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mRWERsmE Introduction

ML Inference in Everyday Life

ML inference is becoming mainstream

Self Driving Cars
Inference for car sensors - extremely deadline sensitive

Unlocking Smartphones
Inference on Face ID - inconvenient if slow
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How do Inference Servers Work?

Each inference request involves launching multiple kernels, upwards of
several hundred kernels
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GPU Compute Resources

Within GPUs, kernels are dispatched to Compute Units (CUs)

¢ CU = Streaming Multiprocessors in NVIDIA terminology
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Issue: Inference Kernels underutilize the GPU's compute resources
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Problem: Underutilized GPUs Waste Power

Inference kernels frequently underutilize the GPU

Inference kernels do not need all CUs [1] Hypothetical CU utilization

Idling CUs cannot be power gated [2] T 15
4 CUs
GPU Hardware U C135 Ny CU Waste
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Opportunity to share the GPU among workloads

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture
[2] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, “Balancing energy efficiency and real-time performance in gpu scheduling,” in 2021 IEEE Real-Time Systems Symposium
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Sharing a GPU Among Workloads

Increase GPU utilization by co-locating inference models

Achieved through Spatial Partitioning
Potentially improves throughput

Can increase energy efficiency
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Limitations of GPU Spatial Partitioning

Model-grain Right-Sizing:
- leaves GPU underutilized

Worker 2 Partition
&\\\
\

Kernel-grain Right-Sizing:

- better utilization but requires custom hardware modifications to extend AMD CU Masking

Kernels

GPU Compute Resources

Worker 2 Partition Additional
Worker

Kernels

GPU Compute Resources 7



CU Masking IOCTL calls are Expensive

Challenge 1 ] B With CU IOCTL

102 4 Without CU IOCTL

«  CU Mask IOCTL cost is unpredictable and expensive

us

- Not viable to use for every kernel launch

101':

v

Lower is better

0 1 2 3 4 5 6 7

Our Solution y Kernels
3 - ‘ — OO baseline
Create pool of CU-Masked stream S ) 0 B Barvior Packer
. . Q O ioctl ca
Instead of directly CU-masking every kernel: S 2 B ioctl call
Q
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- Dispatch kernels to CU-Masked streams

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture
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Limited Number of CU-Masked Streams

Stream Threshold Challenge 2

Additional streams causes slowdown

|
I
l . . g
120 I Exceeding 7 streams leads to significant and
I .
100 : unpredictable slowdown
I
g o |
. Our Solution
60 I o
: « Limit number of streams and reuse them
40 : o Carefully share across multi-worker scenario
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Introducing ECLIP

Energy-efficient Kernel-wise Spatial Partitioning with Minimal Spatial
Partitioning Overheads on Real-World GPUs

1. Pre-allocated CU masked streams:
= Avoids costly CU masking IOCTL calls (challenge 1)

Strict budget on number of streams (challenge 2)

2. Runtime Scheduler:

Redirects kernels to pre-allocated streams

Enforces data dependencies

3. Optimization Model:

Achieves energy efficiency through minimal execution time & fairness

Assigns kernels to pre-allocated CU masked streams for all workers
10
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How does ECLIP work?

User Programs ROCm Runtime GPU Hardware

User Stream 1 Default Stream HW Queue 1
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Lookup Dependency Completion

Table Tracker Signals

Resource Allocation Optimization Model
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CU Masked Stream Pool

CU masked streams are created only once.

1. For each worker, create streams with different # of CUs
Considering H/W characteristics: e.g., shader engine size (15 CUs/SE)
2. Limit the total number of streams (due to Challenge 2)

CU overlap between workers is inevitable; our optimization minimizes this slowdown

ECLIP stream Pool GPU HARDWARE

15 CU Stream 15 CUs

30 CU Stream
15 CUs

45 CU Stream
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Enforcing Data Dependency

Switching streams can cause dependency issues

Hardware Queue 2

Barrier packets are a ROCm feature
KA

Used to enforce dependencies across hardware queues

Barrier packet latency is significant when frequently used Barrier enforces dependency

Our optimization determines when to switch KB cannot launch until KA completes
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Mapping Kernels to CU Masked Streams

Questions to answer:

1. How many CUs kernels will be allocated o .
To minimize energy consumption & overhead

2. When to switch CU streams

Formulate optimization model: Slowdown factor from
l other workers
Objective Function: V’lU, minimize Zk:Ew €L € = Bk * (1 —|‘Ofk)
T Minimize the execution time of all kernels in each

worker w, with equal weights for all workers for fairness

Why Fairness important?
» Disparate completion times among workers lead to idling CUs, wasting energy

14
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Evaluation

Workload Scenarios

1. Baseline: Unmodified runtime

2. Model-Wise: Model-wise right-sizing

3. Kernel-WiseCtU-Mask(KWCcU_Mask). Uses CU Mask IOCTL to switch CU allocations every kernel, like KRISP [1]
4. Kernel-WiseStream (KyyStream). ses ECLIP to switch between CU streams for nearly every kernel

5. ECLIP: Our full ECLIP implementation

Experiment Setup

CPU: 2x AMD EPYC 7302 16 core
GPU: AMD Radeon Instinct MI50 (60 CUs)
Models Evaluated: ALBERT, DenseNet201, ResNet152, ResNeXt101, ShuffleNet, AlexNet, and vgg19

16

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture
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ECLIP Improves Throughput
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Best shown by Mix 7 (highlighted) - baseline workload allows kernels from one worker
to cut ahead, despite having 3 identical models

On average, 13% higher throughput
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ECLIP doesn’t sacrifice Tail Latency

Normalized 95t Percentile Tail Latency == saseiine
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Lower is better
Excessive Barrier Packets, and uninformed CU sharing all lead to tail latency spikes

Model-wise granularity too coarse, can be slowed from resource contention
ECLIP circumvents these issues and ensures tail latency does not spike

Tail latency only rises 8%
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ECLIP Improves Energy Efficiency

En ergy Eff Icien Cy BEE Bascline ®@® Model-Wise mmm Kernel-WiseSt®a™  mmm ECLIP
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The difference between occasionally idling CUs and better utilized CUs is not high
With faster throughput, energy is significantly conserved.

On average, 25% more requests per watt
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Conclusion

« ECLIP enables energy-efficient kernel-wise ML inference on real GPUs

o Pre-allocated CU-masked Streams: addresses overhead issues
o Runtime Scheduler: coordinates stream switching while preserving data dependencies

o Optimization Model: selects streams to minimize energy and overhead

» Key Results
o ML inference throughput (+13%) and energy efficiency (+25%)

o ECLIP does not compromise fairness and does not exhibit tail latency increases

« Can occur in other partitioning approaches

20



Thank You!

Questions?
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