
Theory-Guided Adaptive Scheduling for ROS 2

Daniel Enright, Hoora Sobhani, and Hyoseung Kim

University of California, Riverside

Why ROS 2?

2

Credit to Katherine Scott, Open Robotics.
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf

https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf
https://opencv.org/wp-content/uploads/2021/06/Katherine-Scott-OpenCVWebinar-6242021.pdf

ROS 2 Background

3

ExecutorExecutor

Callback

Node

Node

Node

Node

Callback

Callback

Callback

Callback

Chain Smallest schedulable unit
 Triggered by timer,

message arrival, etc.
 Non-preemptable

Callback

 Group of callbacks
 Not a schedulable unit

Node

 Executes callbacks
 Either a single-thread

or multi-thread process
scheduled by OS

Executor
 A sequence of callbacks
 Must execute in a specific

order due to data
dependencies

Processing Chain

CPU cores

• Timing analysis
– Chain response time and schedulability on single-thread executors [1-3]

and multi-thread executors [4-5]

• Framework improvements
– Priority-based scheduling [3]
– Accelerator support [6]
– Starvation prevention [7]

Real-Time Research on ROS 2

4

[1] Casini, D., Blaß, T., Lütkebohle, I., Brandenburg, B.: Response-time analysis of ROS 2 processing chains under reservation-based scheduling. In: Euromicro Conference on Real-Time Systems (ECRTS) (2019)
[2] Tang, Y., Feng, Z., Guan, N., Jiang, X., Lv, M., Deng, Q., Yi, W.: Response time analysis and priority assignment of processing chains on ROS2 executors. In: IEEE Real-Time Systems Symposium (RTSS) (2020)
[3] Choi, H., Xiang, Y., Kim, H.: PiCAS: New design of priority-driven chain-aware scheduling for ROS2. In: 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS) (2021)
[4] Jiang, X., Ji, D., Guan, N., Li, R., Tang, Y., Wang, Y.: Real-Time Scheduling and Analysis of Processing Chains on Multi-threaded Executor in ROS 2. In: RTSS (2022)
[5] Sobhani, H., Choi, H., Kim, H.: Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors. In: IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (2023)
[6] Enright, D., Xiang, Y., Choi, H., Kim, H.: PAAM: A Framework for Coordinated and Priority-Driven Accelerator Management in ROS 2. In: 2024 IEEE 30th Real-Time and Embedded Technology and Applications Symposium (RTAS)
(2024)
[7] Teper, H., et al.: Thread Carefully: Preventing Starvation in the ROS 2 Multi-Threaded Executor. In: 2024 International Conference on Embedded Software (EMSOFT) (2024)

• Most existing analyses rely on supply-bound functions to characterize
executor’s guaranteed resource availability
– e.g., executor thread 𝑟𝑟𝑘𝑘 = (𝐶𝐶𝑘𝑘𝑟𝑟 ,𝑇𝑇𝑘𝑘𝑟𝑟)

• 𝐶𝐶𝑘𝑘𝑟𝑟 = budget, 𝑇𝑇𝑘𝑘𝑟𝑟= period

• In Linux, we can use SCHED_DEADLINE
– OS-level resource reservation and enforcement

How is ROS 2 timing analysis done?

5

/* This creates a 200ms / 1s reservation */
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = 200000000;
attr.sched_deadline = attr.sched_period = 1000000000;

https://lwn.net/Articles/743946/

https://lwn.net/Articles/743946/

• Little attention on resource allocation
– Existing analysis work assumes resource allocation is predetermined

by system designers
• How many executor threads to use?
• How much budget should be allocated to individual threads?
• Which chains/callbacks should be assigned to which executors?

• Guarantees may break when deployed in dynamic environments
– For example: CPU frequency throttling due to thermal/power constraints
 Changes in sensor data arrival rate

Problems

6

PiCAS [1]
• Explicit priority-based scheduling

– Best-effort (BE) chains may starve

• Static resource allocation
– Node to executor assignment
– Executor priority assignment (SCHED_FIFO)

Prior Work

7

ROS-Llama [2]
• Standard ROS 2 scheduling (fair share)

– Real-time (RT) and best-effort (BE) chains
may interfere with each other

• Dynamic resource allocation
– SCHED_DEADLINE budget adjustment

[1] Choi, H., Xiang, Y., Kim, H.: PiCAS: New design of priority-driven chain-aware scheduling for ROS2. In: 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS) (2021)
[2] Blass, T., Hamann, A., Lange, R., Ziegenbein, D., Brandenburg, B.B.: Automatic latency management for ROS 2: Benefits, challenges, and open problems. In: IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) (2021)

1. Single-threaded executors only
– Cannot run chains with utilization > 1.0 (or user must split them manually)
– Earlier questions remain unanswered (e.g., # of threads, thread budget, etc.)

2. No isolation between RT and BE chains

Limitations

• LaME: Latency Management Executor

Our Contributions

8

• LaME: Latency Management Executor
– Drop-in replacement for the existing

multi-thread executor

• Threadclasses: New abstraction for managing executor threads
• RT and BE workload isolation

– RT chains: priority-based scheduling with deadline constraints
– BE chains: fair-share scheduling (with starvation freedom when possible)
– By leveraging existing ROS 2 multi-thread timing analysis*

• Adaptive resource controller
– Dynamically adjusts resource and chain allocations

Our Contributions

9

* Sobhani, H., Choi, H., Kim, H.: Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors. In: IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) (2023)

System Model

10

Callback 𝝉𝝉𝒊𝒊 = (𝐸𝐸𝑖𝑖 ,𝜋𝜋𝑖𝑖)
• 𝐸𝐸𝑖𝑖: WCET of callback 𝜏𝜏𝑖𝑖
• 𝜋𝜋𝑖𝑖: Priority of 𝜏𝜏𝑖𝑖 within the executor

Chain 𝚪𝚪𝒄𝒄 = ([𝜏𝜏𝑐𝑐𝑐,𝜏𝜏𝑐𝑐𝑐, … ,𝜏𝜏𝑐𝑐𝑐𝑐],𝐸𝐸𝑐𝑐,𝑇𝑇𝑐𝑐 ,𝐷𝐷𝑐𝑐,𝜁𝜁𝑐𝑐)
• [𝜏𝜏𝑐𝑐𝑐 …]: Sequence of callbacks
• 𝐸𝐸𝑐𝑐: Cumulative WCET of chain Γ𝑐𝑐
• 𝑇𝑇𝑐𝑐: Period of chain Γ𝑐𝑐
• 𝐷𝐷𝑐𝑐: Relative deadline of Γ𝑐𝑐 (𝐷𝐷𝑐𝑐 < 𝑇𝑇𝑐𝑐)
• 𝜁𝜁𝑐𝑐: Criticality of chain Γ𝑐𝑐

A set of executor threads
𝚷𝚷 = (𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘)

Executor thread 𝒓𝒓𝒌𝒌 = (𝐶𝐶𝑘𝑘𝑟𝑟 ,𝑇𝑇𝑘𝑘𝑟𝑟)
• 𝐶𝐶𝑘𝑘𝑟𝑟: budget
• 𝑇𝑇𝑘𝑘𝑟𝑟: replenishment period

Existing executor and analysis:
• Executor has a single 𝚷𝚷
• All threads within 𝚷𝚷 use the same

budget and period params

• Challenge: Existing multi-thread executor creates one thread per core
and treats all threads equally. Is it the best approach?

• Our solution
– Create two threads per CPU core: RT and BE threads
– Group subsets of threads and allow them to behave as individual executors

Threadclasses

11

• Existing executor: { Π }, where Π = (𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑘𝑘)

• LaME executor: Π𝑅𝑅𝑇𝑇1 ,Π𝑅𝑅𝑇𝑇2 , … ∪ Π𝐵𝐵𝐸𝐸1 ,Π𝐵𝐵𝐸𝐸2 ,Π𝐵𝐵𝐸𝐸3
RT threadclasses BE threadclasses

Threadclasses

Threadclasses

12

• No interference between threadclasses, thanks to SCHED_DEADLINE
• Allows both partitioned and constrained global callback scheduling

within each threadclass

𝚷𝚷𝑹𝑹𝑻𝑻𝟏𝟏 𝚷𝚷𝑹𝑹𝑻𝑻𝟐𝟐 𝚷𝚷𝑹𝑹𝑻𝑻𝟑𝟑 = 𝒓𝒓𝟏𝟏, 𝒓𝒓𝟐𝟐

𝚷𝚷𝑩𝑩𝑬𝑬𝟏𝟏 𝚷𝚷𝑩𝑩𝑬𝑬𝟐𝟐 𝚷𝚷𝑩𝑩𝑬𝑬𝟑𝟑

RT Threadclasses:
• Executes callbacks in a

priority-driven manner
• Callback priority assignment

by chain criticality

BE Threadclasses:
• Executes callbacks in a

fairness-oriented manner

• Challenge: How can we
assign callbacks or chains
to specific threadclasses?

• Our solution:
Affinity-based callback
scheduling that restricts
the threads that can
execute specific callbacks

Callback-to-Threadclass Mapping

13

• Runtime monitoring
– Callback execution time: using thread-local timers (CLOCK_THREAD_CPUTIME_ID)

– End-to-end chain response time: using timestamps
• Both are monitored during chain execution paths

Adaptive Resource Controller

14

• Adaptive Resource Controller
– Runs as a standalone thread with non real-time

priority in Linux
– By default, it activates periodically (e.g., 10s)

• Performs resource adjustment when needed
(e.g., changes in max. callback execution time)

• Also triggered immediately when RT chain deadline is
violated

• Challenge: Difficult to find optimal resource allocation at runtime
– Due to inter-dependent choices: # of threadclasses, # of threads for each

threadclass, budget for RT & BE threadclasses, chain assignment

• Our solution: Two-step approach

Adaptive Resource Controller

15

Chain-to-Threadclass Allocation:
• Assigns chains to Threadclasses based on their criticality class and a WFD heuristic.
• Merges Threadclasses to make otherwise unschedulable chains, schedulable.
• Ensures that all RT chains will be schedulable.

Dynamic Budget Reduction:
• Reduces the resources allocated to servicing RT chains.
• Remaining budget is allocated to BE Threadclasses on the same CPU cores.
• Monitors executor for timing violations and adjusts budgets accordingly at runtime.

• Performed by the resource controller

• For RT chains:
– Check if WCRT 𝑅𝑅𝑐𝑐 ≤ 𝐷𝐷𝑐𝑐
 Schedulability

• For BE chains:
– Check if WCRT Rc is bounded

and Rc ≤ controller period
– If so, it executes at least once
 Starvation freedom

Online Timing Analysis

17

• Nvidia Jetson AGX
Xavier platform

• 15 chains executed
by 3 threads

• Arbitrary overloads:
BE chains 4 and 5
were duplicated with
each callback running
for 100ms

Case Study 1: Autoware Reference System

18

Case Study 1: Autoware Reference System

19

Default ROS 2 Executor LaME Executor (ours)

• Deadline misses for all RT chains • No deadline misses for RT chains
• Guaranteed WCRT
• Smaller observed response time (up to 4x better)

• RT chains

Case Study 1: Autoware Reference System

20

Default ROS 2 Executor

LaME Executor (ours)

• Large fluctuation in BE chain
response time

• Much smaller response time for
BE chains

• BE chains

• Autoware reference system with a frequency throttling event at t=90s

Case Study 2: Online Frequency Throttling

21

Default ROS 2 Executor LaME Executor (ours)

• No WCRT guarantees
• More deadline misses after throttling

• All chains meet their deadlines
even after frequency throttling

• Approximately 110ms per activation
– Mainly due to repeated response-time analysis for budget adjustment
– However, controller runs as a separate thread with standard priority in Linux –

it does not interfere with executor threads

• In stable states, the controller cost becomes negligibly small

Controller Runtime Overhead

22

• LaME: Latency Management Executor Framework
– Implemented as a redesign of the ROS 2 Multi-threaded Executor
– Threadclasses for performance isolation and fine-grained resource management

• Priority-driven scheduling for RT chains
• Fairness-oriented scheduling for BE chains

– Adaptive resource controller for dynamic resource and chain assignments
– Guaranteed worst-case response time for RT chains

• Up to 4x better maximum observed response time

Conclusions

23

https://github.com/rtenlab/reference-system-latency-management

https://github.com/rtenlab/reference-system-latency-management
https://github.com/rtenlab/reference-system-latency-management
https://github.com/rtenlab/reference-system-latency-management
https://github.com/rtenlab/reference-system-latency-management
https://github.com/rtenlab/reference-system-latency-management
https://github.com/rtenlab/reference-system-latency-management
https://github.com/rtenlab/reference-system-latency-management

	Theory-Guided Adaptive Scheduling for ROS 2
	Why ROS 2?
	ROS 2 Background
	Real-Time Research on ROS 2
	How is ROS 2 timing analysis done?
	Problems
	Prior Work
	Our Contributions
	Our Contributions
	System Model
	Threadclasses
	Threadclasses
	Callback-to-Threadclass Mapping
	Adaptive Resource Controller
	Adaptive Resource Controller
	Online Timing Analysis
	Case Study 1: Autoware Reference System
	Case Study 1: Autoware Reference System
	Case Study 1: Autoware Reference System
	Case Study 2: Online Frequency Throttling
	Controller Runtime Overhead
	Conclusions

