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Intermittently Powered Devices (IPDs)

What are IPDs?
devices rely on for power
* Intermittence: devices turn on and off constantly

Why IPDs?

« Adaptability: can operate in human-inaccessible locations
« Sustainability: zero carbon emission and environment-friendly
* Permanence: maintenance-free (no batteries)
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Inference tasks on IPDs (Intermittent Inference)

Why run inference tasks on IPDs?

« Costly Communication: over 1 hour to send a single MNIST image to server.
But 10s to complete the inference locally and send the result to server [1].

« Data privatization: keeps data locally for privacy and safety

Why inference on IPDs is challenging?

 Intermittence: inference progress lost when device powers off

« Small SRAM: cannot fit the entire layer of data

« Timing constraints: Tasks run periodically. Periods are arbitrary deadlines

[1] Graham Gobieski, et.al., 2019. Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems. In Proceedings of the Twenty- R- m RIVERSIDE
Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '19). =
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Power Source:
» |PD harvests energy (solar, radio wave) and

* When energy depletes, IPD turns off
* When enough energy accumulates, it turns on

/ 1 - -
. storesitinasuper capacitor (~1mF).
_~

IPD has 2 types of memories*:

 Volatile Memory (VM): fast, small,
data lost when powered off;

* Non-Volatile Memory (NVM): slow, large,
data maintained when powered off.

*This holds for IPDs that run CPU and VM at higher clock rates than NVM
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IPD Execution Model

IPD executes in power cycles due to constant power on/offs:
 Live Time: IPD turns on and begins program execution
« Shutdown Time: IPD shuts down and harvests energy

« Environmental Effects: affects energy harvesting rate,
leading to different response times for the same task

Task Execution
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Prior Work: Checkpointing Mechanisms

Purpose of Checkpointing: guarantee tasks forward progress during power loss

Existing Checkpointing Mechanisms:

* Just-in-time Checkpointing (JIT)

« Static Checkpointing (ST):
- Static Checkpointing — Layer (ST-L)
- Static Checkpointing — Filter (ST-F)
- Static Checkpointing — Tiled (ST-T)
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Prior Work: JIT Checkpointing

Motivation @ Methodology Evaluation

Capacitor Voltage

N

 Just-in-Time Checkpointing (JIT): Max 1
makes a checkpoint of the entire
system’s state to NVM when

Checkpoint

[1] T Tha koo N

Off -

Data in VM
Input

Time_

Data Checkpointed Each Time (VM to NVM)

* Pros: Fastest because only one

checkpointing per shutdown

« Cons: Largest in peak memory usage

[11H. Jayakumar et al., “Quickrecall: A hw/sw approach for computing across power cycles in transiently powered computers,” J.

Emerg. Technol. Comput. Syst., vol. 12, no. 1, aug 2015.
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Prior Work: Static Checkpointing

Static Checkpointing (ST): transforms the task Task Execution

Into atomic and stores the results to

NVM at the end of each block. Re-exe the Checkpoint

block upon reboot [1]. / ! \

Blocks can be written in different granularities i i i Time,

Static Checkpointing - Layer (ST-L): Each | | . |
layer of a DNN can be naturally modeled as an Datal'r:‘p‘;"t" Data Checkpointed Each Time (VM to NVM
atomic block = e

* Pros: Fastest among ST because only one
checkpointing per layer

« Cons: Largest in peak memory usage
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[1] Kiwan Maeng, et al., 2017. Alpaca: intermittent execution without checkpoints. Proc. ACM Program. Lang. 1, OOPSLA, Article, 30 pages.
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Static Checkpointing - Filter (ST-F):

Re-writing each filter convolution into a separate atomic block [1,2]
* Pros: Only loading partial Input and Output to reduce peak memory
e Cons: Slower than ST-L
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[1] Bashima Islam et al., 2020. Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4, 3, Article 82 (September 2020), 29 pages.

[2] Graham Gobieski, et.al., 2019. Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '19).
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Static Checkpointing — Tiled (ST-T):

Further breakdown inference by re-organizing into a tiled structure [3]
* Pros: Further reduce peak memory by loading partial Weights
« Cons: May be slower than ST-F
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10 [8] Hashan Roshantha Mendis et al., 2021. Intermittent-Aware Neural Architecture Search. ACM Trans. Embed. Comput. Syst. 20, 5s, Article 64 % m RIVERSIDE
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Prior Work: Summary

Data in VM Data Checkpointed Each Time (VM to NVM)

P a— — 4 o S yd
]
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e % A
(A) JIT Checkpointing . (B) Static Checkpointing - Layer (ST-L)
ravar Bl B s vawar R — Ry = R
_________
e
(C) Static Checkpointing - Filter (ST-F) (D) Static Checkpointing - Tiled (ST-T)

Use only one CM for the entire system is problematic:
cannot balance peak memory and execution time!

11
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Obs.1: Using a single checkpointing method across all layers is bad!

General tradeoff between JIT and ST CIFAR10-7

« JIT: faster but uses larger peak memory

100 -

Layers

« ST: slower but uses smaller peak memory

<
g 80 - 38% B convo
However e e O a87% CONV1
! c 594ms 1090ms
Layer-wise performance is different! g 60 - e CONV2
Layer CONV4: ST-F is faster than JIT S - CONV3
E B CONV4
But Again, c 407 op
layer CONVO: ST-F is the worst! E FC
X 20
A layer-wise adoption of different CM | |
= 0 T T
Is needed! T ST-L ST-F ST-T

DNN Name: Trained Dataset-number of layers

LU [T RIVERSIDE

12




Introduction Background  Motivation  Methodology  Evaluation

Obs. 2: The optimal checkpointing choice changes when it experiences shutdown

X Infinite Execution Time No-shutdown (Continuous) B Shutdown (Intermittent)

CIFAR10-7 CONV4 in 12400 Lux

£ 10007 « ST-L is best when layer has no-shutdown,
£ but
g 500 - v  ST-L cannot finish checkpoint when layer
5 experiences shutdown
5 0

T ST-L ST-F ST-T
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Obs. 3: environments change live time and shutdown layers drastically

Live time varies under different lighting
CIFAR10-7 Shutdown Layers

 Sunny: higher energy harvesting rate
: CM 12400 Lux 38235 Lux
 Cloudy: lower energy harvesting rate T oW oW

1200 A B Live Time with CIFAR10-7/CIFAR10-12/MNIST-7 T Live Time Fluctuation
1000 A

800 A

600 -

JTIT

0_

.« Optimal CM changes for different environmental conditions ,,;b"‘i@q

Live Time per Power Cycle (ms)
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MII Design Overview

Why applying an offline + online solution?
 Takes too long to run everything online — Huge runtime overhead!
* Problem is too challenging to address in a single phase

Offline Phase: search for layer-wise optimal CM solution under a given env. (Obs.1 & 2)
* Energy and Tasks Modeling
« Task-level and System-level (Two-level) CM Search

Online Phase: runtime adaption of CMs to cope with env. Changes (Obs.3)
« MII Scheduler: Power Cycle Harmonizing, Scheduling Policy, Proactive Shutdown
« CM Adaption
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Offline Phase: Energy Pattern Modeling

Purpose: formulate the energy pattern to calculate the shutdown layers for each task

Cﬂpﬂfltﬂr Voltage (S)hutdown Time — (L)ive Time Shutdown Task Progressing %('huckrlﬂintilig T'i'LLHk Arrival
Max o e. env
Shut- ~e nt e N e n e e condition
down $1,1 |41 | S12 [l 513 |13 S14 l14
71 1 i N | N N I,
E i i Time

L(4) " e . . =

) enlk] =t = S —_— s

k=1

cumulative max shutdown time over n consecutive power cycles
 Purpose: estimate at least how long to charge for the task to be finished
L¢ (n): cumulative min live time over n consecutive power cycles
 Purpose: estimate at least how much time we can use for task execution
LU [T RIVERSIDE
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Offline Phase: Two-Level CM search

Why two-level: cannot address all three constraints (Time, Mem., Shutdown) for all

tasks In a single run

Task level: Minimize solo execution
time of task t;

System level: Minimize collective
sum of solo execution times of m
tasks

er;|k][V] =7’s collective execution time from
layers 1 to k, while not exceeding the
memory constraint V.

cm., [k][V] = CMs achieving €., [k][V].

Collective sum of solo execution times:

ErlillV] = _min_ Erli— 1] +efmllV - j

The initial conditions are:
Er[0][L...Vipa] = 0, Ep[1][1...Vipa] = &, [mi][1...Vipa], and
OMF[OMIVzpd} = @,OMF[IMIV@O;} = CMr, [nl][lvz',pd]
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Online Phase: Tasks Scheduling

Power Cycle Harmonizing ] Task Exccution """"—""_"""1'['-;._-.}]';al]:"u'i}}li"."c"éf,il,""""}}Z"l;i.'lli&fii;{'1'].}};'{l}i{'r'}'JLL}}L:_éi{[.}h}llﬂ{'E
. : Shutdown Time of Normal Shutdown TI sk Arrival SE hl.nd ywn time / |l1..l,1|t'|lq, I{Luudul with RTC :
* Reason: runtime power cycle M7 MY S My gt _9( )

deviated from the one used In | |
offline search (Task Arrival) nwwy) ﬂ u @ ﬂ = — F — T

» Delay task to next power cycle =)

1 2 3 4 5 6 rﬁu b 11 12 13 14 15 16 17 18 |19 2071 2273 24 25 26827253530

) { T2 5 4 ¢ 6 7 & . b n s 5 z'u 2'1 2 ::3 :L: P | 2?__._-.2'-.3..:;-2.:;..:-.-3:;:;““':
" Crsures power Cycle begins e i "
When IPD turns Off 41—2 3§“ s s LEE&_"j no1 1=3§ 4 15 18 ‘1?3\1_3* 8 20 _2'1§22 23 zaﬁsfgﬁ 21 28 zg§ 30

MII Scheduler Proactive Shutdown
 Variant of the Least Slack Time (LST) Shutdown when (1) or (2):

» Checks slack time at the boundary of (1) Stored energy not enough to execute next block
each layer (2) JIT threshold met
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Online Phase: CM Adaption

Why need to adapt: Environment changes affect the shutdown layers

shutdown layer execution Ttask arrival
JIT ST-T JIT ST-F JIT Time
>
Offline Optimal
JIT ST-T JIT ST-F NT | Time
>

Online Environment Change: Red Layers sub-optimal and have to change CM!

CM Adaption: Redo CM search for tasks that are currently running
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Evaluation Setup

° Controlled 50000 El: Strong Light E2: Dim Light E3: Morning E4: Afternoon ES: Fluctuation

Environments: ~ 400001

patterns cover 97% < 30000
of lighting £ 20000 {

conditions during Rkl

- o—7—m—m—m——— - """ 77— FH—T—T—T—T
daytlme 0 1020 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time (Minutes) Time (Minutes) Time (Minutes) Time (Minutes) Time (Minutes)

 DNNs: 8 DNN models trained from 6 datasets. Naming: CIFAR10-7layers == C7
 DNN Tasksets (TC): TC1-C7,C12, M7, H5; TC2 — FC4, AutoEncoder, TC3 —
MBV1, DSCNN

« Hardware: Apollo4 Blue Plus, 1.5W 8.2V Solar Panel, 1mF capacitor, 512KB VM

20
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Baseline Configuration
QuickRecall [1]

« Standard JIT Checkpointing only system
Zygarde [2]

 Uses Static Checkpointing — Filter

» Uses early-exitable DNN models and early
exit when less energy Is available

INAS [3]
» Uses Static Checkpointing — Tiled

* Design the tile sizes offline with a Neural
Architecture Search algorithm

[1]1 H. Jayakumar et al., “Quickrecall: A hw/sw approach for computing across power cycles in transiently powered computers,” J. Emerg. Technol. Comput.
Syst., vol. 12, no. 1, aug 2015.

[2] Bashima Islam et al., 2020. Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 4, 3, Article 82 (September 2020), 29 pages.

[3] Hashan Roshantha Mendis et al., 2021. Intermittent-Aware Neural Architecture Search. ACM Trans. Embed. Comput. Syst. 20, 5s, Article 64
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Efficiency: runtime breakdown

Peripheral Init. Peripheral Init.
Camera Pic. Camera Pic.
C7 C7
Cl2 Cl2
M7 M7
H5 H5
Scheduler 4l 53(1.1%) Scheduler 354(3.2%)
0 250 500 750 1000 1250 0 500 1000 1500 2000 2500 3000
Continuous Power Exe. Time (ms) Intermittent Power Exe. Time (ms)
600
E QucikRecall (QR) =W Zygarde (Zyg) EEE iNAS  EEE Ml 503 &
& 400
E 328.7 312.8
L1 H]
= 200
"
] Bl.6
e 0 - ﬂa:m ﬁﬂ._ﬁ.]_ H'u“n 3] A5 35 18 33 h ﬁn 31
Ccl2 M7 H7 AutoEncoder MBV1 DSCNN

MII successfully keeps peak memory below VM constraints while only uses 3.2%
of runtime overhead

22
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--=- Generated Jobs

2 EO: USB Power

=3 800 -
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E ] 400
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Effectiveness: Successful Jobs Increases

E1l: Strong Light

QucikRecall (QR)

E2: Dim Light

. Zygarde (Zyg)

E3: Morning

BN INAS

. Ml

E4: Afternoon

E5: Fluctuation

BO0L-

0 -

C7 Cl2 M7 H5

280
147 105 M52

C7 C12 M7 H5

231
p— -

C7 Cl2 M7 HS
(A) TC1 All DNNs (C7, C12, M7, H5) successful jobs in Continuous (EQ) and Intermittent Power (E1-5)

s 1.3.2._1-2 A2

310

C7 Cl2 M7 H5

Successful jobs: jobs that complete execution before deadline

C7 Cl2 M7 H5

* Why successful jobs: measures the quality of service. Higher successful jobs
means more valid results are generated

» On average 21%o successful jobs increase in stable energy conditions (E1-E2).

39% increases under dynamic energy conditions (E3-E5)
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https://izenderi.github.io/
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