ECLIP: Energy-efficient and Practical Co-Location of
ML Inference on Spatially Partitioned GPUs

Ryan Quach®, Yidi Wangt, Ali Jahanshahi®, Daniel Wong®, Hyoseung Kim®

“University of California, Riverside
tSanta Clara University

Santa Clara
UNIVERSITY

Q QL [riversioe {3

1

mRWERsmE Introduction

ML Inference in Everyday Life

ML inference is becoming mainstream

Self Driving Cars
Inference for car sensors - extremely deadline sensitive

Unlocking Smartphones
Inference on Face ID - inconvenient if slow

(0=

|

Inference
Server

GPU

Inference —_

ucarn -«

mRIVERSIDE ECLIP Framework

How do Inference Servers Work?

Each inference request involves launching multiple kernels, upwards of
several hundred kernels

Inference Server
DNN models

Inference Request _____,

GPU Runtime
(AMD ROCm / Nvidia CUDA)
— GPU

Kc | Kb | Ka

Output —

|
|

Kernels

[@ RIVERSIDE Introduction

GPU Compute Resources

Within GPUs, kernels are dispatched to Compute Units (CUs)

¢ CU = Streaming Multiprocessors in NVIDIA terminology

GPU Hardware

Cu Cu Cu

HW Queue 1
kd | ke [kb [ka F—"" tt tt tt
CuU CuU CuU

Issue: Inference Kernels underutilize the GPU's compute resources

[@ RIVERSIDE Introduction

Problem: Underutilized GPUs Waste Power

Inference kernels frequently underutilize the GPU

Inference kernels do not need all CUs [1] Hypothetical CU utilization

Idling CUs cannot be power gated [2] T 15
4 CUs
GPU Hardware U C135 Ny CU Waste

0T 15 15
15CUs 15CUs ok [o
15 15

[CUs CUs CUs

15 CUs 15 CUs Ka Kb Kc

Inference Request Kernels

Opportunity to share the GPU among workloads

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture
[2] Y. Wang, M. Karimi, Y. Xiang, and H. Kim, “Balancing energy efficiency and real-time performance in gpu scheduling,” in 2021 IEEE Real-Time Systems Symposium

[@ RIVERSIDE Introduction

Sharing a GPU Among Workloads

Increase GPU utilization by co-locating inference models

Achieved through Spatial Partitioning
Potentially improves throughput

Can increase energy efficiency

Worker 1 Partition Worker 2 Partition
CU CU CU CU CU CU
Cu Cu Cu CuU CU CU

CuU Cu Cu Cu CU Cu

mRWERsmE Introduction

Limitations of GPU Spatial Partitioning

Model-grain Right-Sizing:
- leaves GPU underutilized

Worker 2 Partition
&\\\
\

Kernel-grain Right-Sizing:

- better utilization but requires custom hardware modifications to extend AMD CU Masking

Kernels

GPU Compute Resources

Worker 2 Partition Additional
Worker

Kernels

GPU Compute Resources 7

CU Masking IOCTL calls are Expensive

Challenge 1] B With CU IOCTL

102 4 Without CU IOCTL

« CU Mask IOCTL cost is unpredictable and expensive

us

- Not viable to use for every kernel launch

101':

v

Lower is better

0 1 2 3 4 5 6 7

Our Solution y Kernels
3 - ‘ — OO baseline
Create pool of CU-Masked stream S) 0 B Barvior Packer
. . Q O ioctl ca
Instead of directly CU-masking every kernel: S 2 B ioctl call
Q
- Pre-allocate CU-Masked streams ZINp DHH M awll anll &l ml‘l(- DHH
('»

- Dispatch kernels to CU-Masked streams

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture

[@ RIVERSIDE Analysis

Limited Number of CU-Masked Streams

Stream Threshold Challenge 2

Additional streams causes slowdown

|
I
l . . g
120 I Exceeding 7 streams leads to significant and
I .
100 : unpredictable slowdown
I
g o |
. Our Solution
60 I o
: « Limit number of streams and reuse them
40 : o Carefully share across multi-worker scenario
20 :

0 2 4 6 -8 10 12 14
Number of CU Masked Streams

Lower is better

[@ RIVERSIDE Introduction

Introducing ECLIP

Energy-efficient Kernel-wise Spatial Partitioning with Minimal Spatial
Partitioning Overheads on Real-World GPUs

1. Pre-allocated CU masked streams:
= Avoids costly CU masking IOCTL calls (challenge 1)

Strict budget on number of streams (challenge 2)

2. Runtime Scheduler:

Redirects kernels to pre-allocated streams

Enforces data dependencies

3. Optimization Model:

Achieves energy efficiency through minimal execution time & fairness

Assigns kernels to pre-allocated CU masked streams for all workers
10

mRIVERSIDE ECLIP Framework

How does ECLIP work?

User Programs ROCm Runtime GPU Hardware

User Stream 1 Default Stream HW Queue 1
)
= 2
— 2 o
o > 4=
&L User Stream 2 ° 15 CU Stream o HW Queue 2
= >
KC | KB | KA =z c A
4 2
User Stream 3 O 30 CU Stream o Injected Barrier /
o L o
o K3 | K2 | K1 a /
I
HW Queue 3

Pre-allocated CU Masked

Streams
Allocation .
Lookup Dependency Completion

Table Tracker Signals

Resource Allocation Optimization Model

11

mRWERsmE ECLIP Framework

CU Masked Stream Pool

CU masked streams are created only once.

1. For each worker, create streams with different # of CUs
Considering H/W characteristics: e.g., shader engine size (15 CUs/SE)
2. Limit the total number of streams (due to Challenge 2)

CU overlap between workers is inevitable; our optimization minimizes this slowdown

ECLIP stream Pool GPU HARDWARE

15 CU Stream 15 CUs

30 CU Stream
15 CUs

45 CU Stream

12

ECLIP Framework

[@ RIVERSIDE

Enforcing Data Dependency

Switching streams can cause dependency issues

Hardware Queue 2

Barrier packets are a ROCm feature
KA

Used to enforce dependencies across hardware queues

Barrier packet latency is significant when frequently used Barrier enforces dependency

Our optimization determines when to switch KB cannot launch until KA completes

N Tl Tl KB V Br. | K1

! Hardware Queue 3

I

0 50 100 150 200 250
Kernel Index

S
o
1

R

w
o
1 1

Number of CUs

= 1
T
=
=
=
=

o
1

13

Mapping Kernels to CU Masked Streams

Questions to answer:

1. How many CUs kernels will be allocated o .
To minimize energy consumption & overhead

2. When to switch CU streams

Formulate optimization model: Slowdown factor from
l other workers
Objective Function: V’lU, minimize Zk:Ew €L € = Bk * (1 —|‘Ofk)
T Minimize the execution time of all kernels in each

worker w, with equal weights for all workers for fairness

Why Fairness important?
» Disparate completion times among workers lead to idling CUs, wasting energy

14

Evaluation

mRIVERSIDE Evaluation

Evaluation

Workload Scenarios

1. Baseline: Unmodified runtime

2. Model-Wise: Model-wise right-sizing

3. Kernel-WiseCtU-Mask(KWCcU_Mask). Uses CU Mask IOCTL to switch CU allocations every kernel, like KRISP [1]
4. Kernel-WiseStream (KyyStream). ses ECLIP to switch between CU streams for nearly every kernel

5. ECLIP: Our full ECLIP implementation

Experiment Setup

CPU: 2x AMD EPYC 7302 16 core
GPU: AMD Radeon Instinct MI50 (60 CUs)
Models Evaluated: ALBERT, DenseNet201, ResNet152, ResNeXt101, ShuffleNet, AlexNet, and vgg19

16

[1] M. Chow, A. Jahanshahi, and D. Wong, “Krisp: Enabling kernel-wise right-sizing for spatial partitioned gpu inference servers,” in 2023 IEEE International Symposium on High-Performance Computer Architecture

mmvmsmf Evaluation

ECLIP Improves Throughput

No rmallzed Th ro Ugh P ut BN Baseline B Model-Wise mmm Kernel-WiseS"®™ mmmm ECLIP
1.21 1

114 114 1.09 1.16 1.12 1.13

- 1.0 - 1.0 1.0 1.03 1.0 0.970.96 1.0 i 1.0 1.08 1.01.01 1.07 1.0 1-080_96 1.0 1.00

g . ' 0.82

I

g o

8 0.5

Z

0.0 -

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Average

Higher is better

Best shown by Mix 7 (highlighted) - baseline workload allows kernels from one worker
to cut ahead, despite having 3 identical models

On average, 13% higher throughput

17

mRWERsmE Evaluation

ECLIP doesn’t sacrifice Tail Latency

Normalized 95t Percentile Tail Latency == saseiine

B Model-Wise mmm Kernel-Wise*"®?" mmm ECLIP

3.24

(@8]
1

Tail Latency
N

Normalized
—

o
1

v
Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Average

Lower is better
Excessive Barrier Packets, and uninformed CU sharing all lead to tail latency spikes

Model-wise granularity too coarse, can be slowed from resource contention
ECLIP circumvents these issues and ensures tail latency does not spike

Tail latency only rises 8%

18

mRIVERSIDE Evaluation

ECLIP Improves Energy Efficiency

En ergy Eff Icien Cy BEE Bascline ®@® Model-Wise mmm Kernel-WiseSt®a™ mmm ECLIP
1.5 ‘
= 1.3 1.33 1.27 1.24.L3 s 1.25 ‘
o=
85 1.0
b
Eg
SE o5
&
0.0
Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Average
Higher is better

The difference between occasionally idling CUs and better utilized CUs is not high
With faster throughput, energy is significantly conserved.

On average, 25% more requests per watt

19

mRIVERSIDE Conclusion

Conclusion

« ECLIP enables energy-efficient kernel-wise ML inference on real GPUs

o Pre-allocated CU-masked Streams: addresses overhead issues
o Runtime Scheduler: coordinates stream switching while preserving data dependencies

o Optimization Model: selects streams to minimize energy and overhead

» Key Results
o ML inference throughput (+13%) and energy efficiency (+25%)

o ECLIP does not compromise fairness and does not exhibit tail latency increases

« Can occur in other partitioning approaches

20

Thank You!

Questions?

[RIVERSIDE ,

	Slide Number 1
	Introduction
	ECLIP Framework
	Introduction
	Introduction
	Introduction
	Introduction
	Analysis
	Analysis
	Introduction
	ECLIP Framework
	ECLIP Framework
	ECLIP Framework
	ECLIP Framework
	Slide Number 15
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	Slide Number 21

