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Why ROS 2?
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ROS 2 Background
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• Timing analysis 
– Chain response time and schedulability on single-thread executors [1-3] 

and multi-thread executors [4-5]

• Framework improvements
– Priority-based scheduling [3]
– Accelerator support [6]
– Starvation prevention [7]

Real-Time Research on ROS 2
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• Most existing analyses rely on supply-bound functions to characterize 
executor’s guaranteed resource availability
– e.g., executor thread 𝑟𝑟𝑘𝑘 = (𝐶𝐶𝑘𝑘𝑟𝑟 ,𝑇𝑇𝑘𝑘𝑟𝑟)

• 𝐶𝐶𝑘𝑘𝑟𝑟 = budget, 𝑇𝑇𝑘𝑘𝑟𝑟= period

• In Linux, we can use SCHED_DEADLINE
– OS-level resource reservation and enforcement

How is ROS 2 timing analysis done?
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/* This creates a 200ms / 1s reservation */
attr.sched_policy   = SCHED_DEADLINE;
attr.sched_runtime  =  200000000;
attr.sched_deadline = attr.sched_period = 1000000000;

https://lwn.net/Articles/743946/ 

https://lwn.net/Articles/743946/


• Little attention on resource allocation
– Existing analysis work assumes resource allocation is predetermined 

by system designers
• How many executor threads to use?
• How much budget should be allocated to individual threads?
• Which chains/callbacks should be assigned to which executors?

• Guarantees may break when deployed in dynamic environments
– For example:       CPU frequency throttling due to thermal/power constraints
                                   Changes in sensor data arrival rate

Problems
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PiCAS [1] 
• Explicit priority-based scheduling

– Best-effort (BE) chains may starve

• Static resource allocation
– Node to executor assignment
– Executor priority assignment (SCHED_FIFO)

Prior Work
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ROS-Llama [2]
• Standard ROS 2 scheduling (fair share)

– Real-time (RT) and best-effort (BE) chains 
may interfere with each other

• Dynamic resource allocation
– SCHED_DEADLINE budget adjustment

[1] Choi, H., Xiang, Y., Kim, H.: PiCAS: New design of priority-driven chain-aware scheduling for ROS2. In: 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS) (2021)
[2] Blass, T., Hamann, A., Lange, R., Ziegenbein, D., Brandenburg, B.B.: Automatic latency management for ROS 2: Benefits, challenges, and open problems. In: IEEE Real-Time and Embedded Technology and Applications 
Symposium (RTAS) (2021)

1. Single-threaded executors only
– Cannot run chains with utilization > 1.0 (or user must split them manually)
– Earlier questions remain unanswered (e.g., # of threads, thread budget, etc.)

2. No isolation between RT and BE chains

Limitations



• LaME: Latency Management Executor

Our Contributions
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• LaME: Latency Management Executor 
– Drop-in replacement for the existing 

multi-thread executor

• Threadclasses: New abstraction for managing executor threads
• RT and BE workload isolation

– RT chains: priority-based scheduling with deadline constraints
– BE chains: fair-share scheduling (with starvation freedom when possible)
– By leveraging existing ROS 2 multi-thread timing analysis*

• Adaptive resource controller
– Dynamically adjusts resource and chain allocations

Our Contributions
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* Sobhani, H., Choi, H., Kim, H.: Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors. In: IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (2023)



System Model
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Callback 𝝉𝝉𝒊𝒊 = (𝐸𝐸𝑖𝑖 ,𝜋𝜋𝑖𝑖)
• 𝐸𝐸𝑖𝑖: WCET of callback 𝜏𝜏𝑖𝑖
• 𝜋𝜋𝑖𝑖: Priority of 𝜏𝜏𝑖𝑖 within the executor

Chain 𝚪𝚪𝒄𝒄 = ([𝜏𝜏𝑐𝑐𝑐,𝜏𝜏𝑐𝑐𝑐, … ,𝜏𝜏𝑐𝑐𝑐𝑐],𝐸𝐸𝑐𝑐,𝑇𝑇𝑐𝑐 ,𝐷𝐷𝑐𝑐,𝜁𝜁𝑐𝑐)
• [𝜏𝜏𝑐𝑐𝑐 … ]: Sequence of callbacks
• 𝐸𝐸𝑐𝑐: Cumulative WCET of chain Γ𝑐𝑐  
• 𝑇𝑇𝑐𝑐: Period of chain Γ𝑐𝑐 
• 𝐷𝐷𝑐𝑐: Relative deadline of Γ𝑐𝑐 (𝐷𝐷𝑐𝑐 < 𝑇𝑇𝑐𝑐)
• 𝜁𝜁𝑐𝑐: Criticality of chain Γ𝑐𝑐  

A set of executor threads 
𝚷𝚷 = (𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘)

Executor thread 𝒓𝒓𝒌𝒌 = (𝐶𝐶𝑘𝑘𝑟𝑟 ,𝑇𝑇𝑘𝑘𝑟𝑟)
• 𝐶𝐶𝑘𝑘𝑟𝑟: budget
• 𝑇𝑇𝑘𝑘𝑟𝑟: replenishment period

Existing executor and analysis:
• Executor has a single 𝚷𝚷
• All threads within 𝚷𝚷 use the same 

budget and period params



• Challenge: Existing multi-thread executor creates one thread per core 
and treats all threads equally. Is it the best approach?

• Our solution
– Create two threads per CPU core: RT and BE threads
– Group subsets of threads and allow them to behave as individual executors

Threadclasses
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• Existing executor: { Π }, where Π = (𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘)

• LaME executor: Π𝑅𝑅𝑇𝑇1 ,Π𝑅𝑅𝑇𝑇2 , … ∪ Π𝐵𝐵𝐸𝐸1 ,Π𝐵𝐵𝐸𝐸2 ,Π𝐵𝐵𝐸𝐸3
RT threadclasses BE threadclasses

Threadclasses



Threadclasses
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• No interference between threadclasses, thanks to SCHED_DEADLINE
• Allows both partitioned and constrained global callback scheduling 

within each threadclass

𝚷𝚷𝑹𝑹𝑻𝑻𝟏𝟏 𝚷𝚷𝑹𝑹𝑻𝑻𝟐𝟐 𝚷𝚷𝑹𝑹𝑻𝑻𝟑𝟑 = 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐  

𝚷𝚷𝑩𝑩𝑬𝑬𝟏𝟏 𝚷𝚷𝑩𝑩𝑬𝑬𝟐𝟐 𝚷𝚷𝑩𝑩𝑬𝑬𝟑𝟑

RT Threadclasses:
• Executes callbacks in a 

priority-driven manner
• Callback priority assignment 

by chain criticality 

BE Threadclasses:
• Executes callbacks in a 

fairness-oriented manner



• Challenge: How can we 
assign callbacks or chains 
to specific threadclasses?

• Our solution: 
Affinity-based callback 
scheduling that restricts 
the threads that can 
execute specific callbacks

Callback-to-Threadclass Mapping
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• Runtime monitoring
– Callback execution time: using thread-local timers (CLOCK_THREAD_CPUTIME_ID)

– End-to-end chain response time: using timestamps
• Both are monitored during chain execution paths

Adaptive Resource Controller
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• Adaptive Resource Controller
– Runs as a standalone thread with non real-time 

priority in Linux
– By default, it activates periodically (e.g., 10s)

• Performs resource adjustment when needed 
(e.g., changes in max. callback execution time)

• Also triggered immediately when RT chain deadline is 
violated



• Challenge: Difficult to find optimal resource allocation at runtime
– Due to inter-dependent choices: # of threadclasses, # of threads for each 

threadclass, budget for RT & BE threadclasses, chain assignment

• Our solution: Two-step approach

Adaptive Resource Controller
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Chain-to-Threadclass Allocation:
• Assigns chains to Threadclasses based on their criticality class and a WFD heuristic.
• Merges Threadclasses to make otherwise unschedulable chains, schedulable. 
• Ensures that all RT chains will be schedulable. 

Dynamic Budget Reduction:
• Reduces the resources allocated to servicing RT chains. 
• Remaining budget is allocated to BE Threadclasses on the same CPU cores. 
• Monitors executor for timing violations and adjusts budgets accordingly at runtime.  



• Performed by the resource controller 

• For RT chains:
– Check if WCRT 𝑅𝑅𝑐𝑐 ≤ 𝐷𝐷𝑐𝑐
 Schedulability

• For BE chains:
– Check if WCRT Rc is bounded 

and Rc ≤ controller period
– If so, it executes at least once
 Starvation freedom

Online Timing Analysis
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• Nvidia Jetson AGX 
Xavier platform

• 15 chains executed 
by 3 threads

• Arbitrary overloads:
BE chains 4 and 5 
were duplicated with 
each callback running 
for 100ms

Case Study 1: Autoware Reference System
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Case Study 1: Autoware Reference System
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Default ROS 2 Executor LaME Executor (ours)

• Deadline misses for all RT chains • No deadline misses for RT chains
• Guaranteed WCRT
• Smaller observed response time (up to 4x better)

• RT chains



Case Study 1: Autoware Reference System
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Default ROS 2 Executor

LaME Executor (ours)

• Large fluctuation in BE chain 
response time

• Much smaller response time for 
BE chains

• BE chains



• Autoware reference system with a frequency throttling event at t=90s

Case Study 2: Online Frequency Throttling
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Default ROS 2 Executor LaME Executor (ours)

• No WCRT guarantees
• More deadline misses after throttling

• All chains meet their deadlines 
even after frequency throttling



• Approximately 110ms per activation
– Mainly due to repeated response-time analysis for budget adjustment
– However, controller runs as a separate thread with standard priority in Linux – 

it does not interfere with executor threads

• In stable states, the controller cost becomes negligibly small

Controller Runtime Overhead
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• LaME: Latency Management Executor Framework
– Implemented as a redesign of the ROS 2 Multi-threaded Executor
– Threadclasses for performance isolation and fine-grained resource management

• Priority-driven scheduling for RT chains
• Fairness-oriented scheduling for BE chains 

– Adaptive resource controller for dynamic resource and chain assignments
– Guaranteed worst-case response time for RT chains

• Up to 4x better maximum observed response time

Conclusions
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https://github.com/rtenlab/reference-system-latency-management 
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