSIDE

Response Time (ms)

800 [

700

(o)}
o
o

(o))
o
o

=N
o
o

W
o
o

200

100

LaME Executor (ours)
D = 200ms D = 200ms
D =100ms
T —— ——
—— —— S
RT Chain 0 RT Chain 1 RT Chain 2

No deadline misses for RT chains
Guaranteed WCRT

Smaller observed response time (up to 4x better)
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Case Study 1: Autoware Reference System

e BE chains

10° T | T I T | T T T T 3
E + 3
4 Default ROS 2 Executor o]
E + +* =
10 E $ e T + + E
2 T s i + £ ]
PR ' . t : * = =1
e F 3
! i -
510%F i % i é ; é é
= E
N O 4 = =2 o EEL N e
10" Q s =
1 —
100 L—1. ! ! ! ! ! ! ! ! ! ! !
. N a? ) o X -] ol .
%ﬁd\@(\ %@d\@‘\ %"00@0 eﬁd\@“ @’OC’K\@(\ eﬁc’“@“ & eﬁd\@“ 6?/0@‘\ o & e@d\a\
10° T T | T T T T T T T B
ok LaME Executor (ours) i
g1o3 = L e —
= 4
3 === =, -t i
g10°E é ' ji e i i =
3 =+ ?
- = ER -
o R =
—1- s
100 ! ! ! ! | ! | ! ! ! | !
N\ ‘(\‘\ ‘(\(L ‘(\% N ‘(\6 A ‘(\1 2 o2
@ @ @O T O o g & & &«
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Large fluctuation in BE chain
response time

Much smaller response time for
BE chains
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Case Study 2: Online Frequency Throttling

e Autoware reference system with a frequency throttling event at t=90s

Default ROS 2 Executor LaME Executor (ours)
! — RT Chain 0
Ik ~ RT Chain 1
;,E)l RT Chain 2
103 F g:
_ =t
£ gL {RT Chain 0 & 1:D = 200ms
%; %imz PRI TV VA N QW”MHWWW‘M‘*MW
B

10"

101

50 100 1 5l0 2(;0 5IO 1 (;O 1 5lO 20IO
Time (s) Time (s)
No WCRT guarantees e All chains meet their deadlines
More deadline misses after throttling even after frequency throttling

[TH RIVERSIDE
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Controller Runtime Overhead

e Approximately 110ms per activation
— Mainly due to repeated response-time analysis for budget adjustment

— However, controller runs as a separate thread with standard priority in Linux —
it does not interfere with executor threads

e |n stable states, the controller cost becomes negligibly small

)
-
—
o
—

2 \ Operation Time (ms) Percentage
2 \ Thread class creation 0.185  0.17%

= 105 | \\ { Chain-to-thread allocation 0.636  0.58%

S \ Initial budget reduction 109.287  99.25%

= \

3 Mol b b b Tpgal 110.108  100%
100

1 2 3 4 5 6 7 8 9 10
Controller Activation

(a) Controller Runtime Per Activation (b) Controller Overhead Breakdown
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Conclusions

e LaME: Latency Management Executor Framework
— Implemented as a redesign of the ROS 2 Multi-threaded Executor

— Threadclasses for performance isolation and fine-grained resource management
e Priority-driven scheduling for RT chains
e Fairness-oriented scheduling for BE chains

— Adaptive resource controller for dynamic resource and chain assignments
— Guaranteed worst-case response time for RT chains

e Up to 4x better maximum observed response time

https://github.com/rtenlab/reference-system-latency-management

[TH RIVERSIDE .
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