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What are IPDs?

• Battery-less devices rely on ambient energy for power

• Intermittence: devices turn on and off constantly
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Intermittently Powered Devices (IPDs)

Why IPDs?

• Adaptability: can operate in human-inaccessible locations

• Sustainability: zero carbon emission and environment-friendly

• Permanence: maintenance-free (no batteries)
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Inference tasks on IPDs (Intermittent Inference)

Why run inference tasks on IPDs?

• Costly Communication: over 1 hour to send a single MNIST image to server. 
But 10s to complete the inference locally and send the result to server [1].

• Data privatization: keeps data locally for privacy and safety

Why inference on IPDs is challenging?

• Intermittence: inference progress lost when device powers off

• Small SRAM: cannot fit the entire layer of data

• Timing constraints: Tasks run periodically. Periods are arbitrary deadlines

[1] Graham Gobieski, et.al., 2019. Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '19).
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IPD Hardware
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IPD Example Setup

Power Source: 

• IPD harvests energy (solar, radio wave) and 

stores it in a super capacitor (~1mF). 

• When energy depletes, IPD turns off

• When enough energy accumulates, it turns on 

IPD has 2 types of memories*:

• Volatile Memory (VM): fast, small, 
   data lost when powered off;

• Non-Volatile Memory (NVM): slow, large, 
data maintained when powered off.

*This holds for IPDs that run CPU and VM at higher clock rates than NVM
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IPD executes in power cycles due to constant power on/offs:

• Live Time: IPD turns on and begins program execution

• Shutdown Time: IPD shuts down and harvests energy

IPD Execution Model
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• Environmental Effects: affects energy harvesting rate, 
leading to different response times for the same task
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Purpose of Checkpointing: guarantee tasks forward progress during power loss
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Prior Work: Checkpointing Mechanisms

Existing Checkpointing Mechanisms:

• Just-in-time Checkpointing (JIT)

• Static Checkpointing (ST):

- Static Checkpointing – Layer (ST-L)

- Static Checkpointing – Filter (ST-F)

- Static Checkpointing – Tiled (ST-T)
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• Just-in-Time Checkpointing (JIT): 
makes a checkpoint of the entire 
system’s state to NVM when 
shutdown is imminent [1]
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Prior Work: JIT Checkpointing

• Pros: Fastest because only one 
checkpointing per shutdown

• Cons: Largest in peak memory usage

[1] H. Jayakumar et al., “Quickrecall: A hw/sw approach for computing across power cycles in transiently powered computers,” J. 
Emerg. Technol. Comput. Syst., vol. 12, no. 1, aug 2015. 
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Static Checkpointing (ST): transforms the task 
into atomic blocks and stores the results to 
NVM at the end of each block. Re-exe the 
block upon reboot [1].
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Prior Work: Static Checkpointing

[1] Kiwan Maeng, et al., 2017. Alpaca: intermittent execution without checkpoints. Proc. ACM Program. Lang. 1, OOPSLA, Article, 30 pages.

Static Checkpointing - Layer (ST-L): Each 
layer of a DNN can be naturally modeled as an 
atomic block

• Pros: Fastest among ST because only one 
checkpointing per layer

• Cons: Largest in peak memory usage 

Blocks can be written in different granularities
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Re-writing each filter convolution into a separate atomic block [1,2]

• Pros: Only loading partial Input and Output to reduce peak memory

• Cons: Slower than ST-L
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Static Checkpointing - Filter (ST-F): 

[1] Bashima Islam et al., 2020. Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems. Proc. ACM Interact. Mob. Wearable 
Ubiquitous Technol. 4, 3, Article 82 (September 2020), 29 pages.
[2] Graham Gobieski, et.al., 2019. Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems. In Proceedings of the Twenty-Fourth International 
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '19).
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Static Checkpointing – Tiled (ST-T): 

Further breakdown inference by re-organizing into a tiled structure [3]

• Pros: Further reduce peak memory by loading partial Weights

• Cons: May be slower than ST-F

[3] Hashan Roshantha Mendis et al., 2021. Intermittent-Aware Neural Architecture Search. ACM Trans. Embed. Comput. Syst. 20, 5s, Article 64 
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Prior Work: Summary

Use only one CM for the entire system is problematic: 

cannot balance peak memory and execution time!

Background Motivation Methodology EvaluationIntroduction



General tradeoff between JIT and ST:

• JIT: faster but uses larger peak memory 

• ST: slower but uses smaller peak memory 
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Obs.1: Using a single checkpointing method across all layers is bad!

However,

Layer-wise performance is different! 

Layer CONV4: ST-F is faster than JIT

But Again,

layer CONV0: ST-F is the worst!

DNN Name: Trained Dataset-number of layers

A layer-wise adoption of different CM 

is needed!

Background Motivation Methodology EvaluationIntroduction



13

Obs. 2: The optimal checkpointing choice changes when it experiences shutdown

• ST-L is best when layer has no-shutdown, 

but

• ST-L cannot finish checkpoint when layer 

experiences shutdown
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Live time varies under different lighting

• Sunny: higher energy harvesting rate

• Cloudy: lower energy harvesting rate
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Obs. 3: environments change live time and shutdown layers drastically

Shutdown layers varies for different lighting

• Dim light: more layers experience shutdown

• Strong light: less layers experiences shutdown

Optimal CM changes for different environmental conditions
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MII Design Overview

Offline Phase: search for layer-wise optimal CM solution under a given env. (Obs.1 & 2)

• Energy and Tasks Modeling

• Task-level and System-level (Two-level) CM Search

Online Phase: runtime adaption of CMs to cope with env. Changes (Obs.3)

• MII Scheduler: Power Cycle Harmonizing, Scheduling Policy, Proactive Shutdown

• CM Adaption

Why applying an offline + online solution?

• Takes too long to run everything online – Huge runtime overhead!

• Problem is too challenging to address in a single phase
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Offline Phase: Energy Pattern Modeling

e: env 
condition

𝑆𝑒(𝑛): cumulative max shutdown time over n consecutive power cycles

• Purpose: estimate at least how long to charge for the task to be finished

𝐿𝑒(𝑛): cumulative min live time over n consecutive power cycles

• Purpose: estimate at least how much time we can use for task execution

Purpose: formulate the energy pattern to calculate the shutdown layers for each task
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System level: Minimize collective 
sum of solo execution times of 𝑚 
tasks
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Offline Phase: Two-Level CM search

Collective sum of solo execution times:

Task level: Minimize solo execution 

time of task 𝜏𝑖

Why two-level: cannot address all three constraints (Time, Mem., Shutdown) for all 

tasks in a single run
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Power Cycle Harmonizing

• Reason: runtime power cycle 
deviated from the one used in 
offline search (Task Arrival)

• Delay task to next power cycle

• Ensures power cycle begins 
when IPD turns off
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Online Phase: Tasks Scheduling

MII Scheduler

• Variant of the Least Slack Time (LST)

• Checks slack time at the boundary of 
each layer

Proactive Shutdown

Shutdown when (1) or (2):

(1) Stored energy not enough to execute next block 
(2) JIT threshold met

Background Motivation Methodology EvaluationIntroduction



19

Online Phase: CM Adaption

Why need to adapt: Environment changes affect the shutdown layers

Offline Optimal

Online Environment Change: Red Layers sub-optimal and have to change CM!

CM Adaption: Redo CM search for tasks that are currently running 
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• Controlled 
Environments: 
patterns cover 97% 
of lighting 
conditions during 
daytime
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Evaluation Setup

• DNNs: 8 DNN models trained from 6 datasets. Naming: CIFAR10-7layers == C7

• DNN Tasksets (TC): TC1 – C7, C12, M7, H5; TC2 – FC4, AutoEncoder, TC3 – 

MBV1, DSCNN

• Hardware: Apollo4 Blue Plus, 1.5W 8.2V Solar Panel, 1mF capacitor, 512KB VM 
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QuickRecall [1]

• Standard JIT Checkpointing only system
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Baseline Configuration

[1] H. Jayakumar et al., “Quickrecall: A hw/sw approach for computing across power cycles in transiently powered computers,” J. Emerg. Technol. Comput. 
Syst., vol. 12, no. 1, aug 2015. 
[2] Bashima Islam et al., 2020. Zygarde: Time-Sensitive On-Device Deep Inference and Adaptation on Intermittently-Powered Systems. Proc. ACM Interact. 
Mob. Wearable Ubiquitous Technol. 4, 3, Article 82 (September 2020), 29 pages.
[3] Hashan Roshantha Mendis et al., 2021. Intermittent-Aware Neural Architecture Search. ACM Trans. Embed. Comput. Syst. 20, 5s, Article 64 

Zygarde [2]

• Uses Static Checkpointing – Filter

• Uses early-exitable DNN models and early 
exit when less energy is available

iNAS [3]

• Uses Static Checkpointing – Tiled

• Design the tile sizes offline with a Neural 
Architecture Search algorithm
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Efficiency: runtime breakdown

MII successfully keeps peak memory below VM constraints while only uses 3.2% 

of runtime overhead
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• Successful jobs: jobs that complete execution before deadline

• Why successful jobs: measures the quality of service. Higher successful jobs 
means more valid results are generated

• On average 21% successful jobs increase in stable energy conditions (E1-E2). 
39% increases under dynamic energy conditions (E3-E5)
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Effectiveness: Successful Jobs Increases
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Thank you
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https://izenderi.github.io/
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