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Introduction

ML Inference in Everyday Life
ML inference is becoming mainstream
Self Driving Cars
Inference for car sensors – extremely deadline sensitive 

Unlocking Smartphones
Inference on Face ID – inconvenient if slow

GPU

Inference 
Request

“Car”
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ECLIP Framework

How do Inference Servers Work?
Each inference request involves launching multiple kernels, upwards of 
several hundred kernels

Inference Request

GPU

Inference Server
DNN models 

Output

Kernels

GPU Runtime
(AMD ROCm / Nvidia CUDA)
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Introduction

GPU Compute Resources

HW Queue 1

Within GPUs, kernels are dispatched to Compute Units (CUs)

Kd Kc Kb

CU

CU

CU

CU

CU

CU

CU CU CU

Ka

Issue: Inference Kernels underutilize the GPU's compute resources

• CU = Streaming Multiprocessors in NVIDIA terminology
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Introduction

Problem: Underutilized GPUs Waste Power 
Inference kernels frequently underutilize the GPU
• Inference kernels do not need all CUs [1]

• Idling CUs cannot be power gated [2]

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture
[2] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, “Balancing energy efficiency and real-time performance in gpu scheduling,” in 2021 IEEE Real-Time Systems Symposium
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Introduction

Sharing a GPU Among Workloads
Increase GPU utilization by co-locating inference models
• Achieved through Spatial Partitioning

• Potentially improves throughput

• Can increase energy efficiency

Worker 1 Partition Worker 2 Partition



GPU Compute Resources

Worker 1 Partition Worker 2 Partition
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Introduction

Limitations of GPU Spatial Partitioning
Model-grain Right-Sizing:
- leaves GPU underutilized

Kernels

GPU Compute Resources

Kernel-grain Right-Sizing:
- better utilization but requires custom hardware modifications to extend AMD CU Masking

Worker 1 
Partition

Worker 2 Partition

Kernels

Goal: How can we 
achieve kernel grain 
benefits, without the 
custom hardware?

Additional 
Worker
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Analysis

CU Masking IOCTL calls are Expensive
Challenge 1
• CU Mask IOCTL cost is unpredictable and expensive

• Not viable to use for every kernel launch

Our Solution
Create pool of CU-Masked stream

Instead of directly CU-masking every kernel: 

• Pre-allocate CU-Masked streams 

• Dispatch kernels to CU-Masked streams

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture

Lower is better
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Analysis

Limited Number of CU-Masked Streams
Challenge 2
• Additional streams causes slowdown

• Exceeding 7 streams leads to significant and 

unpredictable slowdown

Our Solution
• Limit number of streams and reuse them 

o Carefully share across multi-worker scenario

Stream Threshold

Lower is better
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Introduction

Introducing ECLIP
Energy-efficient Kernel-wise Spatial Partitioning with Minimal Spatial 
Partitioning Overheads on Real-World GPUs

1. Pre-allocated CU masked streams:
 Avoids costly CU masking IOCTL calls (challenge 1)

 Strict budget on number of streams (challenge 2)

2. Runtime Scheduler:
 Redirects kernels to pre-allocated streams

 Enforces data dependencies

3. Optimization Model:
 Achieves energy efficiency through minimal execution time & fairness

 Assigns kernels to pre-allocated CU masked streams for all workers
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ECLIP Framework

Resource Allocation Optimization Model

Pre-allocated CU Masked 
Streams
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ECLIP Framework

CU Masked Stream Pool
CU masked streams are created only once.

Stream Pool
15 CU Stream

30 CU Stream

45 CU Stream

15 CUs

15 CUs

15 CUs

15 CUs

1. For each worker, create streams with different # of CUs

 Considering H/W characteristics: e.g., shader engine size (15 CUs/SE)

2. Limit the total number of streams (due to Challenge 2)

 CU overlap between workers is inevitable; our optimization minimizes this slowdown
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ECLIP Framework

Switching streams can cause dependency issues
• Barrier packets are a ROCm feature

• Used to enforce dependencies across hardware queues

• Barrier packet latency is significant when frequently used

 Our optimization determines when to switch

KB Br. K1
Hardware Queue 3

KA

Hardware Queue 2

Barrier enforces dependency
KB cannot launch until KA completes

Enforcing Data Dependency



1. How many CUs kernels will be allocated

2. When to switch CU streams
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ECLIP Framework

Mapping Kernels to CU Masked Streams
Questions to answer:

Formulate optimization model:

• Objective Function: 

• Why Fairness important?

 Disparate completion times among workers lead to idling CUs, wasting energy 

To minimize energy consumption & overhead

Minimize the execution time of all kernels in each 
worker w, with equal weights for all workers for fairness

Slowdown factor from 
other workers
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Evaluation

Evaluation
Workload Scenarios
1. Baseline: Unmodified runtime

2. Model-Wise: Model-wise right-sizing 

3. Kernel-WiseCU_Mask (KWCU_Mask): Uses CU Mask IOCTL to switch CU allocations every kernel, like KRISP [1]

4. Kernel-WiseStream (KWStream): Uses ECLIP to switch between CU streams for nearly every kernel

5. ECLIP: Our full ECLIP implementation

Experiment Setup
CPU: 2x AMD EPYC 7302 16 core

GPU: AMD Radeon Instinct MI50 (60 CUs)

Models Evaluated: ALBERT, DenseNet201, ResNet152, ResNeXt101, ShuffleNet, AlexNet, and vgg19

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture



ECLIP Improves Throughput
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Evaluation

Normalized Throughput

Best shown by Mix 7 (highlighted) – baseline workload allows kernels from one worker 
to cut ahead, despite having 3 identical models

On average, 13% higher throughput

Higher is better



ECLIP doesn’t sacrifice Tail Latency
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Evaluation

Normalized 95th Percentile Tail Latency

Excessive Barrier Packets, and uninformed CU sharing all lead to tail latency spikes
Model-wise granularity too coarse, can be slowed from resource contention
ECLIP circumvents these issues and ensures tail latency does not spike

Tail latency only rises 8%

Lower is better



ECLIP Improves Energy Efficiency
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Evaluation

Energy Efficiency

The difference between occasionally idling CUs and better utilized CUs is not high
With faster throughput, energy is significantly conserved.

On average, 25% more requests per watt

Higher is better
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Conclusion

Conclusion
• ECLIP enables energy-efficient kernel-wise ML inference on real GPUs
o Pre-allocated CU-masked Streams: addresses overhead issues

o Runtime Scheduler: coordinates stream switching while preserving data dependencies

o Optimization Model: selects streams to minimize energy and overhead

• Key Results
o ML inference throughput (+13%) and energy efficiency (+25%)

o ECLIP does not compromise fairness and does not exhibit tail latency increases
• Can occur in other partitioning approaches



Thank You!
Questions?
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