
MII: A Multifaceted Framework
for Intermittence-aware Inference
and Scheduling
Ziliang(Johnson) Zhang, Cong Liu, Hyoseung Kim

University of California, Riverside

ESWEEK 2024

What are IPDs?

• Battery-less devices rely on ambient energy for power

• Intermittence: devices turn on and off constantly

2

Intermittently Powered Devices (IPDs)

Why IPDs?

• Adaptability: can operate in human-inaccessible locations

• Sustainability: zero carbon emission and environment-friendly

• Permanence: maintenance-free (no batteries)

Background Motivation Methodology EvaluationIntroduction

3

Inference tasks on IPDs (Intermittent Inference)

Why run inference tasks on IPDs?

• Costly Communication: over 1 hour to send a single MNIST image to server.
But 10s to complete the inference locally and send the result to server [1].

• Data privatization: keeps data locally for privacy and safety

Why inference on IPDs is challenging?

• Intermittence: inference progress lost when device powers off

• Small SRAM: cannot fit the entire layer of data

• Timing constraints: Tasks run periodically. Periods are arbitrary deadlines

[1] Graham Gobieski, et.al., 2019. Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '19).

Background Motivation Methodology EvaluationIntroduction

IPD Hardware

4

IPD Example Setup

Power Source:

• IPD harvests energy (solar, radio wave) and

stores it in a super capacitor (~1mF).

• When energy depletes, IPD turns off

• When enough energy accumulates, it turns on

IPD has 2 types of memories*:

• Volatile Memory (VM): fast, small,
 data lost when powered off;

• Non-Volatile Memory (NVM): slow, large,
data maintained when powered off.

*This holds for IPDs that run CPU and VM at higher clock rates than NVM

Background Motivation Methodology EvaluationIntroduction

IPD executes in power cycles due to constant power on/offs:

• Live Time: IPD turns on and begins program execution

• Shutdown Time: IPD shuts down and harvests energy

IPD Execution Model

5

• Environmental Effects: affects energy harvesting rate,
leading to different response times for the same task

Background Motivation Methodology EvaluationIntroduction

Purpose of Checkpointing: guarantee tasks forward progress during power loss

6

Prior Work: Checkpointing Mechanisms

Existing Checkpointing Mechanisms:

• Just-in-time Checkpointing (JIT)

• Static Checkpointing (ST):

- Static Checkpointing – Layer (ST-L)

- Static Checkpointing – Filter (ST-F)

- Static Checkpointing – Tiled (ST-T)

Background Motivation Methodology EvaluationIntroduction

• Just-in-Time Checkpointing (JIT):
makes a checkpoint of the entire
system’s state to NVM when
shutdown is imminent [1]

7

Prior Work: JIT Checkpointing

• Pros: Fastest because only one
checkpointing per shutdown

• Cons: Largest in peak memory usage

[1] H. Jayakumar et al., “Quickrecall: A hw/sw approach for computing across power cycles in transiently powered computers,” J.
Emerg. Technol. Comput. Syst., vol. 12, no. 1, aug 2015.

Background Motivation Methodology EvaluationIntroduction

Static Checkpointing (ST): transforms the task
into atomic blocks and stores the results to
NVM at the end of each block. Re-exe the
block upon reboot [1].

8

Prior Work: Static Checkpointing

[1] Kiwan Maeng, et al., 2017. Alpaca: intermittent execution without checkpoints. Proc. ACM Program. Lang. 1, OOPSLA, Article, 30 pages.

Static Checkpointing - Layer (ST-L): Each
layer of a DNN can be naturally modeled as an
atomic block

• Pros: Fastest among ST because only one
checkpointing per layer

• Cons: Largest in peak memory usage

Blocks can be written in different granularities

Background Motivation Methodology EvaluationIntroduction

Re-writing each filter convolution into a separate atomic block [1,2]

• Pros: Only loading partial Input and Output to reduce peak memory

• Cons: Slower than ST-L

9

Static Checkpointing - Filter (ST-F):

[1] Bashima Islam et al., 2020. Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 4, 3, Article 82 (September 2020), 29 pages.
[2] Graham Gobieski, et.al., 2019. Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '19).

Background Motivation Methodology EvaluationIntroduction

10

Static Checkpointing – Tiled (ST-T):

Further breakdown inference by re-organizing into a tiled structure [3]

• Pros: Further reduce peak memory by loading partial Weights

• Cons: May be slower than ST-F

[3] Hashan Roshantha Mendis et al., 2021. Intermittent-Aware Neural Architecture Search. ACM Trans. Embed. Comput. Syst. 20, 5s, Article 64

Background Motivation Methodology EvaluationIntroduction

11

Prior Work: Summary

Use only one CM for the entire system is problematic:

cannot balance peak memory and execution time!

Background Motivation Methodology EvaluationIntroduction

General tradeoff between JIT and ST:

• JIT: faster but uses larger peak memory

• ST: slower but uses smaller peak memory

12

Obs.1: Using a single checkpointing method across all layers is bad!

However,

Layer-wise performance is different!

Layer CONV4: ST-F is faster than JIT

But Again,

layer CONV0: ST-F is the worst!

DNN Name: Trained Dataset-number of layers

A layer-wise adoption of different CM

is needed!

Background Motivation Methodology EvaluationIntroduction

13

Obs. 2: The optimal checkpointing choice changes when it experiences shutdown

• ST-L is best when layer has no-shutdown,

but

• ST-L cannot finish checkpoint when layer

experiences shutdown

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

Background Motivation Methodology EvaluationIntroduction

Live time varies under different lighting

• Sunny: higher energy harvesting rate

• Cloudy: lower energy harvesting rate

14

Obs. 3: environments change live time and shutdown layers drastically

Shutdown layers varies for different lighting

• Dim light: more layers experience shutdown

• Strong light: less layers experiences shutdown

Optimal CM changes for different environmental conditions

Background Motivation Methodology EvaluationIntroduction

15

MII Design Overview

Offline Phase: search for layer-wise optimal CM solution under a given env. (Obs.1 & 2)

• Energy and Tasks Modeling

• Task-level and System-level (Two-level) CM Search

Online Phase: runtime adaption of CMs to cope with env. Changes (Obs.3)

• MII Scheduler: Power Cycle Harmonizing, Scheduling Policy, Proactive Shutdown

• CM Adaption

Why applying an offline + online solution?

• Takes too long to run everything online – Huge runtime overhead!

• Problem is too challenging to address in a single phase

Background Motivation Methodology EvaluationIntroduction

16

Offline Phase: Energy Pattern Modeling

e: env
condition

𝑆𝑒(𝑛): cumulative max shutdown time over n consecutive power cycles

• Purpose: estimate at least how long to charge for the task to be finished

𝐿𝑒(𝑛): cumulative min live time over n consecutive power cycles

• Purpose: estimate at least how much time we can use for task execution

Purpose: formulate the energy pattern to calculate the shutdown layers for each task

Background Motivation Methodology EvaluationIntroduction

System level: Minimize collective
sum of solo execution times of 𝑚
tasks

17

Offline Phase: Two-Level CM search

Collective sum of solo execution times:

Task level: Minimize solo execution

time of task 𝜏𝑖

Why two-level: cannot address all three constraints (Time, Mem., Shutdown) for all

tasks in a single run

Background Motivation Methodology EvaluationIntroduction

Power Cycle Harmonizing

• Reason: runtime power cycle
deviated from the one used in
offline search (Task Arrival)

• Delay task to next power cycle

• Ensures power cycle begins
when IPD turns off

18

Online Phase: Tasks Scheduling

MII Scheduler

• Variant of the Least Slack Time (LST)

• Checks slack time at the boundary of
each layer

Proactive Shutdown

Shutdown when (1) or (2):

(1) Stored energy not enough to execute next block
(2) JIT threshold met

Background Motivation Methodology EvaluationIntroduction

19

Online Phase: CM Adaption

Why need to adapt: Environment changes affect the shutdown layers

Offline Optimal

Online Environment Change: Red Layers sub-optimal and have to change CM!

CM Adaption: Redo CM search for tasks that are currently running

Background Motivation Methodology EvaluationIntroduction

• Controlled
Environments:
patterns cover 97%
of lighting
conditions during
daytime

20

Evaluation Setup

• DNNs: 8 DNN models trained from 6 datasets. Naming: CIFAR10-7layers == C7

• DNN Tasksets (TC): TC1 – C7, C12, M7, H5; TC2 – FC4, AutoEncoder, TC3 –

MBV1, DSCNN

• Hardware: Apollo4 Blue Plus, 1.5W 8.2V Solar Panel, 1mF capacitor, 512KB VM

Background Motivation Methodology EvaluationIntroduction

QuickRecall [1]

• Standard JIT Checkpointing only system

21

Baseline Configuration

[1] H. Jayakumar et al., “Quickrecall: A hw/sw approach for computing across power cycles in transiently powered computers,” J. Emerg. Technol. Comput.
Syst., vol. 12, no. 1, aug 2015.
[2] Bashima Islam et al., 2020. Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 4, 3, Article 82 (September 2020), 29 pages.
[3] Hashan Roshantha Mendis et al., 2021. Intermittent-Aware Neural Architecture Search. ACM Trans. Embed. Comput. Syst. 20, 5s, Article 64

Zygarde [2]

• Uses Static Checkpointing – Filter

• Uses early-exitable DNN models and early
exit when less energy is available

iNAS [3]

• Uses Static Checkpointing – Tiled

• Design the tile sizes offline with a Neural
Architecture Search algorithm

Background Motivation Methodology EvaluationIntroduction

22

Efficiency: runtime breakdown

MII successfully keeps peak memory below VM constraints while only uses 3.2%

of runtime overhead

Background Motivation Methodology EvaluationIntroduction

• Successful jobs: jobs that complete execution before deadline

• Why successful jobs: measures the quality of service. Higher successful jobs
means more valid results are generated

• On average 21% successful jobs increase in stable energy conditions (E1-E2).
39% increases under dynamic energy conditions (E3-E5)

23

Effectiveness: Successful Jobs Increases

Background Motivation Methodology EvaluationIntroduction

Thank you

24

https://izenderi.github.io/

	Slide 1: MII: A Multifaceted Framework for Intermittence-aware Inference and Scheduling
	Slide 2: Intermittently Powered Devices (IPDs)
	Slide 3: Inference tasks on IPDs (Intermittent Inference)
	Slide 4: IPD Hardware
	Slide 5: IPD Execution Model
	Slide 6: Prior Work: Checkpointing Mechanisms
	Slide 7: Prior Work: JIT Checkpointing
	Slide 8: Prior Work: Static Checkpointing
	Slide 9: Static Checkpointing - Filter (ST-F):
	Slide 10: Static Checkpointing – Tiled (ST-T):
	Slide 11: Prior Work: Summary
	Slide 12: Obs.1: Using a single checkpointing method across all layers is bad!
	Slide 13: Obs. 2: The optimal checkpointing choice changes when it experiences shutdown
	Slide 14: Obs. 3: environments change live time and shutdown layers drastically
	Slide 15: MII Design Overview
	Slide 16: Offline Phase: Energy Pattern Modeling
	Slide 17: Offline Phase: Two-Level CM search
	Slide 18: Online Phase: Tasks Scheduling
	Slide 19: Online Phase: CM Adaption
	Slide 20: Evaluation Setup
	Slide 21: Baseline Configuration
	Slide 22: Efficiency: runtime breakdown
	Slide 23: Effectiveness: Successful Jobs Increases
	Slide 24: Thank you

