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Abstract. This paper presents Latency Management Executor (LaME),
a theory-guided adaptive scheduling framework that enhances real-time
performance in ROS 2 through dynamic resource allocation and hy-
brid priority-driven scheduling. LaME introduces the concept of thread-
classes to dynamically adjust system configurations, ensuring response-
time guarantees for real-time chains while maintaining starvation free-
dom for best-effort chains. By implementing adaptive resource alloca-
tion and continuous runtime monitoring, LaME provides robust response
times even under fluctuating workloads and resource constraints. We
implement our framework for the Autoware reference system and per-
form our evaluation on an Nvidia Jetson platform. Our results demon-
strate that LaME successfully adapts to changing resource availability
and workload surges, and effectively balances real-time guarantees with
overall system throughput.

1 Introduction

The Robot Operating System (ROS) is widely regarded as one of the most pop-
ular middleware platforms for robotics, facilitating seamless integration of var-
ious software components and allowing rapid development of robotic systems.
It provides essential tools for communication, hardware abstraction, and device
control, fostering a collaborative ecosystem that has gained significant traction
in both academia and industry. However, as robotics increasingly moves into
domains requiring real-time guarantees, such as autonomous vehicles |13, |14],
industrial automation [16], and medical robotics [17], the limitations of ROS’s
scheduling and resource management mechanisms become apparent. The stan-
dard ROS 2 framework lacks robust scheduling capabilities, which poses chal-
lenges in meeting timing constraints critical for real-time applications. Recent
research has focused on enhancing ROS 2’s real-time performance by integrat-
ing scheduling policies that constrain latency [3H6, (8, 9} |19, [20] and avoid task
starvation |4, 22]. Despite this progress, ensuring robust, predictable behavior in
ROS-based real-time systems still remains as an active research problem.

ROS applications typically consist of processing chains comprising multiple
callbacks which are managed and executed by ezecutors. A processing chain rep-
resents a sequence of callbacks that need to be executed in a specific order, such
as processing sensor data, running control algorithms, and sending commands to
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actuators. These chains are composed of individual callbacks, which are functions
that get executed in response to specific events or messages. Executors manage
the execution of these callbacks and determine which callback runs at any given
time. In the standard ROS 2 implementation, executors follow a round-robin
scheduling policy, where callbacks are executed based on availability. While this
approach ensures fairness, due to the lack of explicit priority considerations,
chain response times can be prolonged as workload increases. Recent studies
have introduced priority-based scheduling |3} |7} |8, |19] to reduce response times
for real-time chains, but these can lead to the starvation of best-effort chains,
potentially degrading overall system performance.

While formal schedulability analyses exist to bound chain response times for
both standard and priority-driven ROS 2 executors, the significance of resource
allocation has been somewhat neglected in the literature. Existing approaches
commonly assume that the system designer has already determined resource
allocation, with resource availability guaranteed through the SCHED_DEADLINE
mechanism in Linux and modeled as a supply bound function; then the analysis
is performed on this predetermined allocation. However, their guarantees hold
only in static environments that assume constant system resources and accurate
worst-case execution time estimations. When deployed in dynamic environments
with varying resource availability, these analyses can break, rendering the appli-
cation crippled with timing violations.

This paper presents a theory-guided approach to dynamically controlling the
scheduling parameters and resource allocation for ROS 2 multi-threaded execu-
tors. The proposed Latency Management Executor (LaME) framework deter-
mines individual executor thread budgets, chain-to-threadclass allocation, and
achieves affinity-based scheduling where a chain executes on either a single thread
(partitioned scheduling) or multiple threads (constrained global scheduling). Our
framework monitors the response times of all chains and leverages the theoret-
ical analysis of ROS 2 executors |19] to ensure that the real-time processing
chains meet their deadlines while maintaining the fairness and starvation free-
dom of best-effort chains. The framework continuously updates its predictions
on response times and scheduling control decisions based on the feedback from
runtime monitoring of execution times, enabling adaptation to changing work-
load characteristics and external disturbances, such as arbitrary workload surges
and clock frequency throttling.

2 System Model

This section describes the scheduling-related abstractions of ROS 2 and our
system model.

Callbacks. In ROS 2, software is organized into nodes, each comprising mul-
tiple callbacks that are executed in response to specific events such as message
arrivals or timer triggers. Callbacks are the smallest schedulable entity in ROS 2,
triggered by timers, message arrivals, or other events. Callbacks are managed by
ezecutors, which may be responsible for scheduling callbacks from one or more
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nodes that are assigned to them. Let 7; denote a callback by:
7i =: (B, ;)

— E;: Worst-case execution time (WCET) for 7;.
— m;: The priority of the callback 7; within the executor.

Note that in the default ROS 2 executor, each callback is assigned an implicit
priority by its class (timer, subscription, service, client, and waitable) |6} |8, [20]
and within each class, in a nondeterministic order [2]. However, our proposed
work explicitly assigns priorities for callbacks based on their respective chains’
criticality level. Callbacks are non-preemptively scheduled by executors, i.e., once
a callback begins execution, it runs on the executor to completion. For the pur-
poses of this paper, we constrain the WCET of a callback, E;, to its execution
time in isolation, i.e., when there are no other interfering workloads on the CPU.

Processing Chains. Processing chains are sequences of data-dependent call-
backs that must execute in a specific order to fulfill a certain task. Each callback
within a chain has dependencies on the data or events generated by previous
callbacks in the sequence. In the literature on real-time ROS 2 work [6} |8} |9} [19]
20|, these chains are assumed to have a single starting point and a single ending
point. We specifically refer to such a chain as a linear chain I, represented by:

I, .= ([7’61,7'027 ...,Tcn], Ec,TcszCC)

— [Teyy Tegy -y Te,,|: The sequence of callbacks executed by each instance of a
chain I. Callback 7, , can start execution only when its predecessor T,
completes [6 8} (19} [20].

— E.: Cumulative WCET of the chain, ie., E. =Y., E,,.

— T,.: Period of the chain, which is determined by the arrival rate of the first
callback 7, .

— D.: Deadline of the chain, which is assumed to be constrained (D, < T¢).

— (,: Criticality of the chain. In this work, we divide chains into two criticality
classes: real-time (RT) and best-effort (BE) chains. For RT chains, (. > 0,
with a higher value meaning higher criticality. For BE chains, (. = 0.

Here, the criticality (. is an indicator of the importance of meeting their dead-
lines. For the RT chains ((. > 0), our goal is to guarantee that their deadlines
will always be met, i.e., the worst-case response-time of the chain, R., is guar-
anteed to be less than or equal to its deadline. For BE chains ({. = 0), our goal
is to achieve fairness, with bounded response times (but could be longer than
the deadlines) whenever possible.

While the above representation follows that of prior work [6} |8} |19} |20], many
real-world ROS 2 applications include nonlinear chains, where some callbacks
branch out, e.g., one callback triggering two or more subsequent callbacks. Hence,
a nonlinear chain has a single starting callback and multiple ending callbacks.
It can also be thought of as multiple linear chains sharing common callbacks.
Prior work has dealt with this issue by virtually duplicating shared callbacks for
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analysis purposes. However, this becomes a nontrivial problem when criticality
and resource management are involved. For example, each branch of a nonlinear
chain may maintain a different criticality value or even belong to a different
criticality class than any of the other branches. Our goal is to manage these
issues at the executor level and we explain how this is handled in Sec.

Executor and Threads. In ROS 2, an executor is launched as a process that is
either single or multi-threaded. Each thread manages the execution of callbacks
within the executor, while being itself a schedulable entity at the operating sys-
tem level. The executor maintains a waitset (previously known as a readyset |6l
19, 120]), which is a data structure storing ready callbacks received from the
underlying communication layer. Each thread fetches and executes one ready
callback from the waitset at a time, and updates the waitset (i.e., refilling it
from the communication layer) when it is empty or no callback in the waitset is
eligible to run (due to callback groups that are used to limit concurrency in a
multi-threaded executor). The waitset is protected by a mutex.

Prior work on real-time ROS 2 analysis [6l (12, [19, |20] has applied the re-
source reservation concept to executor threads to ensure guaranteed resource
supply for schedulability analysis. Following the same approach, we character-
ize an executor thread by rp = (C},T}), where C} is the budget and 77 is
the replenishment period. The supply bound function of r; is then given by
sbfr(A) = %(A — 2Ty — CF)) if a time interval A > 2(T7 — C?) [18]. This
means 7y is guaranteed to get at least sbfi(A) units of CPU time during an ar-
bitrary time interval A, and it can be realized using SCHED_DEADLINE in Linux.

Let us use IT to denote a set of executor threads, IT = {ry,rs,...,7; }. Then,
the supply bound function of I7 is given by sbfrr(A) =", ;7 sbfi(4) 10, 19].
We use |II] to represent the number of threads within /7. For the standard ROS
2 multi-threaded executor, only a single I is enough to represent all threads in
the executor, as it treats all threads equally with the same budget per thread.
In contrast, as we will show later, our work introduces groups of threads, i.e.,
P = {II, II5,...}, to achieve more fine-grained resource management.

3 Related Work

There have been several recent studies focusing on improving the real-time capa-
bilities of the ROS 2 executor. Casini et al. [6] provided a response time analysis
capable of bounding the response times of processing chains across one or more
single-threaded executors in ROS 2. Tang et al. |20] improved upon this analysis
and reduced the pessimism in the response time bounds. Choi et al. [8] posited
an improvement to the executor to support priority-driven callback schedul-
ing to reduce the response times for critical processing chains and provided a
response-time analysis for those chains under its scheduling framework. Jiang
et al. |12] provided a response time analysis capable of the response times of
chains within the ROS 2 multi-threaded executor. Sobhani et al. |19] provided
an improvement to the ROS 2 multi-threaded executor, enabling priority-driven
global callback scheduling, and provided an analysis bounding chain response
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times with constrained and arbitrary deadlines under both the standard and
priority-driven multi-threaded executors. Teper et al. |22] found the problem
of callback starvation in ROS 2 multi-threaded executors and proposed design
enhancements to address this issue. All existing analysis work, except [8], use a
supply bound function to characterize resource availability and recommend using
SCHED_DEADLINE to conform to their system model and to achieve performance
isolation among executor threads. While these studies have enabled real-time
schedulability analysis in ROS 2, they assume that resource allocation is given
in advance, which is the problem our work addresses.

The most closely related prior work to this paper is ROS-Llama proposed
by Blass et al. |5]. While ROS-Llama focuses on resource allocation and budget
management, it has several notable limitations. First, it considers only single-
threaded executors. If an application’s utilization exceeds one CPU core, it re-
mains the user’s responsibility to determine which chains to assign to which
(single-threaded) executors, i.e., analogous to static partitioned scheduling. More-
over, if any chain’s utilization exceeds one core, the user must manually split the
chain and assign subchains to different executors. In contrast, our framework
supports dynamic chain-to-threadclass allocation, allowing for both partitioned
and constrained global callback scheduling in ROS 2 multi-threaded executors.
Our work can execute high-utilization chains as-is on a threadclass with multi-
ple threads across multiple cores without requiring manual partitioning. Second,
ROS-Llama does not consider chain criticality levels, i.e., it treats BE and RT
chains equally with no prioritization, making all chains compete with each other.
Our framework addresses this limitation through explicit isolation between RT
and BE chains, where the RT chains are always prioritized over BE chains. Our
work also provides bounded response times for RT chains while guaranteeing
fairness for BE chains and starvation freedom for them when possible.

Goals: The primary objectives of our work are to effectively manage latency in
robotic systems that are complex, dynamically evolving, and subject to chang-
ing hardware environments. The challenge lies in balancing the response times
of time-critical chains with ensuring fairness and preventing the starvation of
best-effort chains, while dealing with numerous control parameters that have
nonlinear effects on system performance. Additionally, we aim to ensure the sta-
bility and convergence of the system in the presence of scheduling anomalies and
varying assumptions about available resources.

4 Latency Management Executor Architecture

In this section, we present our Latency Management Executor (LaME), which is
a redesign of the ROS 2 multi-threaded executor to provide precise control over
chain execution timing. Specifically, LaME incorporates five key enhancements:
(i) threadclasses as a new abstraction for managing executor threads; (ii) explicit
chain-to-thread affinity management to enable both partitioned and constrained
global scheduling; (iii) a hybrid chain scheduling policy that differentiates be-
tween real-time and best-effort chains; (iv) an online response-time test to check
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Fig. 1: Architecture of LaME

if real-time chains can meet their deadlines and best-effort chains can run with
no anticipated starvation; and (v) an adaptive resource controller that dynami-
cally adjusts resource and chain allocations. Note that our framework is designed
to be a drop-in replacement for the existing executor; hence, it can be directly
applied to existing ROS 2 applications with no compatibility issues.

In the following, we will present the key abstractions and architectural mech-
anisms (Sec. [4.1)), the methods to enable online timing analysis in ROS (Sec. [4.2)),
and the adaptive resource controller design and its algorithms (Sec. [4.3)).

4.1 Abstractions and Mechanisms

Threadclasses. Threadclasses are the key abstractions that our framework in-
troduces to the ROS 2 executor. The primary objective of the threadclasses is to
form groups of individual executor threads to perform more sophisticated chain
allocation and resource management while still conforming to the system models
of existing theoretical foundations.

Each threadclass, IT, is composed of one or more executor threads,
each pinned to a separate CPU core, with each thread assigned identical
SCHED_DEADLINE budgets and a list of chains that it has been designated to ser-
vice. This grouping of executor threads into threadclasses ensures that threads
within the same threadclass have uniform scheduling parameters, specifically
the same SCHED_DEADLINE budget for its assigned set of chains (chainset). This
allows us to perform a Worst-Case Response Time (WCRT) analysis per thread-
class: by treating all threads in a threadclass uniformly, we can effectively con-
sider each threadclass as an individual single-threaded or multi-threaded execu-
tor, which enables the use of most existing analysis for ROS ﬂ§|7 .

The grouping of threads into threadclasses also aids in maintaining isolation
between real-time (RT) and best-effort (BE) chains by creating their own dedi-
cated threadclasses, i.e., {IIgr,, IgT,, ..} and {IIpg,, lIgE,, ...} for RT and BE
threadclasses, respectively.
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Fig. 2: Flowchart of an executor thread’s main loop w/ callback affinity checking

CPU-time Partitioning with Threadclasses Figure[I]illustrates how LaME
implements the threadclass abstraction to achieve CPU-time partitioning. LaME
creates two distinct threadclasses per CPU core: an RT threadclass IIgy,, for
RT chains and a BE threadclass IIgf,, for BE chains on core m. Each thread-
class is initially populated with one thread, resulting in two threads (one RT,
one BE) per core. Consistent with our threadclass definition, all threads within
the same threadclass share identical SCHED_DEADLINE parameters, enabling uni-
form resource allocation and predictable analysis. These threads are isolated to
specific cores using Linux cgroups, enforcing the physical separation between
threadclasses. This ensures that workload fluctuations in one threadclass (e.g.,
BE chains) cannot consume resources allocated to the other (RT chains), main-
taining the performance guarantees necessary for many real-time applications.

Chain-to-Threadclass Mapping via Callback Affinity. Conceptually, our
framework maps entire chains to specific threadclasses, ensuring that all call-
backs within a chain are processed by threads belonging to the same threadclass.
However, since the standard ROS 2’s execution model operates at the callback
level for all threads in the executor, we implement this mapping through a new
callback-to-thread affinity API in the rclcpp layer.

The callback affinity API translates our high-level chain-to-threadclass map-
ping into a practical implementation that works within ROS 2’s architecture.
When a chain is assigned to a threadclass, all callbacks belonging to that chain
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inherit an affinity setting that limits their execution to only the threads in that
threadclass. This ensures chain-level allocation decisions are consistently en-
forced at the callback execution level.

To implement this API, we added a new data member within each callback
class that specifies its thread affinity as a bitmask of eligible executor threads.
Figure [2] illustrates the workflow of executor threads with callback’s affinity
enabled, showing our additional affinity checks (green decision blocks). When an
executor thread encounters a ready callback, it first verifies that the callback’s
affinity mask includes the current thread ID—meaning the callback belongs to a
chain assigned to this thread’s threadclass. If the affinity check fails, the thread
continues searching for other work; otherwise, it proceeds to execute the callback.

This mechanism allows us to implement both partitioned scheduling (when
chains are assigned to a dedicated thread, i.e. |IT| = 1) and constrained global
scheduling (when chains can execute on a subset of threads, i.e. [II| > 1), while
maintaining the conceptual integrity of chain-to-threadclass mapping within
ROS 2’s callback-oriented execution model.

Callback Scheduling Policies. Beyond creating specific RT and BE threads
and corresponding threadclasses, our framework allows RT threads to schedule
callbacks differently than BE threads. RT threads consider callback priority when
deciding which callback to execute. Callback priority is assigned by our frame-
work and will be explained later in this section. RT threads always execute the
highest priority available callback matching its affinity setting, while BE threads
will execute only the first available callback that matches its thread-affinity set-
ting. The RT threads also perform a quick check for any ready callbacks not
currently in the waitset (set of callbacks ready to be executed) before deciding
which callback to execute, following the behavior of the priority-driven ROS 2
executor [§]. The BE threads only perform this check if the waitset is completely
empty, following the behavior of the default ROS 2 executor.

RT Mutex. In our experiments, we observed unbounded blocking in the de-
fault executor due to the use of a shared waitset mutex (shown by red boxes
in Figure [2) under SCHED_DEADLINE. Specifically, threads can be throttled by
the operating system while holding the mutex during the critical section (area
protected by the red mutex blocks in Figure , stalling other threads until the
lockholder is rescheduled and releases the lock. To solve this problem, we relied
on changing the mutex from a std: :mutex to a futex with priority inheritance,
which uses the kernel’s implementation of an RT Mutex and helps to mitigate
executor stalling.

Priority Assignment. Our framework implements a priority assignment strat-
egy for both chains and individual callbacks. As discussed in Sec. [2, we classify
chains into two distinct criticality classes: real-time (RT) and best-effort (BE).
All BE chains and their callbacks have a criticality and priority level of 0, i.e.,
(. = 0 and Vry; € I, : m; = 0. For real-time chains, chain priority is directly
derived from its criticality level (. > 0) through the criticality-as-priority as-
signment policy [15], i.e., chains with higher criticality get higher priority, as
we want to minimize interference on critical chains. Within this scheme, we as-
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sign priorities to individual callbacks based on their chain membership using the
PiCAS prioritization rule [8|: callback priority is determined first by chain pri-
ority, with callbacks from more critical chains receiving higher priorities; within
each chain, priority increases along the execution path from first to last call-
back. For each chain, we establish its priority based on the priority of its final
callback, creating end-to-end priority consistency. This dual-level priority assign-
ment ensures that when RT threads apply priority-based scheduling, callbacks
belonging to higher-criticality chains execute before those from lower-criticality
chains. The BE threads, in contrast, ignore these priorities and execute callbacks
in pseudo-round-robin fashion, aligning with the default ROS 2 execution model.

4.2 LaME Response Time Bounding

Our framework incorporates processing chains directly into the executor’s imple-
mentation, rather than treating them as an external concept. This integration
provides a concrete representation of the callback dependencies and data flows
within the system. By tracking these relationships, the executor can identify
which callbacks form a chain and monitor their collective execution behavior.

LaME collects practical metrics such as callback execution times and end-
to-end chain response times, which serve as essential inputs for response time
analysis. From the executor thread’s perspective, the callback execution time is
measured using the thread-local timer (CLOCK_THREAD_CPUTIME_ID), capturing
only the cpu-time used to execute the callback while the thread is running, ignor-
ing preemption and interference. This enables us to measure the exact execution
time of the callback as if it were run in isolation. This data enables the execu-
tor to apply appropriate scheduling decisions based on actual system behavior.
Additionally, with chains as explicit entities, the executor can implement con-
sistent priority assignments for related callbacks, ensuring that callbacks within
the same chain receive coordinated scheduling treatment.

These mechanisms create a direct connection between the theoretical re-
sponse time analysis and the practical execution environment. By making chains
“visible” to the executor, we establish the foundation needed for applying sys-
tematic response time bounding to both RT and BE workloads in ROS 2.

Response-Time Analysis for RT Chains Our framework implements WCRT
analysis to ensure the schedulability of RT threadclasses during resource allo-
cation and online adaptation. Although our framework design allows the use of
other analyses, we adopt the latest chain response-time analysis developed for
multi-threaded ROS 2 executors [19).

Specifically, we used Theorem 2 in [19]|, which computes the response-time
bounds for chains under priority-driven multi-threaded executors when chains
have constrained deadlines.

Theorem 1 (from [19]). The response time of a chain I'. = [Te,, Teyy ooy Te,, |
with a constrained deadline on a priority-driven ROS 2 executor with |II|
threads is upper-bounded by R, = A+ sbf,(E., —1), if dbf(A) < sbfrr(A) holds
for the following demand bound function dbf(A):
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dbf(A) = |I|- (B.— E.,)+ Y, WalA Dy—E,)+ > min(E —1,4)
IyeSprr\{I:} Vriemlp(te;)
N >Te

where Sgr is the set of linear chains assigned to II, w, is the priority of a
chain I, (7y = (. due to our criticality-as-priority assignment), sbf,(x) is
the pseudo-inverse function of sbfi (sbfy(x) = min{Alsbfx(A) = x}), W.()
is the workload function for a constrained-deadline chain (Lemma 5 in [19]),
and mip(t., ) returns at most |II| callbacks with lower-priority than 1., with one
callback from each chain in S.

The above theorem is directly applicable to each RT threadclass IT since all
chains on II are RT chains with constrained deadlines and all threads ry € IT
share the same budget and replenishment period by design. We will explain how
to linearize nonlinear chains and how to obtain Sgrr later in this subsection.

Ensuring Starvation Freedom for BE Chains Our framework aims to
provide fair access to system resources for BE chains even when RT chains are
present. While the BE thread scheduling policy itself provides basic fairness, we
extend this by theoretically ensuring starvation freedom.

As we detail in Section[4-3] our controller analyzes and allocates CPU budgets
to different threadclasses. Within this process, we apply response time analysis
based on |19|, specifically Theorem 1 and 3, to check if chains assigned to BE
threadclasses can complete within a controller periodEI

Theorem 2 (from [19]). The response time of a chain L'y = [Tey, Tegy s Te, )
with a constrained deadline on a standard ROS 2 executor with |II| threads
is upper bounded by R, = A+ sbf . (E., —1), if dbf(A) < sbfrr(A) holds for the
following dbf(A):

F(A) = [T (B~ Eo)+ S Wil Ds—Ey)
FT,ESBE—{FC}

where Spp is the set of linear chains assigned to II.

Theorem 3 (from [19]). The response time of a chain I'. = [Tey, Teyy ooy Te,, |
with an arbitrary deadline on a standard ROS 2 executor with |II| threads
is upper-bounded by R. = A+sbf,(E., —1), if dbf(A) < sbfrr(A) holds for the
following dbf(A):

dbf(A) = |H| : (Ec - Ecn) + ( Z W;(A7Dw - Ez)) - E.
I',e€SBE

where W*() is the workload for an arbitrary-deadline chain (Lemma 6 in [19]).

! The authors of |22] pointed out a flaw in the analysis of the default ROS scheduling
policy in |12] and [19]. The authors of [19] have since released an amended version
of their analysis, correcting the error in bounding response times. We reference this
updated version of their analysis in this paper.
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Algorithm 1 Linearize and categorize chains

1: Input: Original chainset including nonlinear chains (S)

2: Output: Linearized RT and BE chainsets (Srr and Spg)
3. S <~ 0; Srr + 0; Spe < 0

4: for all I' € S do // Linearize all chains in S

5:  if I' is nonlinear then

6: S« S' U linearize(I')

7
8

else
: S« 8 u{r}
9: end if
10: end for

11: for all T € S’ do // Categorize chains into RT/BE
12: if I' is RT then

13: SrT < Spr U
14: else

15: Spe < SpgUTI’
16: end if

17: end for

18: return Sgrr and Spg

For each BE chain on a BE threadclass, we first apply Theorem [2| and check
if the response time is bounded to be within its period. If any chain’s response
time exceeds its period, this means that multiple instances of the same chain may
co-exist at runtime (in other words, the execution of previous or next instances
of a chain may overlap) because we do not enforce chain-level instance skipping.
Hence, we switch to Theorem [3| to take into account such cases and check if the
response time is bounded by the controller period. If all BE chains pass this test,
we can determine that the given budget for the BE threadclass is sufficient to
guarantee that every BE chain can execute at least once within each controller
period, ensuring starvation freedom.

However, under overloaded conditions, we may not be able to ensure star-
vation freedom for all BE threadclasses. In these cases, our system still offers
fairness through the default ROS 2 scheduling policy. This combination of ana-
lytical budget allocation and scheduling policy fairness ensures that BE chains
receive appropriate system resources proportional to their execution demands,
even when theoretical starvation freedom cannot be guaranteed.

Analysis for Nonlinear Chains in Different Threadclasses When we
encounter nonlinear chains, our executor must decompose them into linear sub-
chains to make them amenable to analysis. This decomposition is particularly
important when the branches of a nonlinear chain belong to different critical-
ity classes (RT and BE), which must be assigned to threadclasses governed by
different analyses.

Figure (3| illustrates this concept with a single nonlinear chain I} containing
both RT and BE components. The chain begins with three callbacks (shown in
green) that are shared by both components. After the third callback, the chain
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Nonlinear Chain 1"1 (73 = T3 ... = T5): Critical Path with RT req.
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;

Fig. 3: Example of nonlinear chain splitting.

branches into two paths: an RT branch (violet) and a BE branch (blue). These
branches are assigned to their respective threadclasses based on their criticality
class. For the shared callbacks (green; subchain ), our policy merges them with
one of the RT branches—specifically, the very first RT branch when multiple
exist—to ensure they execute on an RT threadclass for prioritized processing; if
no RT branch exists, they are merged with one of the BE branches.

Algorithm [I]shows the process of linearizing and categorizing chains for anal-
ysis and resource allocation purposes. It first iterates over all chains in the input
set S (line @) For each nonlinear chain, it applies the aforementioned lineariza-
tion procedure (denoted as linearize(I")) to decompose it into linear subchains,
adding these to an intermediate set S’ (line @; linear chains are added directly
(line . Next, it categorizes the linearized chains in S’ by adding RT chains to
Sgrr and BE chains to Spg (line . This ensures that subsequent analysis
can handle the subchains appropriately within their respective threadclasses.

This decomposition creates an analytical challenge: the response time of a
chain depends on callbacks potentially assigned to a different threadclass. For in-
stance, when analyzing the BE subchain (blue), we must account for the response
time of the shared root callbacks (green) that are assigned to the RT threadclass.
This transforms our requirements from a simple per-threadclass approach to one
that must consider multiple independently scheduled threadclasses.

To solve this problem, we adopt the Compositional Performance Analysis
(CPA) approach used in prior work [6, [19]. When analyzing the linearized RT
chain, e.g., Il in Figure 3] comprising five callbacks in total, we first perform a
partial analysis on the shared callbacks, e.g., the first three callbacks in the fig-
ure. This involves creating a virtual chainset that includes all other chains in the
threadclass, plus a partial chain containing only the callbacks shared across sub-
chains. The partial response time is stored and later added to the response time
calculation of subchains in other threadclasses. This compositional approach al-
lows us to accurately bound the end-to-end response time of nonlinear chains
spanning multiple threadclasses, effectively treating them as if they were sched-
uled on separate executors. Note that this procedure is for analysis and resource
allocation purposes only, and callback inputs and outputs remain unaffected.
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4.3 Adaptive Resource Controller

Having outlined the key elements of the LaME framework, we now detail the
components that work together to regulate its execution behavior. The con-
troller runs as a standalone thread with non real-time priority Linux to prevent
interference with executor threads. It operates concurrently with the executor
and continuously monitoring it for feedback. By default, the controller activates
periodically with a configurable interval (10s in our implementation) to assess
system performance (e.g., changes in callback execution time). Additionally, the
controller is triggered immediately whenever a real-time chain timing violation
is detected, enabling prompt response to deadline misses.

The controller regulates three key parameters: the chain-to-threadclass al-
location, the threads-to-threadclass allocation (i.e., the number of threads per
threadclass), and the budgets assigned to threadclasses.

These tasks are interrelated; for instance, changing the chain allocation of
a real-time threadclass may change the amount of budget or threads required
for that threadclass to execute its chains within their deadlines. Because of this
inter-dependence, finding an optimal solution would not be tractable, especially
when using an online adaptation of the analysis where the runtime must be
constrained.

As a runtime solution, we propose a two-step approach to managing these
parameters. The flowchart portion of Figure [I] illustrates the controller’s exe-
cution logic. The first step starts by using the analysis approach in Sec. £.2] to
perform chain-to-threadclass allocation for RT chains (Alg. , while simultane-
ously determining threadclass parameters—such as the number of threads per
threadclass—through a merging process that groups threads from multiple cores
into fewer, larger threadclasses when needed to ensure schedulability. For this
part, we perform the response time analysis on each RT threadclass while assum-
ing that it has a budget of 100%. Once the RT chains have been assigned to their
threadclasses, we perform the BE chain-to-threadclass allocation (Alg. [2} details
will follow). The second step minimizes the budgets of the RT threadclasses while
ensuring that their chainsets remain analytically schedulable, and subsequently
checks starvation freedom for BE threadclasses by using the analysis in Sec.
(Alg. . Once these budgets are reduced, the controller continuously monitors
the executor for real-time chain timing violations and verifies best-effort chain
starvation freedom according to its activation period.

If a timing violation does occur, the controller adjusts the thread budgets
to guarantee response times for RT chains. Should this adjustment fail—for in-
stance, due to reduced resource capacity from system changes like thermal throt-
tling |11]—the controller will repeat the chain-to-threadclass allocation and bud-
get adjustments, adapting the system to maintain performance under the new
conditions. Of course, if the system is entirely overloaded, and bounds cannot
be generated for RT threadclasses, we degrade the least critical RT chains to BE
mode in order to preserve the schedulability of more critical real-time chains.

Dynamic Chain-to-Threadclass Allocation Alg. |2| depicts our algorithm
for creating threadclasses and performing chain-to-threadclass allocation. The
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Algorithm 2 Chain-to-Threadclass Allocation

1: Input: Set of CPU cores (M), RT and BE chainsets (Srr and Sgg)
2: Output: Threadclass allocations for RT and BE chains (Prr and PpE)

3: Prr < 0; Per + 0 // Sets of RT and BE threadclasses
4: for all m € M do

5:  Create two threads (r and r’) pinned to core m

6: HRT — {’I“}; HBE < {7“/}

7. Prr < Prr U{Illrr}; Pee < Pee U{llBe}

8: end for

9: retry:

10: VII € Pgrr : Il.chains + 0; VII € Pgg : Il.chains <

11: for all I'ry € Sgrr in descending chain-priority order do

12: Pvisited — @

13:  Pgp < Prr; Pir < Pee // Make copies of Prr and PpEr

14: next_threadclass:

15: I « lowest_util(Prr \ Puisitea) // Find IT w/ lowest per-thread utilization
16: if I'rr is schedulable on IT then

17: II.chains < II.chains U{I'rr}

18: else

19: if Prr # Puisitea then

20: Puisited — Pvisited U {H}

21: goto: next_threadclass

22: end if

23: // All II € Prr have been visited; Merge and retry

24: if |Prr| ==1 then // Nothing to merge; Demote I'rr to BE
25: Srr = Srr \ {Lcwrr}; SBE < SBE U{lcurr}

26: Prr < Prr; Pe < Pie // Restore merges done for I'rr
27: continue

28: end if

29: // merge(Ili, II2): Merges chains and threads from IT; and Il»
30: // corresponding be(IIrr): BE threadclass on the same cpu as ITrr
31: II) < lowest _util(Prr); II2 < lowest _util(Prr \ {II1})

32: II, < merge(Il1, II2); Prr < Prr \ {I12}

33: II5 «+ corresponding _be(Il,); I14 < corresponding be(Il3)
34: II3 < merge(Ils, I11); Pee < Pee \ {11}

35: goto: retry

36: end if

37: end for

38: for all I'sg € Sgg do

39: I + lowest_util(PpE)

40: II.chains < II.chains U {I'sg}
41: end for

process begins by initializing empty sets for RT and BE threadclasses (Prr and
PrE, respectively). For each CPU core in the input set M, the algorithm creates
two threads pinned to that core: one for RT and one for BE. It then forms a
single-threaded RT threadclass (ITgrr) containing the RT thread and a single-
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threaded BE threadclass (ITpg) containing the BE thread, adding both to their
respective sets (lines . At this point, the RT thread gets 100% budget while
the BE thread gets 0%; the budget adjustment is performed later by Alg.

Next, the algorithm allocates RT chains to RT threadclasses using a worst-
fit decreasing strategy, prioritizing chains in descending order of criticality (lines
. At the start of each allocation attempt, it clears any existing chain assign-
ments from all threadclasses in Prr and Ppg (line[10). For each RT chain I'gr,
it identifies the RT threadclass IT with the lowest per-thread utilization among
those not yet visited for this chain. If adding I'rr to IT keeps the threadclass
schedulable (based on the analysis given by Theorem , the chain is assigned
there (line [I7)). Otherwise, it marks the threadclass as visited (lines and
retries with the next lowest-utilization threadclass (line. If no suitable thread-
class is found after checking all, the algorithm tries merging some threadclasses
(e.g., merging two single-threaded RT threadclasses into one multi-threaded RT
threadclass), as doing so might accommodate the chain I'gr (lines .

Before merging threadclasses, the algorithm checks if only one RT threadclass
remains in Prr (i.e., all threadclasses have been merged); if so, it demotes the
current chain I, to BE status by removing it from S and adding it to Spg,
restore all merges that would have been done for I'rr using the copies P, and
P g, and moves on to the next chain (lines . Otherwise, it merges the two
RT threadclasses with the lowest utilizations (II; and II3) into IT;, removes I
from Pgrr, and performs a corresponding merge for their paired BE threadclasses
(I3 and I1,) into II3, removing I14 from Pgg. Then, the RT allocation retries
from the beginning to verify chain schedulability post-merge.

Finally, BE chains are allocated to BE threadclasses using a similar worst-fit
strategy: each I'pg is assigned to the BE threadclass with the lowest utilization,
without schedulability checks during allocation (though starvation freedom is
verified later via response-time analysis) (lines B8}[41)). This ensures even work-
load distribution while minimizing overload risks.

Dynamic Threadclass Budget Adjustment Now we reduce the budget of
RT threadclasses to minimize the resources allocated to them while ensuring
schedulability, allowing the remaining CPU budget on each core to be reas-
signed to the corresponding BE threadclass counterpart for improved best-effort
performance. Hence, this adjustment process focuses on finding the minimal
schedulable SCHED_DEADLINE budget for each RT threadclass.

We present our algorithm for the threadclass budget adjustment in Alg. [3]
We execute this algorithm for each RT threadclass I € Pgrp. If an RT thread-
class has no assigned chains (lines , we merge it and its corresponding BE
counterpart with the RT threadclass that has the maximum per-thread utiliza-
tion and its corresponding BE counterpart. This merger consolidates resources,
preventing idle threadclasses and ensuring efficient use of cores by combining
underutilized or empty threadclasses with busier ones.

As shown in lines the adjustment mechanism utilizes a binary search
approach on the budget range, starting from a minimum value and being limited
to 100%, represented by the system-defined period. To control the search gran-
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Algorithm 3 Reduce Real-Time Threadclass Budget

1: Input: An RT threadclass (IIrr € Prr), Budget step size (step)
2: min_budget < 0%; max _budget < 100%; best _budget < 0% // Per-thread budget
3: // maz_util(P): returns a threadclass (I € P) with the max per-thread utilization
4: // merge(Il1, II3): merges RT threadclasses and their BE counterparts
5: if ITgrr.chains = 0 then
6:  IIry < merge(Il,max_util(Prr \ {{Irr}))
7: end if
8: while min_budget < max_budget do
9: mld_budget — minibudget;mawibudget
10:  schedulable < true
11:  for all I, € IIgrr.chains in descending chain-priority order do
12: Compute R. using Theorem [l with C}; = mid_budget - T;, for Vry € IIrr
13: if R. > D, then
14: schedulable «+ false
15: break
16: end if
17:  end for
18:  if schedulable then
19: max_budget < mid_budget
20: else
21: min_budget < mid_budget + step
22: end if
23: end while
24: best_budget + max(min_budget, min(mid_budget, max _budget))
25: for all r, € IIgT do
26:  C} < best_budget - Ty,
27: end for
28: remaining _budget < 100% — best__budget
29: IIgg « corresponding be(IIrr)
30: for all ry € IIgg do
31:  Cy + remaining_budget - Ty,
32: end for
33: Check R. for VI, € IIpg using Theorems [2] and

ularity, we use a step size (denoted as step in the algorithm), which increments
the minimum budget when the midpoint is unschedulable; in our implementa-
tion, we set step = 1% to balance precision and analysis overhead, as discussed
further in Section [] regarding the controller overhead costs. We search for the
optimal budget for the threadclass by iteratively evaluating the schedulability
of the chainset through an online response-time analysis explained in Sec.
This iteration continues until the system converges on the least possible budget
that maintains schedulability for all chains assigned to the threadclass. Line [24]
determines the optimal budget after the binary search converges, selecting the
highest lower bound (via max) while ensuring it does not exceed the last known
schedulable midpoint (via min(mid_budget, max _budget)), as mid_budget re-
tains the value from the final iteration where schedulability was tested. The while
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Fig. 4: Individual Chain Breakdown for the Modified Autoware Reference System

loop exits either when min_budget > max_budget (convergence on a feasible
budget) or implicitly through the search process, but not via a direct break for
unschedulability in the outer loop; since schedulability checks use mid_budget,
it preserves the last viable budget when the loop ends. Even in the worst case,
where no reduced budget maintains schedulability, the algorithm ensures IT re-
mains schedulable by falling back to a higher budget (up to 100%), as prior
allocation steps in Alg. 2] have verified feasibility at full capacity.

Once the optimal budget is determined, it is applied to the threadclass, and
the corresponding executor threads within the threadclass are configured accord-
ingly with SCHED_DEADLINE parameters. Additionally, the remaining CPU-time
after assigning the RT threadclass its budget is assigned to its BE threadclass
counterpart, whose threads are scheduled on the same CPU cores as those of the
RT threadclass. Immediately after assigning BE threadclass budgets, we perform
the response time analysis on those threadclasses, as explained in Sec. [£.2] to
check if their chain response times are bounded and free from starvation.

5 Evaluation

In this section, we evaluate the performance of ROS 2 applications under our
control framework and profile the associated overhead. The evaluation was per-
formed on the Nvidia Jetson AGX Xavier embedded platform. [

2 The source code of our implementation is available at https://github.com/
rtenlab/reference-system-latency-management.
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5.1 System Setup

Our experiments use a modified version of the Autoware reference system [1] de-
ployed on a ROS 2 executor. For all experiments, the system was run using the
default DDS settings, with DDS threads having standard priority in Linux and
free to migrate among cores. Note that the Autoware reference system has a uti-
lization demand exceeding 1.0 (one CPU core), which prevents direct comparison
with ROS-Llama [5]. As discussed in Sec. [3) ROS-Llama supports only single-
threaded executors, so comparing against it would require manually partitioning
chains and assigning them across multiple executors, introducing subjectivity
that could confound any performance comparison.

Modifications to subscription-based fusion nodes: Since the original Auto-
ware reference system contains several subscription-based fusion callbacks which
existing chain-based analysis techniques |3, 6} |8, [19] cannot directly analyze, we
needed to modify it. The default behavior for subscription-based fusion nodes
is for the callback immediately proceeding a fusion callback can be triggered
by either of its input callbacks, as long as the other input callback has already
executed. This created a problem for us to use the analysis from [19] to bound
chain response times since it is not possible to extrapolate periodic models of
each chain. Therefore, we segmented the nonlinear subscription-based fusion
nodes into two separate classes of fusion callbacks: input and trigger, follow-
ing the approach taken in prior work |21l [23|. Specifically, input callbacks are
constrained to only caching the input from the previous callback in the chain,
whereas the trigger callbacks always trigger the subsequent callbacks in the chain.
The explicit chains that we were able to define after using this modified chain
configuration are shown in Figure [4] Indicated by red outlined boxes in the fig-
ure, we show the callbacks that were modified from subscription-based fusion
nodes to be input callbacks to fusion operations.

Chain Breakdown: There are 13 processing chains, divided into 3 real-time
(RT) and 10 best-effort (BE) chains. The RT chains, shown in violet boxes in
Figure [4] are comprised of callbacks on the reference system’s hot path and be-
havior planner chains, where the hot path chain is considered more critical than
the behavior planner chain |1]. As shown in the figure, the hot path chains are
identified as I'rr o and I'grr 1, while the behavior planner chain is identified as
I'rr 2. The BE chains, shown in blue boxes in the figure, are the remainder of
the best-effort chains in the system. The green boxes in the figure indicate call-
backs shared among multiple subchains of a nonlinear chain. Each callback in
the reference system contains a synthetic prime number search workload whose
WCET varies by the upper limit of the prime search. The worst observed execu-
tion times, as measured by our executor, associated with each of the callbacks’
workloads are shown by E in Figure [

5.2 Experiment Scenario 1: Autoware Reference System

This experiment was designed to compare the performance of the Autoware Ref-
erence System, described in Figure [ under arbitrary overloads on the default
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ROS 2 multi-threaded executor and our LaME executor. Both executors were
configured to run on 3 CPU cores clocked at 2.3 GHz. The default ROS 2 ex-
ecutor was created with 3 threads, each given 100% CPU budget with 10ms
replenishment period and real-time priority by SCHED_DEADLINE. Our LaME ex-
ecutor was limited to using up to 3 cores. Without any overload, we confirmed
that both executors could meet the timing requirements of all RT and BE chains
of the Autoware reference system. While the observed response times for both
classes of chains were below their deadlines, the BE and RT chains were not
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Fig. 7: RT Chain Response Times under Frequency Throttling

bounded under the analysis for the default ROS 2 executor. To experiment with
an overloaded case, we duplicated two chains, I and I'5, and then modified the
upper limit of the prime number search workload such that the execution time
of each duplicated callback was increased to 100ms.

Results: Figure[5bjand Figure[pal we report the measured response times for the
RT chains under both executors. In this case, we show that the LaME executor
outperforms the default executor, in the worst case for RT chains, by over 400%
(850ms to 175ms). This is a direct result of our framework’s ability to isolate
workloads by threadclasses and strictly enforce their resource reservations, even
in very unfavorable conditions. Furthermore, in Figure [6b, and Figure [6a] we
show the response time for the BE chain under both executors. In this case,
we designed the scenario such that all BE threadclasses are overloaded, with
their chain’s having unbounded response times. Nonetheless, the LaME executor
shows much more consistent worst-observed response times for BE chains, also
driven by LaME’s workload isolation and resource allocation algorithms.

5.3 Experiment Scenario 2: Online Frequency Throttling

In this scenario, we performed the same experiment as in scenario 1, but we
started the executor when the CPU frequency was pinned to 2.3GHz. After 90
seconds, the CPU frequency was changed to 1.4GHz. Figure [7h] and Figure [7a]
show the measured response-time over time plot for the three critical chains in
the reference system with different executors.

Results: In Figure[7] we observe that there was an increase in reported response
times after the frequency switch, as expected. As shown in Figure[7b] chains that
are running on our executor report some timing violations immediately after the
switch. This triggers the controller to reallocate CPU resources according to
the increased demand of the chains. After several seconds, we show that all



Theory-Guided Adaptive Scheduling for ROS 2 21

three chains are able to meet their deadlines without committing further timing
violations, albeit with a higher average case response time. In Figure [7a] we see
the same increase in the average-case response times of the RT chains, and we
observe a huge increase in deadline misses.

5.4 Controller Runtime Overhead

In Figure [§] we show an example of the controller component of our executor’s
runtime. Figure [8ashows the activation time when it is evaluating the response
times of the chains using 10ms as the replenishment period for the thread bud-
gets during an experiment. In this case, we set the controller to activate every
10 seconds, to periodically verify starvation freedom for BE chains. Figure [8h]
shows the breakdown of the controller’s overhead by component for its initial
instance. The controller performs response time analysis when first doing the
chain-to-threadclass allocation, during budget reduction, when periodically veri-
fying performance for BE threadclasses, and when adjusting runtime parameters
for RT threadclasses that exhibit timing violations. The longest runtime for the
controller is generally when it first performs the initial chain-to-threadclass allo-
cation and budget reduction, as this requires the most invocations of the response
time analysis. It is important to note that this overhead does not interfere with
the execution of callbacks under LaME. The controller threads run in parallel
with the executor threads and belong to the SCHED_OTHER scheduling class in
Linux and, when possible, isolated to specific non-executor cores.

A 10K | Operation Time (ms) Percentage
2 \ Thread class creation 0.185  0.17%

E 105 \\\ 1 Chain-to-thread allocation 0.636 0.58%

S \ Initial budget reduction 109.287  99.25%

=}

gwo - | Total 110.108  100%

1 2 3 4 5 6 7 8 9 10
Controller Activation

(a) Controller Runtime Per Activation (b) Controller Overhead Breakdown
Fig.8: Controller Runtime Overhead

6 Conclusion

We presented a theory-guided control framework and multi-threaded executor
that extends ROS 2 scheduling with dynamic resource management, considering
both real-time requirements for real-time chains and fairness for best-effort ones.
Our experiments on an Nvidia Jetson platform highlight the performance of our
executor under unfavorable conditions, where we observed up to 400% better
and guaranteed worst-case response times for real-time chains, compared to the
default ROS 2 executor.
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