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Why ROS 2 and Accelerators?

ROS 2: Important middleware for development of robotic applications!

– Autoware

Accelerators: Essential for modern robotic workloads!

– Sensing, perception, decision-making, and planning tasks.

Real-time ROS 2 and Accelerators: Allows development of modular high-
performance multi-process safety-critical applications!

– Resource sharing makes timely execution of safety-critical applications tricky
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Background: ROS 2 Architecture

Executors: processes with one or more threads scheduled 
by OS scheduler

• ROS 2 offers a multi-process execution model!

Callbacks: smallest schedulable entity in ROS 2
• Scheduled by executors running on the CPU

Nodes: syntactical organization of callbacks

Current practice in using accelerators with ROS 2

• Direct invocation from callbacks

• Executor process issues requests to devices

• Results in unmanaged accelerator access
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Background: Processing Chains in ROS 2

Semantic abstraction of a sequence of data-dependent callbacks
– Example: Apex.AI’s Autoware reference system*
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*ROS2 Real-Time Working Group: Reference system. https://github.com/ros-realtime/reference-system. 

https://github.com/ros-realtime/reference-system


RTAS 2024

Prior Work

Analyzable ROS 2 callback scheduling on executors (e.g. PiCAS) [3,4,7,8]

– Provides chain-aware scheduling on single & multi-threaded executors 

– CPU only: Analysis does not work when accelerators are introduced

Real-time GPU management frameworks for ROS 2 (e.g. ROSGM) [45]

– Provides an interface for real-time GPU management in ROS 2

– No end-to-end timing guarantees on chains

– Does not consider multiple executors, or multiple types of accelerators
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[3] D. Casini, T. Blas, I. Lutkebohle, and B. Brandenburg, “Response-time analysis of ROS 2 processing chains under reservation-based scheduling,” ECRTS, 2019.
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System Model
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Processing Chain 𝚪𝒄

Callback 𝝉𝒊 ≔ (𝐸𝑖 , 𝐴𝑖 , 𝑅𝑖 , 𝜂𝑖)

𝐸𝑖: WCET of CPU segments in 𝜏𝑖
𝐴𝑖: WCET of accelerator segments in 𝜏𝑖
𝑅𝑖: Set of accelerators used by 𝜏𝑖
𝜂𝑖: # of accelerator segments in 𝜏𝑖

Chain 𝚪𝒄 ∶= ([𝜏𝑐1, 𝜏𝑐2, … , 𝜏𝑐𝑛], 𝑇𝑐 , 𝐷𝑐 , 𝛿𝑐)

[𝝉𝒄𝟏… ]: Sequence of callbacks in chain Γ𝑐
𝑻𝒄: Period of chain Γ𝑐
𝑫𝒄: Relative deadline of Γ𝑐 (𝐷𝑐 > 𝑇𝑐)
𝜹𝒄: # of accelerator segments in Γ𝑐

Callback 𝜏1
CPU GPU TPU

Callback 𝜏2
CPU GPU

Callback 𝜏3
CPU GPU TPU

Callback 𝜏4
CPU TPU
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1. Priority inversion and unanalyzable blocking time

• Requests from lower priority chains can block those from higher priority chains 

• Why? OS and accelerator drivers are unaware of the concept of processing 
chains and chain/callback priorities in ROS 2!

2. Poor accelerator resource utilization

• Most accelerators (e.g., TPU):  sequential, no preemption & concurrent exec.

• GPU access from multiple executor processes: 
Interleaved execution (= fair slowdown), high GPU context-switching cost

3. Disparity in chain and executor priorities

• Chain priority may not match with the executor process priority

Challenges with Accelerators
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Contributions

PAAM: A Priority-driven Accelerator Access Management framework for real-
time multi-process ROS 2 applications

• Presents the ”accelerator access as a service” paradigm

• Schedules accelerator requests with respect to chain priority

• Offers bounded WCRT and admissions control for processing chains

• Supports multiple accelerators of various types (GPU and TPU)

• Leverages separate data and control planes to minimize transport overhead

Open-source combined GPU- and TPU-specific implementation

• Achieves up to a 91% reduction in the end-to-end latency of critical chains
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PAAM Client-Server Architecture
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2. Control Plane:
• Fixed-size msgs (= local accelerator reqs)

• Leverages zero-copy DDS capabilities

• Variable-size msgs
• Client reg, remote accelerator reqs, etc. 

→ Uses existing DDS transport

Data and Control Planes
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Challenge: Data communication overhead between client and PAAM server

– Main issues: DDS serialization, data copy to DDS transport 

Our solution: Separate data plane from control plane, with shared memory

Iceoryx-enabled 
CycloneDDS

1. Data Plane:
• Clients’ input data for kernels directly 

stores in shared memory
• No serialization, raw datatypes

• PAAM server stores the results 
directly to shared memory
• No unnecessary copies

• Results can be used before device 
memory is freed
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PAAM Client-Server Architecture
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Hierarchical Request Management
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Challenge: Some accelerators (e.g., GPU) support device-level prioritization

– But there is a mismatch between chain priority and device priority numbers

Our solution: Two-level hierarchical request management

Level 1: N worker threads (buckets)

• One for each device priority (1..N) determined at initialization

• Chain priorities are down-sampled into buckets

Level 2: Thread-local queues

• Each bucket maintains a local priority queue for requests

• Executes requests in chain priority order

• Maintains records of requests and their callbacks
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Accelerator-Specific Considerations
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GPU – Nvidia GPU

– Single execution context for all kernels – no context switching!

– 6 buckets, one per hardware stream priority
• Allowing preemptive kernel execution 

– Lowest priority bucket for best-effort chains
• Allows concurrent execution of kernels for increased throughput

TPU – Coral Edge TPU

– Single execution context for all requests
• Allows multiple client processes to use the device!

– Single bucket for all requests
• No prioritized hardware queues

– Non-preemptive, sequential, priority-ordered execution of requests
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PAAM Client-Server Architecture
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Admissions Control

Purpose: To guarantee end-to-end response time and to protect timely 
execution of previously admitted chains

How we do admissions control: 

1. Clients send a request to the server for chain admission

2. Server determines WCRT of new chain, considering all previously admitted chains

3. Server evaluates if the computed WCRT bound for each chain satisfies each 

deadline
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Admissions Control
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Lemma 1. Maximum number of requests that an accelerator segment can 
generate in an arbitrary interval t:

Lemma 2. Maximum handling time of an accelerator segment of a callback 
within a chain instance:

Lemma 3. Maximum time to handle all accelerator requests of any chain 
instance:
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Admissions Control

Theorem 1. Worst-case response time of a chain with accelerator segments 
under the PAAM framework is bounded by:
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Blocking time from 

lower-priority chains

WCET of all callbacks of 

the chain

Handling time of all 

accelerator segments 

of the chain

Delay from higher priority 

chains accessing the 

same accelerator
Delay from callbacks 

executing on the same 

CPU core with a higher 

executor process priority
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Evaluation

Experimental setup:

– ROS 2 Galactic on the Nvidia Jetson AGX Xavier platform running Ubuntu 20.04 

– 8 CPU cores, 1 iGPU, 1 Coral USB Edge TPU

Source code of our implementation: 

– https://github.com/rtenlab/reference-system-paam.git
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https://github.com/rtenlab/reference-system-paam.git
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Case Study 1: GPU-enabled Robotic System
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Inspired by PiCAS* case study

*H. Choi, Y. Xiang, and H. Kim, “PiCAS: New design of priority-driven chain-aware scheduling for ROS2,” in 2021 IEEE 
27th Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2021, pp. 251–263.

†Follows PiCAS callback-to-executor and executor-to-cpu assignment

6 critical chains†, descending priority

– Periodic, linear, and non-linear chains

2 best-effort chains

– Sharing CPU cores with highest 
criticality chains

Each callback has one GPU segment
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Case Study 1: GPU-enabled Robotic System
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PAAM outperforms 
PiCAS and ROS 2 for 
all real-time chains

PAAM schedules accelerator 
jobs with respect to chain 
priority

End-to-end chain 
latency is upper 
bounded by our analysis

Maximum observed end-to-end chain latency End-to-end chain latency distribution
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Case Study 2: Apex.AI’s Autoware Reference System

Based on a lidar-based perception pipeline for an autonomous vehicle
– From sensor input to behavior planner output

Several prioritized processing chains with extensive GPU & TPU usage
– Evaluated with multiple single-threaded and multithreaded executors
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Case Study 2: Apex.AI’s Autoware Reference System
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Reference System KPIs

(1) Hot Path Latency:

Latency from the LiDAR sensors to the 
output of the behavior planner

(2) Behavior Planner Period:

Accuracy of planner execution period

(3) Hot Path Message Drops:

Message drops on the hot path

917ms

83ms

(lower latency is better)

(less variance 
is better)

(fewer drop is 
better)

PAAM achieves a 91% reduction in 
the hot path latency compared to 
standard ROS 2!
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Schedulability Experiment

Variable # of Chains per Chainset 
– Variable number of chains per chainset and fixed number 

of callbacks per chain (n chains, with 4 callbacks each)

– Fixed Accelerator-to-CPU utilization ratio (1:1) per chain

– Tested with variable utilization maximum per chain
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Variable CPU:GPU Utilization Ratio 
– Fixed number of chains and callbacks per chain (4 chains, 

with 4 callbacks each)

– Varied Accelerator-to-CPU utilization ratio per chain

– Tested with variable utilization maximum per chain
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Overhead breakdown

Nvidia GPU inter-stream preemption cost

PAAM Overhead Analysis
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Max non-DDS 
overhead (pure PAAM 
overhead): < 150 𝝁s!

Min: 198 𝝁s, Max: 391 𝝁s

Max preemption delay:  
129 𝝁s!



RTAS 2024

Summary

PAAM: Priority-driven Accelerator Access Management Framework
• Implemented in C++ for ROS 2
• Supports all types of accelerators & real-time ROS 2 applications
• GPU and TPU implementation on a single server instance
• WCET bounding for prioritized chains
• Thorough evaluation and open-source test cases 
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https://github.com/rtenlab/
reference-system-paam.git

Thank you!

https://github.com/rtenlab/reference-system-paam.git
https://github.com/rtenlab/reference-system-paam.git
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