
RTAS 2024

PAAM: A Framework for Coordinated and
Priority-Driven Accelerator Management in ROS 2

Daniel Enright*, Yecheng Xiang*, Hyunjong Choi† , Hyoseung Kim*

* University of California, Riverside

† San Diego State University

RTAS 2024

Why ROS 2 and Accelerators?

ROS 2: Important middleware for development of robotic applications!

– Autoware

Accelerators: Essential for modern robotic workloads!

– Sensing, perception, decision-making, and planning tasks.

Real-time ROS 2 and Accelerators: Allows development of modular high-
performance multi-process safety-critical applications!

– Resource sharing makes timely execution of safety-critical applications tricky

2

RTAS 2024

Background: ROS 2 Architecture

Executors: processes with one or more threads scheduled
by OS scheduler

• ROS 2 offers a multi-process execution model!

Callbacks: smallest schedulable entity in ROS 2
• Scheduled by executors running on the CPU

Nodes: syntactical organization of callbacks

Current practice in using accelerators with ROS 2

• Direct invocation from callbacks

• Executor process issues requests to devices

• Results in unmanaged accelerator access

3

Node

Callback #1

Executor Process #1

Node

Node

CPU GPU TPU

Callback #2
CPU GPU

Callback #3

Callback #4
CPU TPU

CPU GPU TPU

RTAS 2024

Background: Processing Chains in ROS 2

Semantic abstraction of a sequence of data-dependent callbacks
– Example: Apex.AI’s Autoware reference system*

4

23
FrontLidarDriver

22
RearLidarDriver

25 24

26
19

EuclideanClusterSettings

21
IntersectionOutput

28
RayGroundFilter

29
EuclideanClusterDetector

35
MPCController

34

VehicleInterface 25
VehicleDBWSystem

1
PointCloudMap

6
Visualizer

9
Lanelet2Map

10

Lanelet2MapLoader 12
ParkingPlanner

16
BehaviorPlanner

13
LanePlanner

27

20
30

ObjectCollisionEstimator

3
PointCloudMapLoader

2
VoxelGridDownsampler

4
NDTLocalizer

7

Lanelet2GlobalPlanner

5

8

18

25

14 15
17

32

33

: Nodes (color = executor ID) > >
High LowMed

p p : Callbacks (p = priority)Chain criticality:

PointsTransformerFront PointsTransformerRear

PointCloudFusion

*ROS2 Real-Time Working Group: Reference system. https://github.com/ros-realtime/reference-system.

https://github.com/ros-realtime/reference-system

RTAS 2024

Prior Work

Analyzable ROS 2 callback scheduling on executors (e.g. PiCAS) [3,4,7,8]

– Provides chain-aware scheduling on single & multi-threaded executors

– CPU only: Analysis does not work when accelerators are introduced

Real-time GPU management frameworks for ROS 2 (e.g. ROSGM) [45]

– Provides an interface for real-time GPU management in ROS 2

– No end-to-end timing guarantees on chains

– Does not consider multiple executors, or multiple types of accelerators

5

[3] D. Casini, T. Blas, I. Lutkebohle, and B. Brandenburg, “Response-time analysis of ROS 2 processing chains under reservation-based scheduling,” ECRTS, 2019.
[4] Y. Tang, Z. Feng, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi, “Response time analysis and priority assignment of processing chains on ROS2 executors,” RTSS, 2020.
[7] H. Choi, Y. Xiang, and H. Kim, “PiCAS: New design of priority-driven chain-aware scheduling for ROS2,” RTAS, 2021.
[8] H. Sobhani, H. Choi, and H. Kim, “Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors,” RTAS, 2023.
[45] R. Li, T. Hu, X. Jiang, L. Li,W. Xing, Q. Deng, and N. Guan, “ROSGM: A real-time gpu management framework with plug-in policies for ROS 2,” RTAS, 2023.

RTAS 2024

System Model

6

Processing Chain 𝚪𝒄

Callback 𝝉𝒊 ≔ (𝐸𝑖 , 𝐴𝑖 , 𝑅𝑖 , 𝜂𝑖)

𝐸𝑖: WCET of CPU segments in 𝜏𝑖
𝐴𝑖: WCET of accelerator segments in 𝜏𝑖
𝑅𝑖: Set of accelerators used by 𝜏𝑖
𝜂𝑖: # of accelerator segments in 𝜏𝑖

Chain 𝚪𝒄 ∶= ([𝜏𝑐1, 𝜏𝑐2, … , 𝜏𝑐𝑛], 𝑇𝑐 , 𝐷𝑐 , 𝛿𝑐)

[𝝉𝒄𝟏…]: Sequence of callbacks in chain Γ𝑐
𝑻𝒄: Period of chain Γ𝑐
𝑫𝒄: Relative deadline of Γ𝑐 (𝐷𝑐 > 𝑇𝑐)
𝜹𝒄: # of accelerator segments in Γ𝑐

Callback 𝜏1
CPU GPU TPU

Callback 𝜏2
CPU GPU

Callback 𝜏3
CPU GPU TPU

Callback 𝜏4
CPU TPU

RTAS 2024

1. Priority inversion and unanalyzable blocking time

• Requests from lower priority chains can block those from higher priority chains

• Why? OS and accelerator drivers are unaware of the concept of processing
chains and chain/callback priorities in ROS 2!

2. Poor accelerator resource utilization

• Most accelerators (e.g., TPU): sequential, no preemption & concurrent exec.

• GPU access from multiple executor processes:
Interleaved execution (= fair slowdown), high GPU context-switching cost

3. Disparity in chain and executor priorities

• Chain priority may not match with the executor process priority

Challenges with Accelerators

7

RTAS 2024

Contributions

PAAM: A Priority-driven Accelerator Access Management framework for real-
time multi-process ROS 2 applications

• Presents the ”accelerator access as a service” paradigm

• Schedules accelerator requests with respect to chain priority

• Offers bounded WCRT and admissions control for processing chains

• Supports multiple accelerators of various types (GPU and TPU)

• Leverages separate data and control planes to minimize transport overhead

Open-source combined GPU- and TPU-specific implementation

• Achieves up to a 91% reduction in the end-to-end latency of critical chains

8

RTAS 2024

PAAM Client-Server Architecture

9

RTAS 2024

2. Control Plane:
• Fixed-size msgs (= local accelerator reqs)

• Leverages zero-copy DDS capabilities

• Variable-size msgs
• Client reg, remote accelerator reqs, etc.

→ Uses existing DDS transport

Data and Control Planes

10

Challenge: Data communication overhead between client and PAAM server

– Main issues: DDS serialization, data copy to DDS transport

Our solution: Separate data plane from control plane, with shared memory

Iceoryx-enabled
CycloneDDS

1. Data Plane:
• Clients’ input data for kernels directly

stores in shared memory
• No serialization, raw datatypes

• PAAM server stores the results
directly to shared memory
• No unnecessary copies

• Results can be used before device
memory is freed

RTAS 2024

PAAM Client-Server Architecture

11

RTAS 2024

Hierarchical Request Management

12

Challenge: Some accelerators (e.g., GPU) support device-level prioritization

– But there is a mismatch between chain priority and device priority numbers

Our solution: Two-level hierarchical request management

Level 1: N worker threads (buckets)

• One for each device priority (1..N) determined at initialization

• Chain priorities are down-sampled into buckets

Level 2: Thread-local queues

• Each bucket maintains a local priority queue for requests

• Executes requests in chain priority order

• Maintains records of requests and their callbacks

RTAS 2024

Accelerator-Specific Considerations

13

GPU – Nvidia GPU

– Single execution context for all kernels – no context switching!

– 6 buckets, one per hardware stream priority
• Allowing preemptive kernel execution

– Lowest priority bucket for best-effort chains
• Allows concurrent execution of kernels for increased throughput

TPU – Coral Edge TPU

– Single execution context for all requests
• Allows multiple client processes to use the device!

– Single bucket for all requests
• No prioritized hardware queues

– Non-preemptive, sequential, priority-ordered execution of requests

RTAS 2024

PAAM Client-Server Architecture

14

RTAS 2024

Admissions Control

Purpose: To guarantee end-to-end response time and to protect timely
execution of previously admitted chains

How we do admissions control:

1. Clients send a request to the server for chain admission

2. Server determines WCRT of new chain, considering all previously admitted chains

3. Server evaluates if the computed WCRT bound for each chain satisfies each

deadline

15

RTAS 2024

Admissions Control

16

Lemma 1. Maximum number of requests that an accelerator segment can
generate in an arbitrary interval t:

Lemma 2. Maximum handling time of an accelerator segment of a callback
within a chain instance:

Lemma 3. Maximum time to handle all accelerator requests of any chain
instance:

RTAS 2024

Admissions Control

Theorem 1. Worst-case response time of a chain with accelerator segments
under the PAAM framework is bounded by:

17

Blocking time from

lower-priority chains

WCET of all callbacks of

the chain

Handling time of all

accelerator segments

of the chain

Delay from higher priority

chains accessing the

same accelerator
Delay from callbacks

executing on the same

CPU core with a higher

executor process priority

RTAS 2024

Evaluation

Experimental setup:

– ROS 2 Galactic on the Nvidia Jetson AGX Xavier platform running Ubuntu 20.04

– 8 CPU cores, 1 iGPU, 1 Coral USB Edge TPU

Source code of our implementation:

– https://github.com/rtenlab/reference-system-paam.git

18

https://github.com/rtenlab/reference-system-paam.git

RTAS 2024

Case Study 1: GPU-enabled Robotic System

19

Inspired by PiCAS* case study

*H. Choi, Y. Xiang, and H. Kim, “PiCAS: New design of priority-driven chain-aware scheduling for ROS2,” in 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2021, pp. 251–263.

†Follows PiCAS callback-to-executor and executor-to-cpu assignment

6 critical chains†, descending priority

– Periodic, linear, and non-linear chains

2 best-effort chains

– Sharing CPU cores with highest
criticality chains

Each callback has one GPU segment

RTAS 2024

Case Study 1: GPU-enabled Robotic System

20

PAAM outperforms
PiCAS and ROS 2 for
all real-time chains

PAAM schedules accelerator
jobs with respect to chain
priority

End-to-end chain
latency is upper
bounded by our analysis

Maximum observed end-to-end chain latency End-to-end chain latency distribution

RTAS 2024

Case Study 2: Apex.AI’s Autoware Reference System

Based on a lidar-based perception pipeline for an autonomous vehicle
– From sensor input to behavior planner output

Several prioritized processing chains with extensive GPU & TPU usage
– Evaluated with multiple single-threaded and multithreaded executors

21

RTAS 2024

Case Study 2: Apex.AI’s Autoware Reference System

22

Reference System KPIs

(1) Hot Path Latency:

Latency from the LiDAR sensors to the
output of the behavior planner

(2) Behavior Planner Period:

Accuracy of planner execution period

(3) Hot Path Message Drops:

Message drops on the hot path

917ms

83ms

(lower latency is better)

(less variance
is better)

(fewer drop is
better)

PAAM achieves a 91% reduction in
the hot path latency compared to
standard ROS 2!

RTAS 2024

Schedulability Experiment

Variable # of Chains per Chainset
– Variable number of chains per chainset and fixed number

of callbacks per chain (n chains, with 4 callbacks each)

– Fixed Accelerator-to-CPU utilization ratio (1:1) per chain

– Tested with variable utilization maximum per chain

23

Variable CPU:GPU Utilization Ratio
– Fixed number of chains and callbacks per chain (4 chains,

with 4 callbacks each)

– Varied Accelerator-to-CPU utilization ratio per chain

– Tested with variable utilization maximum per chain

RTAS 2024

Overhead breakdown

Nvidia GPU inter-stream preemption cost

PAAM Overhead Analysis

24

Max non-DDS
overhead (pure PAAM
overhead): < 150 𝝁s!

Min: 198 𝝁s, Max: 391 𝝁s

Max preemption delay:
129 𝝁s!

RTAS 2024

Summary

PAAM: Priority-driven Accelerator Access Management Framework
• Implemented in C++ for ROS 2
• Supports all types of accelerators & real-time ROS 2 applications
• GPU and TPU implementation on a single server instance
• WCET bounding for prioritized chains
• Thorough evaluation and open-source test cases

25

https://github.com/rtenlab/
reference-system-paam.git

Thank you!

https://github.com/rtenlab/reference-system-paam.git
https://github.com/rtenlab/reference-system-paam.git

	Slide 1: PAAM: A Framework for Coordinated and Priority-Driven Accelerator Management in ROS 2
	Slide 2: Why ROS 2 and Accelerators?
	Slide 3: Background: ROS 2 Architecture
	Slide 4: Background: Processing Chains in ROS 2
	Slide 5: Prior Work
	Slide 6: System Model
	Slide 7: Challenges with Accelerators
	Slide 8: Contributions
	Slide 9: PAAM Client-Server Architecture
	Slide 10: Data and Control Planes
	Slide 11: PAAM Client-Server Architecture
	Slide 12: Hierarchical Request Management
	Slide 13: Accelerator-Specific Considerations
	Slide 14: PAAM Client-Server Architecture
	Slide 15: Admissions Control
	Slide 16: Admissions Control
	Slide 17: Admissions Control
	Slide 18: Evaluation
	Slide 19: Case Study 1: GPU-enabled Robotic System
	Slide 20: Case Study 1: GPU-enabled Robotic System
	Slide 21: Case Study 2: Apex.AI’s Autoware Reference System
	Slide 22: Case Study 2: Apex.AI’s Autoware Reference System
	Slide 23: Schedulability Experiment
	Slide 24: PAAM Overhead Analysis
	Slide 25: Summary

