RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

PAAM: A Framework for Coordinated and
Priority-Driven Accelerator Management in ROS 2

Daniel Enright*, Yecheng Xiang*, Hyunjong Choit , Hyoseung Kim*

* University of California, Riverside
T San Diego State University

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Why ROS 2 and Accelerators?

ROS 2: Important middleware for development of robotic applications!
— Autoware

Accelerators: Essential for modern robotic workloads!
— Sensing, perception, decision-making, and planning tasks.

Real-time ROS 2 and Accelerators: Allows development of modular high-
performance multi-process safety-critical applications!

— Resource sharing makes timely execution of safety-critical applications tricky

/| Language-specific | relcpp | ‘ relpy I
ROS Application - / Client Libraries

’ RTI Connext DDS H OpenSplice DDS |

”” DDS Implementations :
Operating System | Linux/Windows/OS X ‘ eProsima FastRTPS

[TH RIVERSIDE

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Background: ROS 2 Architecture

Executors: processes with one or more threads scheduled -
()

by OS scheduler Executor Process #1
* ROS 2 offers a multi-process execution model!

Callbacks: smallest schedulable entity in ROS 2
* Scheduled by executors running on the CPU

Nodes: syntactical organization of callbacks

Current practice in using accelerators with ROS 2
e Direct invocation from callbacks

* Executor process issues requests to devices

* Results in unmanaged accelerator access

[T3 RIVERSIDE ;

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Background: Processing Chains in ROS 2

Semantic abstraction of a sequence of data-dependent callbacks

— Example: Apex.Al’s Autoware reference system*

FrontLidarDriver RearLidarDriver PointCloudMap Visualizer Lanelet2Map
. || . = e Lo N —
intsTransformerFront hointsTransformerRear NPointCloudMapLoader Lanelet2GlobalPlanner LantiletZMapLoader /’jﬂ
) S :l —-/La/nePIanner
PointCloudFusj VoxelGridDownsampler l m -M

EuclideanClusterSettings — 7 BehaviorPlanner /
= NDTLocaliz -
19) —t s [16

\ /

/fi_ - %
>Nucl|dmeanCIusterDetec’tor ObjectCollisionEstimator MPCController

- —> L.
[Chain criticality: :I;] > Med > Low : Nodes (color = executor ID) n n : Callbacks (p = priority)]

IntersectionOutput

VehicleDBWSystem

RayGroundFilter

Vebhiclelnterface

m RIVERSIDE *ROS2 Real-Time Working Group: Reference system. https://github.com/ros-realtime/reference-system.

https://github.com/ros-realtime/reference-system

[]
Prior Work

Analyzable ROS 2 callback scheduling on executors (e.g. PiCAS) 3478
— Provides chain-aware scheduling on single & multi-threaded executors

— CPU only: Analysis does not work when accelerators are introduced

Real-time GPU management frameworks for ROS 2 (e.g. ROSGM) [4°]
— Provides an interface for real-time GPU management in ROS 2
— No end-to-end timing guarantees on chains

— Does not consider multiple executors, or multiple types of accelerators

[3] D. Casini, T. Blas, I. Lutkebohle, and B. Brandenburg, “Response-time analysis of ROS 2 processing chains under reservation-based scheduling,” ECRTS, 2019.

[4]Y. Tang, Z. Feng, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi, “Response time analysis and priority assignment of processing chains on ROS2 executors,” RTSS, 2020.
[7] H. Choi, Y. Xiang, and H. Kim, “PiCAS: New design of priority-driven chain-aware scheduling for ROS2,” RTAS, 2021.

[8] H. Sobhani, H. Choi, and H. Kim, “Timing Analysis and Priority-driven Enhancements of ROS 2 Multi-threaded Executors,” RTAS, 2023.

[45] R. Li, T. Hu, X. Jiang, L. Li,W. Xing, Q. Deng, and N. Guan, “ROSGM: A real-time gpu management framework with plug-in policies for ROS 2,” RTAS, 2023.

[TH RIVERSIDE ;

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

System Model

Callback 74 Callback 7, Callback 73 Callback 74

|

|

: : .

| Processing Chain I,
|

|

Callback t; == (E;, A;, R;,m;) Chain I, := ([tc1,Te2s ooor Tenl Ty Dy 6)
E;: WCET of CPU segments in t; [T;1 .- |: Sequence of callbacks in chain T,
A;: WCET of accelerator segments in t; T: Period of chain T,

R;: Set of accelerators used by t; D _: Relative deadline of I, (D, > T,)
n;: # of accelerator segments in t; O.: # of accelerator segments in I,

[T3 RIVERSIDE

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Challenges with Accelerators

1. Priority inversion and unanalyzable blocking time

* Requests from lower priority chains can block those from higher priority chains

* Why? OS and accelerator drivers are unaware of the concept of processing
chains and chain/callback priorities in ROS 2!

2. Poor accelerator resource utilization

* Most accelerators (e.g., TPU): sequential, no preemption & concurrent exec.

* GPU access from multiple executor processes:
Interleaved execution (= fair slowdown), high GPU context-switching cost

3. Disparity in chain and executor priorities

e Chain priority may not match with the executor process priority

[TH RIVERSIDE

Contributions

PAAM: A Priority-driven Accelerator Access Management framework for real-
time multi-process ROS 2 applications

® Presents the “accelerator access as a service” paradigm

® Schedules accelerator requests with respect to chain priority

e Offers bounded WCRT and admissions control for processing chains

® Supports multiple accelerators of various types (GPU and TPU)

® |Leverages separate data and control planes to minimize transport overhead

Open-source combined GPU- and TPU-specific implementation
® Achieves up to a 91% reduction in the end-to-end latency of critical chains

[TH RIVERSIDE .

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

PAAM Client-Server Architecture

Clients PAAM Server
Fa 2 ™\
' r ™
o2l e el Control Plane Client Hierarchical Request Management
" dient | Registration
flode . e Requests w/ chain priority
Callback #1 » DDS Registration Registration
crullcpulTPU Callback LJ|> O O O O
<Ll Accelerator Callback
Request

Control messages

Control Priority
L
Allocation Device-level priority
Bucket -
| |
Data Plane ; I

Deregistration Bucket 1 Bucket 2 Bucket n
Large kernel data
Shared)] oo
Callback #4 Z:r"fcl?p‘:_w/ ° Memory #1 R“"mM°"'t°r .
erialization arbage ™~
= - Collection Thread-local
~ priority queue
ROS 2 Middleware Stack S 4
OS and Driver Stack v v v
Accelerator

[T3 RIVERSIDE .

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Data and Control Planes

Challenge: Data communication overhead between client and PAAM server

— Mainissues: DDS serialization, data copy to DDS transport

Our solution: Separate data plane from control plane, with shared memory

1. Data Plane: 2. Control Plane:
* Clients’ input data for kernels directly * Fixed-size msgs (= local accelerator reqs)
stores in shared memory ®* Leverages zero-copy DDS capabilities
®* Noserialization, raw datatypes @
* PAAM server stores the results 'Cec‘;rcylz'neensgfd U G Ry

directly to shared memory
* No unnecessary copies

. Results can be used before device
memory is freed

Variable-size msgs

®* C(Client reg, remote accelerator reqs, etc.
- Uses existing DDS transport

[TH RIVERSIDE o

RTAS 2024

Clients

I

Executor Process #1

Node

o

E
i}
[a}
=~
=

[a)
)
C lq
[0}
o
=

Callback #4

DDS

PAAM Server

UNIVERSITY OF CALIFORNIA, RIVERSIDE

PAAM Client-Server Architecture

Ve

Control Plane

Client

\ J

Control messages

Large kernel data

Registration

Accelerator

Request

Data Plane

~

ROS 2 Middleware Stack

OS and Driver Stack

[T3 RIVERSIDE

Zero-Copy w/o
Serialization

\

Shared
Memory #1

Client
Registration

Registration
Callback

Control
Memory
Assignment

Deregistration

Runtime Monitor

Garbage
Collection

Hierarchical Request Management
Requests w/ chain priority
Request
g 2O © O O -

Priority
Downsampling

Device-level priority
I

¢ 7

Bucket 1 Bucket 2

Bucketn

Accelerator

11

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Hierarchical Request Management

Challenge: Some accelerators (e.g., GPU) support device-level prioritization
— But there is a mismatch between chain priority and device priority numbers

Our solution: Two-level hierarchical request management

Level 1: N worker threads (buckets) e N\ oounanping
® One for each device priority (1..N) determined at initialization - -
® Chain priorities are down-sampled into buckets { J (J { J

Level 2: Thread-local queues

® Each bucket maintains a local priority gueue for requests

- - Bucket n (worker thread)
~ Determine Bucket
Push Request to Queue q q q
Wake Worker Thread | » While queue is not empty

Pop Request
Execute and Notify

® Executes requests in chain priority order '

® Maintains records of requests and their callbacks

[T3 RIVERSIDE

12

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Accelerator-Specific Considerations

GPU - Nvidia GPU

— Single execution context for all kernels — no context switching!
— 6 buckets, one per hardware stream priority
e Allowing preemptive kernel execution

— Lowest priority bucket for best-effort chains
e Allows concurrent execution of kernels for increased throughput

TPU — Coral Edge TPU

— Single execution context for all requests
e Allows multiple client processes to use the device!

— Single bucket for all requests
e No prioritized hardware queues

— Non-preemptive, sequential, priority-ordered execution of requests

[TH RIVERSIDE "

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

PAAM Client-Server Architecture

Clients PAAM Server
Fa 2 ™\
g a ™
Executor Process #1 Control Plane Client Hierarchical Request Management
 Gient | Registration
Node N = Client Requests w/ chain priority
Callback #1 » DDS Registration Registration Request
CPU TPU ————— Callback LJ|> O O O O
[Accelerator Callback

Request

Control

Priority

Control messages : Downsampling
Allocation Device-level priority
Bucket =
| |
Data Plane ‘ I

Deregistration Bucket 1 Bucket 2 Bucket n
Large kernel data
Shared)] oo
Callback #4 Z:r"fcl?p‘:_w/ ° Memory #1 R“"mM°"'t°r .
erialization arbage ™~
= - Collection Thread-local
~ priority queue
ROS 2 Middleware Stack S 4
OS and Driver Stack v v v
Accelerator

[T3 RIVERSIDE

14

Admissions Control

Purpose: To guarantee end-to-end response time and to protect timely
execution of previously admitted chains

How we do admissions control:

1. Clients send a request to the server for chain admission

2. Server determines WCRT of new chain, considering all previously admitted chains

3. Server evaluates if the computed WCRT bound for each chain satisfies each

deadline

[TH RIVERSIDE .

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Admissions Control

Lemma 1. Maximum number of requests that an accelerator segment can
generate in an arbitrary interval t:

t
| +1

Ju.qu(f) —]‘.TCI

Lemma 2. Maximum handling time of an accelerator segment of a callback

within a chain instance: . .
t H.;; < A7 ;+ max - Zukq cij) Alg

Th,q €Elps(T;, J)
Ab(T,q)=b(T;) Tk,q €hps(7i ;)

Lemma 3. Maximum time to handle all accelerator requests of any chain

instance:
H, Z(i+ max Ajf) Z fkq(Be)- A g

Ti,q€lps(7i, ;)
Tij€le Ab(Th.q)=b(T1.;) Thoa € Uﬂ{l(fvs(n i)

[T3 RIVERSIDE .

Admissions Control

Theorem 1. \Worst-case response time of a chain with accelerator segments
under the PAAM framework is bounded by:

Blocking time from WCET of all callbacks of Handling time of all
lower-priority chains ~ the chain accelerator segments
| of the chain

¥ ¥ ¥
R +{BJHEMHEIH DY wn(Re) - (& + Hy)|,
Tnehp(T.)

¥y Z un(Re) - (Ep + spin(Ty))
I'n€hpp(T'c)

Delay from higher priority
chains accessing the
same accelerator

Delay from callbacks

executing on the same

CPU core with a higher
m RIVERSIDE executor process priority 17

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Evaluation

Experimental setup:
— ROS 2 Galactic on the Nvidia Jetson AGX Xavier platform running Ubuntu 20.04
— 8 CPU cores, 1iGPU, 1 Coral USB Edge TPU

Source code of our implementation:
— https://github.com/rtenlab/reference-system-paam.git

rtenlab/reference-
system-paam

Autoware reference system integrated with the

PAAM framework

A2 ©o 1 Yo

[T3 RIVERSIDE "

https://github.com/rtenlab/reference-system-paam.git

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Case Study 1: GPU-enabled Robotic System

Inspired by PICAS™* case study

T2 E=6ms

e o 6 critical chains’, descending priority
;—--i}----__go al costmap obal_planner

Cen nERm T Eem rzsme Lol planner — Periodic, linear, and non-linear chains
T=120ms -'-g--b|local_costmap| ----- ¥ local plan| }

L mEem rem o Eims s« 2 best-effort chains

o220 ms -->| pre_processing }---p{ object_detection |==--7

;2250 ms --ﬂ :ilzp':;:li;:gmation f---blrlsrzi;fc’ir;rediction | - S h arin g C P U cores w It h h Ig h eSt

Ti4 E=7 ms
Is: T1z E=2ms Ti3 E=]ms ,---->| extract_robot_model | C rlt | Ca I |ty C h a | n S
T=320ms @---}{ generate_state |- ---------- i
= _ Critical Chains:
55360 T2 E=2ms T: E=7ms ritica rl:a:lj[]fm 5] [y:=[Tq, T10, T11] EaCh Ca | I baCk h aS One G PU Segm ent
et @- Iy:=[10, 75, 7 I5:=[t1 Ty Ty

T3:=(Ts, T5, 77, 7] T'5:=[T12 T13]
Best-effort (non-critical chains):
[Regular callback === Data dependency Ip=[tw 5] Te=[Tis Tu7 Tis, Tao]

O Timer callback (T: period, E: execution time)

*H. Choi, Y. Xiang, and H. Kim, “PiCAS: New design of priority-driven chain-aware scheduling for ROS2,” in 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2021, pp. 251-263.

[TH RIVERSIDE

*Follows PiCAS callback-to-executor and executor-to-cpu assighment

19

Case Study 1: GPU-enabled Robotic System

Maximum observed end-to-end chain latency End-to-end chain latency distribution
350 050 -
I ROs 2 I PicAs [CPAAM [Analysis | [|ROS 2 | |PICAS PAAM|
300 - J r==—===—=7 T = 1 .
_ _2001] e 8 I
£ 250 - £
3 1 ol :
& 200 - g 150 L H | H
5 |] s |l H |
5 10 5 100! | H '
3 1 3 | s | I |
2100 gl 2 1 | 1 l
50 [y 5
5ol | ? | I i
I L e |
0 1 | | | 1 | | |
0 Chain 1 Chain2 Chain3 Chain4 Chain5 Chain6 BE 1 BE 2 Chain1 Chain2 Chain3 Chain4 Chain5 Chain6 BE1 BE 2
End-to-end chain PAAM schedules accelerator PAAM outperforms
latency is upper jobs with respect to chain PiCAS and ROS 2 for
bounded by our analysis priority all real-time chains

[T3 RIVERSIDE .

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Case Study 2: Apex.Al’s Autoware Reference System

Based on a lidar-based perception pipeline for an autonomous vehicle

— From sensor input to behavior planner output

Several prioritized processing chains with extensive GPU & TPU usage
— Evaluated with multiple single-threaded and multithreaded executors

FrontLidarDriver RearLidarDriver PointCloudMap Visualizer Lanelet2Map
iR 23 | 22 , | — () — “\\ EE—
ointsTransformerFront w N PointCloudMapLoader GneletZGlobalPlanner LaniletZMapLoader /-P/“
) .—%Planner
PointCloudFusion VoxelGridDownsampler _m

EuclideanClusterSettings g ~ frepor 7 BehaviorPlanner
ocalize
T A B
e

4
T . M
“ Wby 5 /'{ VehicleDBWSystem
ayGroundFilter uclideanClusterDetector 2 o . >
>W/ ObjectCollisionEstimator MPCController Vehiclelnterface

[Chain criticality: ;;h > '\;; > Low ‘:H:”:l |:| : Nodes (color = executor ID) @ & : callbacks (p = priority)]

[T3 RIVERSIDE)

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Case Study 2: Apex.Al’s Autoware Reference System

1200

:_ (lower latency is better) 1T

- [IROS 2
Reference System KPIs g 800r B TIPICAS
2 f - - PAAM
(1) Hot Path Latency: < a0l I l917ms &5,
Latency from the LiDAR sensors to the = |
output of the behavior planner S 200 -
S [i | p— ,
(2) Behavior Planner Period: £ |%| I%|
L 400 - _
Accuracy of planner execution period £ i Lj__: | T~ 83mSL J 151
(3) Hot Path Message Drops: _ st o
300 1 51
Message drops on the hot path (less variance [—]Rros 2 (fewer drop is [~1Ros 2
250 | js better) []picAs .| better) [IricAs
PAAM PAAM
200t
PAAM achieves a 91% reduction in £ | g 2% ¥
the hot path latency compared to 5 : .
100 4 - i
standard ROS 2! 1 :
50+
[T3 RIVERSIDE .) i | »

4xST MT 4xST MT

RTAS 2024 UNIVERSITY OF CALIFORNIA, RIVERSIDE

Schedulability Experiment

1004

Variable # of Chains per Chainset ao) |

— Variable number of chains per chainset and fixed number
of callbacks per chain (n chains, with 4 callbacks each)

60|

40t

Success rates (%)

— Fixed Accelerator-to-CPU utilization ratio (1:1) per chain
— Tested with variable utilization maximum per chain

Variable CPU:GPU Utilization Ratio

— Fixed number of chains and callbacks per chain (4 chains,
with 4 callbacks each)

— Varied Accelerator-to-CPU utilization ratio per chain

Success rates (%)

— Tested with variable utilization maximum per chain

X Q]
[T3 RIVERSIDE

23

RTAS 2024

UNIVERSITY OF CALIFORNIA, RIVERSIDE

PAAM Overhead Analysis

Overhead breakdown

500 I Client msg generation [PAAM request queueing [N PAAM scheduling R
I DDS transmission I PAAM worker wake-up [0 Client notification

— 400 - -
3 : Max non-DDS
o Min: 198 us, Max: 391 us
E 300 overhead (pure PAAM
2 200 overhead): < 150 us!
T
L

100

0

Min Average Max

Nvidia GPU inter-stream preemption cost

Max preemption delay:

[T3 RIVERSIDE

MatMul | Reduction | VectorAdd | Histogram 129 us!
Mean (ps) | 41.21 39.55 22.78 14.95
Max (ps) 116.48 129.18 77.85 72.92
Stdev (us) | 14.16 26.65 15.13 10.77

24

RTAS2024 ___ UNVERSITYOF CALIFORNIA RIVERSIDE
Summary

PAAM: Priority-driven Accelerator Access Management Framework
* Implemented in C++ for ROS 2
« Supports all types of accelerators & real-time ROS 2 applications
« GPU and TPU implementation on a single server instance
« WOCET bounding for prioritized chains
« Thorough evaluation and open-source test cases

rtenlab/reference-
system-paam

Thank you!

https://github.com/rtenlab/
reference-system-paam.git

[TH RIVERSIDE e

https://github.com/rtenlab/reference-system-paam.git
https://github.com/rtenlab/reference-system-paam.git

	Slide 1: PAAM: A Framework for Coordinated and Priority-Driven Accelerator Management in ROS 2
	Slide 2: Why ROS 2 and Accelerators?
	Slide 3: Background: ROS 2 Architecture
	Slide 4: Background: Processing Chains in ROS 2
	Slide 5: Prior Work
	Slide 6: System Model
	Slide 7: Challenges with Accelerators
	Slide 8: Contributions
	Slide 9: PAAM Client-Server Architecture
	Slide 10: Data and Control Planes
	Slide 11: PAAM Client-Server Architecture
	Slide 12: Hierarchical Request Management
	Slide 13: Accelerator-Specific Considerations
	Slide 14: PAAM Client-Server Architecture
	Slide 15: Admissions Control
	Slide 16: Admissions Control
	Slide 17: Admissions Control
	Slide 18: Evaluation
	Slide 19: Case Study 1: GPU-enabled Robotic System
	Slide 20: Case Study 1: GPU-enabled Robotic System
	Slide 21: Case Study 2: Apex.AI’s Autoware Reference System
	Slide 22: Case Study 2: Apex.AI’s Autoware Reference System
	Slide 23: Schedulability Experiment
	Slide 24: PAAM Overhead Analysis
	Slide 25: Summary

