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Abstract—The concurrent execution of deep neural networks
(DNN) inference tasks on intermittently-powered batteryless
devices (IPDs) has recently garnered much attention due to
its potential in a broad range of smart sensing applications.
While the checkpointing mechanisms (CMs) provided by the
state-of-the-art make this possible, scheduling inference tasks on
IPDs is still a complex problem due to significant performance
variations across DNN layers and CM choices. This complexity
is further accentuated by dynamic environmental conditions and
inherent resource constraints of IPDs. To tackle these challenges,
we present MII, a framework designed for intermittence-aware
inference and scheduling on IPDs. MII formulates the shutdown
and live time functions of an IPD from profiling data, which our
offline intermittence-aware search scheme uses to find optimal
layer-wise CMs for each task. At runtime, MII enhances job
success rates by dynamically making scheduling decisions to
mitigate workload losses from power interruptions and adjusting
these CMs in response to actual energy patterns. Our evaluation
demonstrates the superiority of MII over the state-of-the-art.
In controlled environments, MII achieves an average increase
of 21% and 39% in successful jobs under stable and dynamic
energy patterns. In real-world settings, MII achieves 33% and
24% more successful jobs indoors and outdoors.

I. INTRODUCTION

Intermittently-powered batteryless devices (IPDs) [1, 2] of-
fer a promising pathway to zero carbon emissions and
maintenance-free operations. Recent advances have enabled
them to execute deep neural network (DNN) inference
tasks [3–6], essential for smart sensing and IoT applications.
These devices harvest ambient energy from the environment
and store it in capacitors. Once sufficient energy accumulates,
IPD executes tasks using this energy until depletion. IPDs are
typically equipped with two types of memory: volatile memory
(VM), which is fast but loses data upon shutdown, and non-
volatile memory (NVM), which is slow but retains data after
shutdown [7, 8]. Since an IPD turns on and off across power
cycles, it must store intermediate computation results from
VM to NVM before powering off [9–14].

Existing research on IPDs primarily centers around check-
pointing mechanisms (CMs) that preserve execution progress
across power failures. Broadly, these mechanisms fall into two
types: just-in-time checkpointing (JIT), and static checkpoint-
ing (ST) using atomic blocks. JIT [10, 15–17] checkpoints the
system state once at the end of each power cycle, achieving
faster speeds but demanding a larger peak memory. On the
other hand, ST [3, 5, 12, 14, 17–19] transforms the program
code into smaller atomic blocks of various granularity (e.g.,
layers, filter, and tiles for DNNs), with checkpointing code at

the end of each block, offering a smaller peak memory but at
the cost of speed (Sec. II-B).

Although existing studies have laid the groundwork for
executing DNN inference tasks on IPDs, significant challenges
persist for real-world deployment. First, layer-wise structural
distinctions of DNNs lead to performance heterogeneity across
layers, demanding an optimal CM for each layer (Sec. III-A).
However, the limited VM size and intermittent power of IPDs
make this particularly challenging due to the inevitable device
shutdowns experienced by some layers (shutdown layers).

Second, the real-world environments present varying energy
patterns, resulting in different shutdown layers for inference
tasks at runtime. Consequently, CMs choices considered to be
optimal for one environment may become the worst in another
(Sec. III-B), necessitating a runtime adaption of CMs.

Contributions. To address the challenges above, we
present MII: Multifacted framework for Intermittence-aware
Inference and scheduling. MII consists of two parts: offline
and online. The offline phase addresses the first challenge
which requires co-consideration of both shutdown layers and
peak memory usage. Our offline intermittence-aware search
method identifies the optimal CM for each layer under a given
environment so that each task’s execution time is minimized
and the memory constraint is met. The online phase addresses
the second challenge, which requires a low-overhead algorithm
that quickly captures the environment dynamics and makes
adaptations accordingly. MII’s online phase makes scheduling
decisions dynamically, aligns task execution with the power
cycles, and adapts CMs according to the actual energy supply
and usage patterns. MII also introduces a proactive shutdown
feature to mitigate the wasted work problem in a mixed JIT
and ST system. Compared to existing work, MII achieves an
optimal execution of each inference task and adapts it to the
runtime environment with its unique layer-wise CM design.

We implemented MII on an Apollo4 Blue Plus [1] Board
and tested it against 8 DNNs trained from 6 datasets. We eval-
uate MII in both controlled and real-world environments and
compare it with three state-of-the-art methods [4, 5, 15]. MII
achieves an average increase of 21% and 39% in successful
jobs than the other methods under stable energy patterns and
dynamic energy patterns from the controlled environment. MII
achieves 33% and 24% more successful jobs under indoor and
outdoor real-world environments. These results demonstrate
that MII achieves: (i) Efficiency in intermittent DNN inference
execution via offline layer-wise CM selection and online
algorithms; (ii) Adaptability to diverse environments, ranging
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Fig. 1: Same task execution over shutdown and live times.
Environment variation results in different response times.

from stable to dynamic energy patterns; and (iii) Applicability
to real-world scenarios with significantly better performance
over the state-of-the-art.

II. BACKGROUND

A. IPD and Intermittent Inference

An IPD harvests energy from ambient sources, e.g., solar,
wind, radio waves, and vibration. Once sufficient energy is
accumulated, the IPD turns on and begins program execution
during live time. Although energy harvesting can continue
during this phase, the device typically consumes energy at
a faster rate than it accumulates. When energy is depleted, the
IPD powers down, waiting for enough energy to be harvested
(shutdown time) before restarting this process [9–14, 20].
Fig. 1 depicts an example of task execution over live and
shutdown times. Several prior studies [4, 8, 17, 21–23] have
enabled multiprogramming and priority-based scheduling of
tasks on IPDs, with a timekeeping ability across power cycles
using either the MCU’s deep sleep mode or external real-time
clock (RTC). In this context, our focus is on inference tasks
that should run periodically for practical use in areas such as
smart sensing, which periodically samples readings and runs
inference tasks for anomaly or object detection [3, 17, 24].

An intermittent inference task refers to a task executing
the forward propagation of a DNN under intermittent power.
Because of on-off power cycles, modern IPDs are equipped
with both volatile memory (VM) and non-volatile memory
(NVM). VM is typically SRAM which is fast but small (tens
to hundreds of KB in most MCUs) and loses all data when
powered off. NVM, such as MRAM [1] and FRAM [2], is
larger and slower compared to VM, but it can maintain data
when powered off. To fully utilize the speed of VM in DNN
inference, existing work [5, 25] loads all necessary data to VM,
including the input features map (IFM), weights (WEI), and
output features map (OFM), and then performs computations
using the VM data. Before shutdown, the calculated OFM
from this power cycle is checkpointed to NVM, and once
the device reboots, IPD resumes the remaining inference
computations by fetching the checkpointed data to VM.

In contrast to other computational tasks, DNN inferences
keep a large memory footprint during execution and have a
magnitude more data than needed for checkpointing [3, 5, 25].
For example, a tiny 7-layer DNN performing a 32x32 pixel
colored image classification needs to checkpoint 9216 output
features to NVM for the largest layer, whereas non-inference
tasks, such as thermometer sensing and alarm, only need to
checkpoint less than 10 outputs [14, 17, 19, 21, 22]. Despite
the large memory footprint, loading all corresponding data
(including WEI) to VM during inference is necessary, as it

Fig. 2: 4 types of CMs applicable to DNNs: blue is the data
read back to VM; yellow is the data checkpointed each time.

significantly reduces NVM accesses and results in up to 51%
less response time and 39% longer live time for the same 7-
layer DNN compared to direct read and write in NVM [3, 5].1

B. Checkpointing Mechanisms

State-of-the-art checkpointing mechanisms (CMs) fall into
two categories: JIT checkpointing (JIT) and static checkpoint-
ing (ST). JIT [10, 15, 16] makes a checkpoint of the entire
system’s states to NVM when shutdown is imminent. The
device’s energy level, i.e., capacitor voltage, is constantly
polled and compared with a predefined voltage threshold (JIT
threshold) that guarantees a successful checkpointing [16, 17].
When the capacitor voltage falls below the JIT threshold, JIT
checkpoints the system states to NVM so that the IPD can be
safely shut down without losing its progress [15]. Although
JIT enjoys fast execution speed by checkpointing only once
per power cycle, it demands a substantial amount of memory.
JIT needs to checkpoint both the IFM and OFM of the current
layer since the previous checkpoint may not have saved the
previous layer’s OFM (the current layer’s IFM). A detailed
memory access pattern of JIT is shown in Fig. 2(A).

ST entails transforming the original task into atomic blocks
and performing a checkpointing at the end of each atomic
block [3, 5, 14, 17–19]. If a shutdown occurs in the middle
of a block, the IPD resumes from the last checkpoint upon
reboot and re-executes the block. Since any code with Write-
After-Read (WAR) can disrupt idempotency, methods have
been studied to construct atomic blocks to guarantee memory
consistency and correct execution [12, 18, 26]. In the context
of DNNs, an inference task can be divided into atomic blocks
of various granularities shown in Fig. 2(B)(C)(D):2

• ST-L (layer): Due to its explicit IFM and OFM structures,
each layer of a DNN can be naturally modeled as an atomic
block, achieving ST at the layer-level granularity. ST-L is
generally the fastest among all STs, but it needs to load all
IFM, WEI, and OFM of that layer, resulting in the largest
peak memory size among all STs.

• ST-F (filter): In convolution layers, a filter is convolved
across the IFM to compute a feature vector output. By
re-writing each filter convolution into a separate atomic
block, ST is attained at the filter granularity [3, 4]. ST-F is

1This holds for IPDs that run CPU and SRAM at higher clock rates than
MRAM or FRAM, such as our platform [1]. For others like MSP430 [2],
loading WEI may be considered optional.

2This approach of leveraging the DNN structure is motivated by iNAS [5],
which offers benefits over general programming language-based [27] and
compiler-assisted [28] methods by ensuring that blocks fit into device memory
without requiring extensive manual effort and code changes.
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generally slower than ST-L due to its finer-grain block size;
however, ST-F requires less memory than ST-L by loading
partial IFM and OFM. Note that ST-F still needs to load
the entire WEI of the layer for its filter-wise computation.

• ST-T (tile): Inference can be further broken down by re-
organizing into a tiled structure [5]. ST-T can be achieved
by converting each tile’s execution into an atomic block.
Hence, unlike ST-F, ST-T can do computation with only a
portion of WEI, thereby further reducing peak memory with
a potentially longer execution time.

C. Environmental Effects

In real-world scenarios, the dynamics of the environment
lead to significant changes in the energy harvesting rate,
resulting in different response times for the same task on an
IPD. Fig. 1 illustrates this phenomenon under solar energy.
Compared to the case of sunny light conditions, the shutdown
time under cloudy conditions is obviously longer due to the
lower harvesting rate. The live time is shorter because the
device still harvests energy while it is executing the inference
task but the harvesting rate is lower.

The variation of the environment is therefore the key
challenge in scheduling tasks on an IPD. Existing work ad-
dresses this in two categories: energy prediction and workload
reduction. Energy prediction methods [21–23] assume a priori
knowledge of future energy patterns or predict based on previ-
ous patterns. However, the prediction can never be perfect due
to the sporadic nature of the environment, and the use of more
complex models increases overhead. Conversely, workload
reduction [4, 19, 29–31] reacts to environmental changes by
reducing the workload (e.g., skipping some layers of DNNs,
called ‘early termination’ [4]) as the harvesting rate reduces.
Its limitations include the degradation in output quality, and
the extra efforts and overhead to enable early termination.
More importantly, in DNN inference, the entire layer OFM
has to be loaded in VM for an early-exit classifier or model
to begin execution [4, 32]. This makes it unable to keep the
peak memory usage smaller than the layer OFM, potentially
limiting the IPD from running multiple inference tasks.

D. System Model

We consider an IPD equipped with a fixed-size capacitor
and a solar panel for energy harvesting, and with an RTC for
timekeeping. The system has m periodic DNN inference tasks.
Each task τi releases a job according to its period, and each
job performs one inference of the task’s DNN with ηi layers.
Due to the nature of intermittent computing, we do not aim
to execute all jobs of tasks; instead, we focus on maximizing
the number of jobs that successfully complete their execution.
If a job cannot finish before the start of the next period, it
continues executing in the next period and the next period’s
job is skipped to prevent overloads. The system may have
other non-inference tasks, e.g., sensor and peripheral tasks,
but they are not the main focus of this paper and their CMs
are statically determined as done in prior work [17, 22–24, 30].

The system has Vipd KB of memory in VM for inference
tasks. In practice, the DNN models for MCUs dynamically

Fig. 3: Top: JIT vs. STs of various granularity tradeoff space.
Bottom: layer performance heterogeneity under JIT and STs.

allocate and free memory from the heap space for each layer’s
execution. Thus, Vipd essentially indicates the heap area size,
and for each task, the layer that uses the most heap memory
determines the peak memory usage of that task.

III. MOTIVATION

A. Checkpointing Tradeoff on Intermittent Inference

To understand the effect of CMs on the execution time
and memory usage of a DNN inference job, we set up
an experiment evaluating both JIT and all granularities of
ST (ST-L, ST-F and ST-T) with 3 DNNs on MNIST [33]
and CIFAR10 [34] datasets. Each DNN name is given by
“dataset name - # of layers”. We chose the DNNs and datasets
following the prior work [3–5] as they are used in real-world
applications like wildlife monitoring. We tested the DNNs on
an Apollo4 Blue Plus [1] evaluation board due to its sufficient
VM size to run these DNNs under all four CMs.

We first applied each CM to the entire DNN, as done in prior
work [3–5] under continuous power from USB. As shown
in the top of Fig. 3, JIT yields shorter execution times and
consumes larger memory than ST, whereas ST uses a small
memory size at the cost of longer execution time. This tradeoff
occurs due to their inherent differences in checkpointing.
JIT loads the entire layer’s IFM, OFM, and weights to the
VM during execution. This results in the peak memory size
matching that of the largest layer within the system. On the
contrary, ST only fetches a portion of layer data as described
in Fig. 2 so that it can maintain a small memory footprint.
However, it needs to checkpoint the calculated results to NVM
after each block. As the granularity of ST decreases from layer
level to tile level, we observe an increase in inference latency
and a decrease in peak memory usage.

We further break down the overall inference execution
time into individual layers and characterize the layer-wise
performance. Fig. 3 bottom shows the layer-wise relative
execution time of DNN inference under different CMs for all
3 DNNs. As depicted in the figure, each layer experiences a
different execution time depending on the CM used, which is
not consistent with the general expectation that JIT is faster
than ST. For instance, when executing CONV4, which has a
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Fig. 4: Total live time of layers in the presence of shutdown.

Fig. 5: Top: live time per power cycle when running CIFAR10-
7 in various light conditions (CIFAR10-12 and MNIST-7 have
the same pattern). Bottom: the shutdown layers of all three
DNNs in two light conditions.

large IFM and small OFM, JIT takes longer execution time and
yields worse performance compared to ST-F and ST-L (left-
most red text) because JIT has to checkpoint the entire IFM
of CONV4. ST-F achieves the best performance (top green
text) due to the small OFM of CONV4, which reduces the
checkpointing overhead of ST-F. However, if we choose ST-
F as the CM across all layers of the job, it gives the worst
performance for layer CONV0, which has a large OFM and
small WEI (bottom red text). This is because the large OFM
of CONV0 results in ST-F having a greater checkpointing
overhead than the other CMs.
Obs. 1. For DNN inference tasks, relying on a single CM, as
done in prior work, may result in sub-optimal performance,
thereby requiring an optimal CM choice for each layer.

We therefore advocate a layer-wise adoption of different
CMs. Although it may seem straightforward to choose the
optimal CM for each layer, solving such a problem under an
intermittent power condition is challenging. Fig. 4 compares
the cumulative live time of each layer, i.e., the time that the de-
vice is live for inference and checkpointing, under intermittent
power with a 2mF capacitor and 12400 Lux lighting condition.
As depicted, the optimal CM choice under continuous power
(‘No-shutdown’ in the legend) becomes often sub-optimal
under intermittent power which causes the device to shut down
at least once (‘Shutdown’). Also, the optimal CM chosen under
continuous power can make a layer trapped in the endless
loop of re-execution. For instance, ST-L is the optimal CM
for the CONV4 layer of CIFAR10-7 under continuous power.
However, ST-L makes it unable to checkpoint before shutdown
under intermittent power, resulting in infinite execution time.
Obs. 2. Due to shutdown, the optimal CM choice for each
layer of an interference task under intermittent power may
diverge from the one made under continuous power.

B. Intermittent Inference under Environment Variations

To find out how the change in energy harvesting patterns
affects inference performance, we first focus on the live time

Fig. 6: Overview of the proposed MII framework

of an IPD, which directly affects the response time of an
inference task, as discussed in Sec. II-C. We use the same
three DNNs and run them each separately in various light
conditions. The top part of Fig. 5 shows the average live time
per power cycle when running the CIFAR10-7 model under
different CMs and light conditions. From the results, we find
that live time varies significantly with light conditions, and that
under the same light condition, live time is only marginally
affected by CMs and tasks. For example, under 38325 Lux
lighting, the live time in each power cycle for all three DNNs is
1236ms. On the other hand, if we change the lighting to 29625
Lux, the live time per power cycle changes to 743ms. Some
fluctuations may be observed depending on CMs or tasks, but
they are within the 6-7% range of the live time.

To further explore the effect of CMs and environment
conditions on intermittent inference, we characterize shutdown
layers, which are the subset of layers of an inference job that
experience shutdowns during their execution. The tables at the
bottom of Fig. 5 depict the shutdown layers of each DNN job
in two representative light conditions. The shutdown layers of
each DNN vary significantly with the CM used and the given
light condition. Recall our discussion in Sec. III-A and with
Fig. 4. The optimal CM when the layer does not shut down
becomes often sub-optimal or even the worst if a shutdown
occurs for that layer. Vice versa, if we choose the optimal CM
assuming that the layer always experiences a shutdown, such
a CM will likely perform worse when there is no shutdown.

From the above two experiments on live time and shutdown
layers, the following observation can be made.
Obs. 3. While both live time and shutdown layers play
significant roles in determining optimal CMs, they can vary
drastically with environmental conditions. Consequently, there
is a strong need for runtime adaptation with low overhead.

IV. MII DESIGN OVERVIEW

Fig. 6 presents the overview of our MII framework, de-
signed to address the two key challenges elaborated with our
observations in Sec. III. We illustrate each challenge in a
separate paragraph and propose MII’s solutions.

Motivated by Obs. 1 and 2, MII introduces an Offline Phase
to tackle the challenge of finding a layer-wise optimal CM
solution under a given environment, while considering possible
device shutdowns and device memory constraints. We opt for
an offline solution because the profiling of DNN execution
time and memory footprint on a per-layer basis is feasible
only in an offline setting. In 1 , the offline phase models the
energy supply pattern of a given environment condition e into
the cumulative shutdown time Se(n) and cumulative live time
Le(n) functions where n is the number of power cycles. In 2 ,
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Fig. 7: Cumulative shutdown time Se(4) and live time Le(4)
of an intermittent inference task τ1.

Fig. 8: Top: cumulative maximum shutdown time Se(n) under
different environment condition e. Bottom: cumulative mini-
mum live time Le(n) for CIFAR10-12 inference task τC12.

the offline intermittence-aware CM search finds the optimal
CMs for the layers of each task to minimize their execution
time while adhering to the device memory constraint.

Stemming from Obs. 3, actual energy supply patterns can
vary drastically at runtime, which requires a timely adaption of
CMs to cope with changing environmental conditions. There-
fore, MII presents an Online Phase to tackle this challenge.
The MII scheduler in 3 takes into account the CMs found at
the offline phase and updates the offline Se(n) and Le(n)
to their online versions, Se′(n) and Le′(n), based on the
online shutdown and live times, ŝ and l̂, collected using an
on-board RTC. The scheduler harmonizes task execution with
power cycles, makes scheduling decisions based on the online
energy pattern, and employs proactive shutdown to mitigate
the wasted work problem in a mixed JIT and ST system.
Lastly, we introduce the online adaption method in 4 , which
adapts the CMs according to the latest Se′(n) and Le′(n) using
a linear heuristic search for each scheduled inference task.

V. OFFLINE PHASE

A. Modeling Shutdown and Live Time Patterns

Before conducting the offline CM search, we model the
energy supply pattern of a given environmental condition e
based on profiling and formulate it into shutdown and live
time functions, Se(n) and Le(n).

Recall that the execution of a job of an inference task τi
can take multiple power cycles, as illustrated in Fig. 7. We
denote the shutdown time of τi during the j-th power cycle
in an environment condition e as ŝei,j , and the live time as
l̂ei,j . During each ŝei,j , the IPD remains off, only harvesting
energy. Conversely, during each l̂ei,j , the IPD powers on and
starts consuming the capacitor’s energy to execute τi while still
harvesting energy. Given the IPD’s fixed capacitor size, we
make the assumption A1 about the shutdown time as below:
A1. The duration of shutdown in the j-th power cycle is solely

affected by the environment condition e, not by any task

on the IPD. Hence, for ease of presentation, we use ŝej
to denote the shutdown time for the j-th power cycle.

This is a valid assumption because at the beginning of the j-th
power cycle, the voltage level of the IPD’s capacitor is at the
power-off voltage regardless of the type of tasks executed in
the previous power cycle, and the IPD turns on only when it
reaches the power-on voltage, the timing of which is affected
by the energy harvesting rate. Hence, with A1 and the profiled
ŝej data, we can represent the shutdown time as a function of
the number of power cycles.

Def. 1 (Cumulative Shutdown Time). Se(n) gives the cumula-
tive maximum shutdown time over n consecutive power cycles
in an environment condition e. Given N ≫ n shutdown time
profiles, Se(n) can be obtained by:

Se(n) = max
1≤k≤N−n+1

n+k−1∑
j=k

ŝej (1)

Fig. 8 top plot gives an example of Se(n) in various real-
world environment conditions (x-axis indicates n). Static and
dynamic light are collected under a controllable artificial light
source, whereas sunny and cloudy are collected under natural
sunlight under two different weather conditions. For each
condition e in this figure, Se(n) determines a conservative
estimate of the total time required to charge the IPD for
execution across n power cycles. Note that Se(n) is non-linear,
e.g., Se(n+ 1) ≤ Se(n) + Se(1).

Unlike the shutdown time, the live time of an inference
task, l̂ei,j , depends not only on the energy harvesting rate of
the environment e but also on the energy consumption rate
of the system. As shown in Sec. III-B with Fig. 5, the energy
harvesting rate is the dominant factor in the live time per power
cycle, while the variation due to the type of tasks or CMs is
relatively small (less than 7% of the live time per power cycle).
We therefore make the following assumption A2.
A2. While turned on, the energy consumption rate of the IPD

is the same for all tasks.
Strictly speaking, this assumption is not necessarily true

because tasks may have different memory and I/O access
patterns. However, since our work focuses on DNN inference
tasks that do not involve direct I/O access and the energy
harvesting rate has a much higher impact on the device’s live
time per power cycle, we find A2 works well in practice. With
A2, we use l̂ej to denote the live time for the j-th power cycle
and derive a live time function Le(n), similar to Se(n).

Def. 2 (Cumulative Live Time). Le(n) gives the cumulative
minimum live time over n consecutive power cycles in an
environment condition e. Given N ≫ n live time profiles,
Le(n) can be obtained by:

Le(n) = min
1≤k≤N−n+1

n+k−1∑
j=k

l̂ej (2)

Unlike Se(n), Le(n) captures the minimum cumulative
time. This allows us to have a conservative estimate of the
time available for task execution over n power cycles. We can
use Le(n) to find out how many power cycles are needed to
execute a job of a task, assuming no other tasks are executing
in the system. For instance, if a job has the execution time of
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TABLE I: Execution time and memory usage profiles
Symbol Meaning

ai(x, k) k-th layer execution time under CM x without shutdown
di(x, k) k-th layer execution time under CM x with shutdown
vi(x, k) k-th layer peak memory under CM x

t units, finding n that satisfies Le(n−1) < t ≤ Le(n) tells us
the number of power cycles involved. Hence, we can derive
an inverse function, Le(t), which gives the number of power
cycles for t units of execution.

Fig. 8 bottom illustrates Le(n) during one job execution
of the CIFAR10-12 inference task under the same four real-
world environments. Obviously, it takes the least number of
power cycles in the sunny condition. Both Se(n) and Le(n)
are stored in the device’s NVM so that the scheduler can access
them for online adaptation.

The execution time and memory usage of each layer of
a task τi are affected by the CM choice and whether the
layer experiences shutdown during execution (Sec. III-B).
Therefore, for each layer k of τi, we record two lists
of execution times with JIT, ST-L, ST-F, and ST-T:
(aJIT

i,k, a
ST-L
i,k , aST-F

i,k , aST-T
i,k ) represent times without shutdown

(‘alive’), and (dJIT
i,k, d

ST-L
i,k , dST-F

i,k , dST-T
i,k ) denote times with shut-

down (‘dead’). We also record the maximum memory usage of
the k-th layer of τi under four CMs: (vJIT

i,k, v
ST-L
i,k , vST-F

i,k , vST-T
i,k ).

For ease of reference, we introduce functions ai(x, k) and
di(x, k) to obtain the execution times of τi’s layer k under a
given CM x when the layer is ‘alive’ or ‘dead’ respectively.
We also introduce a function vi(x, k) for the memory usage.
Table I summarizes these profiled data.

B. Offline Intermittence-aware CM Search

Our goal is to determine layer-wise CMs to minimize the
solo execution time of a task τi across power cycles, i.e., when
τi runs without temporal interference from other tasks, while
ensuring that the collective peak memory usage of all tasks
stays within the IPD’s memory constraint, Vipd. We solve this
problem through a two-level dynamic programming approach.

At first, we minimize each task τi’s execution time under a
memory constraint V . Let us define ετi [k][V ] as follows:

ετi [k][V ] = τi’s collective execution time from
layers 1 to k, while not exceeding the
memory constraint V .

cmτi [k][V ] =CMs achieving ετi [k][V ].

(3)

As each layer uses non-zero memory, ετi [k][0] = ∞ and
cmτi [k][0] = ∅ for all k ≤ ηi. The execution time of layers 1
to k can be found by considering the occurrence of shutdowns.
The peak memory usage of a task τi is determined by the layer
that uses the most memory among all layers. Hence, we can
compute ετi [k][V ] and cmτi [k][V ] using Alg. 1.

Alg. 1 iterates over the memory size V from 1 to Vipd, and
for each V , iterates over layers from 1 to ηi. For each layer k,
it considers four CMs (line 5). Recall that the peak memory
usage of τi is determined by the layer with the maximum
usage, not by the summation of all layers. Hence, if the use
of a CM x for the k-th layer violates the memory constraint
V , that CM x should be ignored (line 6). If the k-th layer has

Algorithm 1: Minimize task execution time
1 ετi [0][1...Vipd]← 0; cmτi [0][1...Vipd]← ∅;
2 for V ∈ {1...Vipd} do
3 for k ∈ {1...ηi} do
4 minε ←∞; mincm ← ∅;
5 for x ∈ {JIT, ST-L, ST-F, ST-T} do
6 if vi(x, k) > V then
7 continue; /* Ignore CM violating mem limit */;
8 end
9 val← ετi [k − 1][V ] + ai(x, k) /* No shutdown */;

10 if Le(val) ̸= Le(ετi [k − 1][V ]) then
11 val← ετi [k− 1][V ] + di(x, k); /* Shutdown */;
12 end
13 if minε > val then
14 minε ← val; mincm ← x;
15 end
16 end
17 ετi [k][V ]← minε;
18 cmτi [k][V ]← cmτi [k − 1][V ] ∪mincm;
19 end
20 end

no shutdown, the cumulative execution time up to layer k is
calculated by summing ετi [k − 1][V ] and ai(x, k) (line 9). If
a shutdown occurs during layer k, the total number of power
cycles up to layer k−1 will be different from the number up to
layer k (obtainable using the pseudo-inverse function Le(t)),
and di(x, k) needs to be used instead (line 11). Once the
algorithm finishes, ετi [ηi][Vipd] gives the minimum execution
time of τi under the memory constraint.

The next step is to minimize the collective sum of solo
execution times of all m tasks under the device’s memory
constraint. The memory usage of the system Γ is determined
by adding up the peak memory usage of each task τi ∈ Γ.
Let us define EΓ[i][V ] as the minimum sum of the solo
execution times of i tasks (from τ1 to τi) in Γ with the memory
constraint of V , and CMΓ[i][V ] as the corresponding CM
information. This can be solved by dynamic programming with
the following recurrence relation:

EΓ[i][V ] = min
1≤j≤V−1

EΓ[i− 1][j] + ετi [ηi][V − j] (4)

and with j found for EΓ[i][V ],

CMΓ[i][V ] = CMΓ[i− 1][j] ∪ {cmτi [ηi][V − j]} (5)

The initial conditions are:

EΓ[0][1...Vipd] = 0, EΓ[1][1...Vipd] = ετ1 [η1][1...Vipd], and
CMΓ[0][1...Vipd] = ∅, CMΓ[1][1...Vipd] = cmτ1 [η1][1...Vipd].

For all m tasks in Γ, the solution is given by EΓ[m][Vipd]
and CMΓ[m][Vipd]. We use CMΓ[m][Vipd] as the initial CM
settings of tasks when the system is deployed. Also, we store
each task’s peak memory usage corresponding to the solution
as Mτi in the device’s NVM since it will be used as guidance
by the online adaptation.

VI. ONLINE PHASE

In light of Obs. 3 from Sec. III-B, real-world energy pattern
fluctuations directly influence shutdown layers. Therefore, we
address this issue in the online phase and use e′ to indicate
the environment condition at runtime that is different from
the profiled condition e. We present our online scheduler in
Sec. VI-A and the details of online CM adaption in Sec. VI-B.
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Algorithm 2: MII Online Scheduler
1 Input: Se′ (n), Le′ (n), l̂ and tprev in NVM;
2 tstart ← RTC now(); ŝ← tstart − tprev ;
3 /* Power Cycle Harmonizing (PCH) */;
4 Qtasks ← Tasks arrived by tstart but not finished their jobs;
5 for ∀τi ∈ Qtasks do
6 Assign Priority(τi); /* LST */;
7 end
8 /* CMs Adaptation */;
9 if Se′ (1) < ŝ ∨ Le′ (1) > l̂ then

10 Update Se′ (n) and Le′ (n); /* Stored in NVM */;
11 for ∀τi ∈ Qtasks do
12 cmτi ← Online Adaptation(τi);
13 end
14 end
15 /* Task Scheduling*/;
16 while Qtasks ̸= ∅ do
17 τi ← Pick Highest Priority(Qtasks);
18 if cmτi ̸= JIT then
19 Check Proactive Shutdown();
20 end
21 Run(τi);
22 if τi completed its job then
23 Qtasks ← Qtasks \ τi;
24 end
25 end
26 /* Qtasks = ∅ or JIT threshold or Proactive Shutdown triggered */;
27 Save the states of JIT tasks to NVM;
28 tprev ← RTC now(); /* Store in NVM */;
29 l̂← tprev − tstart; IPD Shutdown;

A. MII Online Scheduler

The main goal of our scheduler is to make task scheduling
decisions based on e′. The pseudocode of the scheduler is
given in Alg. 2, which begins upon each reboot. Upon start,
the scheduler uses the on-board RTC to compute the online
shutdown time of the current power cycle, denoted as ŝ, by
taking the difference between the timestamp recorded at the
previous shutdown, tprev , and the current timestamp at the
start, tstart (line 2). It also estimates the online live time l̂,
calculated at the end of the last power cycle (line 29). These
ŝ and l̂ are used to determine the condition to trigger online
CM adaptation, presented in the next subsection. The other
components of the scheduler are explained below.

Power Cycle Harmonizing (PCH). An arbitrary arrival of
periodic tasks is one of the reasons causing runtime deviations
from the power cycle used by our offline search. To address
this issue, our scheduler introduces PCH, which harmonizes
task execution with the power cycle. PCH forces the scheduler
to take into account only the tasks that have either arrived by
tstart or those that have not finished their job execution within
their periods (line 4, Qtasks). Therefore, the execution of any
task that arrives during the live time of the current power cycle
is deferred to the next power cycle, allowing the CM choices
of tasks not to be disrupted by newly arriving tasks. Fig. 9
gives an example of the scheduling behavior with PCH. For
n-th power cycle, the start of execution for all three tasks is
harmonized to the end of ŝn, ensuring that the n + 1 power
cycle begins when the IPD turns off.

Task Scheduling. For the tasks found by PCH, Qtasks,
our scheduler uses a variant of the Least Slack Time (LST)
scheduling policy to dynamically change task priorities, with
each task’s period as its deadline (lines 5-6). Our LST variant
checks slack time at the boundary of each layer execution to

Fig. 9: MII online scheduler with 3 tasks. Each task τi is
characterized by (execution time, period). PCH delays the
execution of τ2’s 2nd job. Proactive shutdown is shown by
hatched grey boxes.

mitigate the overhead of the standard LST. The reason behind
the use of LST is the following: Since DNN inference jobs
are relatively long, their response times can be easily greater
than their periods and the unscheduled jobs are skipped from
execution. If we use other policies like EDF which is a job-
level fixed-priority policy, a long-running job may dominate
the live time over multiple power cycles as its priority does
not change until completion, leading to starvation to other jobs
and resulting in a disproportionate number of successful jobs
per task compared to their periods. In other words, the use of
LST can help achieve fairness in skipped jobs across tasks, as
we will show in our evaluation. After updating CMs with the
online adaption (lines 9-12), the scheduler proceeds to execute
the tasks in Qtasks in priority order and remove it from Qtasks

upon successful job completion (lines 16-25).
Proactive Shutdown. With ST, an IPD may shut down

during the execution of an atomic block and re-execute it in
the next power cycle. The re-executed portion is called wasted
work [3, 9, 17, 18]. Although existing work mitigates this by
voluntarily shutting down the IPD after a fixed number of
calculations [5], it no longer works in a multi-task system
with a mixture of JIT and ST because the JIT threshold can be
triggered at any time of atomic block execution. To address this
problem, we propose a proactive shutdown method. Proactive
shutdown can be triggered by the scheduler before running
any task τi that uses ST as its CM (line 19). The scheduler
proceeds with τi’s execution only if the stored energy is
enough to execute at least a single block of τi. Otherwise,
it makes the device shut down (line 26). This can also be
triggered when no other task to execute (Qtasks = ∅) or the
JIT threshold is met. The overhead of the proactive shutdown
is negligible since it only requires an ADC reading at the end
of each ST’s block. Furthermore, for any JIT-enabled IPDs,
ADC reading is already a prerequisite [10, 15, 16, 40].

One might have a concern that proactive shutdown turns
the IPD off earlier and shortens the shutdown time ŝ (Fig. 9
hatched grey boxes), which might affect the condition to trig-
ger online adaption. However, since the online CM adaption
is triggered only when ŝ reaches a larger value than expected
(explained in the next subsection), unnecessary online adapta-
tions are effectively prevented.

B. Online CM Adaption
To enable online CM adaptions, MII maintains Se′(n) in

NVM, which is an online version of the cumulative shutdown
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TABLE II: DNNs Configuration
Test Case DNN Name Dataset Layers Configuration Params Inputs Top1 Acc. Largest Layer

TC1 C7 [5] CIFAR10 [34] 5xCONV2D+GP+FC 5,152 32x32x3 63% 63.9KB
TC1 M7 [5] MNIST [33] 5xCONV2D+GP+FC 5,136 28x28x2 98% 49.0KB
TC1 C12 [5] CIFAR10 [34] 10xCONV2D+GP+FC 15,722 32x32x3 78% 63.6KB
TC1 H5 [5] HAR [35] 3xCONV1D+GP+FC 920 128x9 61% 3.5KB
TC2 FC4 [36] KWS [37] 4xFC 263,436 49x10x1 87% 503.8KB
TC2 AutoEncoder [36] ToyADMOS [38] 10xFC 269,992 1x640 85% 328.7KB
TC3 MBV1 [36] VWW [39] 14xCONV2D+13xDCONV2D+AP+FC 221,794 96x96x3 80% 312.5KB
TC3 DSCNN [36] KWS [37] 5xCONV2D+4xDCONV2D+AP+FC 24,908 49x10x1 90% 80.6KB

∗ CONV2D/1D:Convolution 2D/1D, GP: Global Pooling, FC: Fully Connected, DCONV2D: Depthwise convolution 2D, AP: Average Pooling

time Se(n) and initialized as Se′(n) = Se(n). Also, Le′(n),
an online version of the live time Le(n), is also maintained
in NVM and initialized as Le′(n) = Le(n). Both Se′(n) and
Le′(n) are given as input to the scheduler since they are essen-
tial to quantify the deviation between the online environment
condition e′ and the profiled environment condition e.

Recall Defs. 1 and 2. If the IPD follows Se′(n) and Le′(n),
both ŝ ≤ Se′(1) and l̂ ≥ Le′(1) hold for one power cycle
(n = 1), indicating no shift of environment. Otherwise, either
ŝ > Se′(n = 1) or l̂ < Le′(1) (line 9), meaning a potential
shift of environment; hence, the scheduler first updates Se′(n)
and Le′(n) with ŝ and l̂ (line 10), and then triggers the online
adaptation (line 12). Since the direct use of the offline search
algorithm (Sec. V-B) for online adaption introduces a huge
overhead, we take a heuristic approach presented below to find
a near-optimal solution by using the offline solution’s per-task
memory usage, Mτi , as a constraint for τi.

The online adaptation is done individually for each task
τi ∈ Qtasks to update task’s CM list cmτi [0...ηi]. It initializes
cmτi [1...ηi] as follows: for each layer k of τi, cmτi [k] =
argminx ai(x, k), where x ∈ {JIT, ST-L, ST-F, ST-T} ∧
vi(x, k) ≤ Mτi . This discards any CM that causes the
memory usage to exceed Mτi , and chooses the CM giving
the minimum execution time without considering shutdown
during execution. It also uses a vector variable ετi [1...ηi] to
keep track of each layer’s execution time corresponding to
cmτi [1...ηi]. Then, it takes the following steps to take into
account the effect of shutdown for each τi:
1. Start with the first power cycle n = 1.
2. Find a layer K that experiences a shutdown in the power

cycle p. Such a layer K satisfies:
∑K−1

k=1 ετi [k] ≤ Le′(n)

and
∑K

k=1 ετi [k] > Le′(n).
3. If K is found, this means the layer K is a shutdown

layer. Hence, update ετi [K] = minx di(x,K) and cmτi =
argminx di(x,K).

4. Repeat steps 2-3 until K reaches ηi.
This method takes a linear search approach, much faster

than the offline algorithm. However, its optimality may be
compromised due to its reliance on Mτi determined offline.
Nonetheless, by incorporating Le′(n) which is continuously
updated for the current environment e′, this approach offers
substantial benefits as we will demonstrate in the evaluation.

VII. MII IMPLEMENTATION

Energy Source. For the continuous power source, we
used an X-NUCLEO-LPM01A [41], which provides a stable
voltage of 1.8V to the IPD. The current consumption and

live voltage can be observed via a connected PC that directly
controls LPM01A. For the intermittent energy source, we
harvested energy using an LTC3588 energy harvester [42] and
solar cells of 1.5W peak power [43]. We regulated the input
voltage of IPD to 1.8V and stored the harvested energy in a
set of capacitors with the size of 1mF. During operations, the
capacitor’s voltage range is 2.87v to 4.03v [42].

Evaluation Hardware. We chose the Ambiq Apollo4 Blue
Plus evaluation board [1] that has an ARM Cortex-M4 MCU,
2MB MRAM as NVM, an on-board RTC unit for timekeep-
ing,3 and an on-board ADC for capacitor voltage monitoring.
In the version of FreeRTOS [45] provided by the board
manufacturer, the heap area size is configured to 512KB.
Therefore, we use 512KB as the device memory constraint
for inference tasks in the system.

DNN Setup. To cover a wide range of modern DNN
models runnable on IPDs, we selected 8 DNN models and
categorized them into 3 test cases (TCs) based on their
dominant layers. TC1 is obtained from existing inferences on
IPDs researches [3–5], whereas TC2-3 are obtained from the
MLPerf Tiny benchmark [36] covering anomaly detection, vi-
sual wake words, and keyword spotting. Details of these DNNs
are found in Table II. TC1 comprises 4 DNNs dominated
by convolution 1D/2D (CONV1D/2D) layers. TC2 includes 2
DNNs that only use fully connected (FC) layers. TC3 includes
MobileNetV1 (MBV1) [36] and Depthwise convolution neural
network (DSCNN) [36], both of which predominantly use
depth-wise 2D convolution (DW-CONV2D) layers.

Method Implementation. For the MII offline phase, we
developed a PC-based profiler that enables profiling the ex-
ecution time of tasks on the IPD in both continuous and
intermittent power settings. It also includes our search al-
gorithm described in Sec. V-B. The offline-searched CMs
were written to the INFO0 section of NVM before running
inference tasks. For the MII online phase, we implemented the
MII scheduler in FreeRTOS [45] for the Apollo4 board. The
online adaption overwrites offline CMs in NVM by atomically
changing the CM list for each task when needed. Our current
implementation did not use hardware acceleration for DNN
execution. However, since MII performs all computations
in the VM for both JIT and ST, it can be safely adapted
to hardware acceleration features that usually require direct
access to data in the VM, e.g., TI’s Low Energy Accelerator
(LEA). We leave such extensions as part of future work.

3The RTC circuit ran with its own dedicated capacitor and it did not
deplete during the experiment. For more reliable timekeeping, techniques like
“persistent clocks” [44] can be considered.
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Fig. 10: Five Controlled Energy Patterns represented as the
lighting in a unit of illumination (Lux). E1 and E2 are static
lighting, whereas E3, E4, and E5 are dynamic lighting.

VIII. CONTROLLED ENVIRONMENT EVALUATION

A. Evaluation Setup

Controlled Energy Patterns. We conducted a 3 months
study of lighting condition changes inside a greenhouse en-
vironment and identified 6 distinct energy patterns (E0-E5)
that can capture more than 97% of the lighting conditions
during daytime. Apart from E0, the continuous power, E1 to
E5 are all intermittent power, and their energy patterns in one
hour are shown in Fig. 10. Specifically, E1 and E2 represent
static energy patterns, indicating unchanged light conditions
throughout the duration. E3, E4, and E5 represent dynamic
energy patterns that are either changing gradually or abruptly
during the one-hour period.

Baseline Configuration. We compare MII against three es-
tablished and state-of-the-art methods: QuickRecall [15] which
is a JIT checkpointing-only system, iNAS [5] which uses ST-
T with a tile size determined offline, and Zygarde [4] which
uses ST-F and an early-exit model comprising mandatory and
optional layers. For a fair comparison, we adjusted several
settings of each method: In QuickRecall, we determined the
JIT threshold to ensure the successful checkpointing of all
JIT tasks in the system. In Zygarde, we set the first layer of
each model as a mandatory layer since at least one layer OFM
is needed for early exit. Also, we marked an inference result
from a mandatory job as successful if it matched the result of a
complete job. It is worth noting that the evaluation of Zygarde
subsumes SONIC [3], which also focuses on intermittent DNN
inference, because Zygarde extends SONIC’s APIs and has
shown to outperform SONIC. In iNAS, we derived appropriate
tile parameters by balancing peak memory usage and execution
time. Although a larger tile size can shorten execution time by
improving data reuse, it increases peak memory size, leading
to out-of-memory if multiple tasks are executed concurrently.

Test Cases and Job Generation. The evaluation encom-
passes 8 DNNs in 3 test cases (TCs) given in Table II. To
evaluate the performance of individual and combined TCs that
represent different task sizes, we consider four scenarios: (A)
All TC1: all four DNNs in TC1, (B) TC1+TC2: two DNNs
(C7, M7) selected from TC1 and one model (FC4) from TC2,
(C) TC2+TC3: one model (AutoEncoder) from TC2 and one
model (DSCNN) from TC3, and (D) TC1+TC3: two DNNs
(C7, C12) from TC1 and one model (MBV1) from TC3.
Each model is executed by a distinct task on FreeRTOS. We
schedule the tasks with specific periods, as will be shown by
the number of generated jobs in later sections. We scale task
periods w.r.t. the energy pattern because less lighting causes
the sensor to sample fewer readings. For example, in All TC1
with E0, we set the period of C7 as 3.5s, C12 as 4.5s, M7 as

Fig. 11: System runtime breakdown when running 4 DNNs of
TC1 under continuous (left) and intermittent (right) power.

Fig. 12: Finished Jobs by running each TC separately in E1-
E5. MII only uses offline phase to search CMs under E1.

3.6s, and H5 as 2.8s, whereas in All TC1 with E1, we multiply
these periods by a factor of 1.6 due to longer harvesting time.

System Overhead. To evaluate the overhead of MII’s
runtime scheduler and other non-inference tasks, we profiled
the execution time of each software component when running
all TC1 models on one downsampled image. The IPD first took
a picture from the camera, stored a downsampled version in
NVM, and then processed the image by running the inference
of each DNN sequentially. Fig. 11 shows the runtime break-
down of the described workload under both continuous power
provided by LPM01A [41] and an intermittent power source
following E1 energy pattern. Recorded by a Discovery 3 digital
oscilloscope [46], the IPD experiences 9 power failures under
the intermittent power supply. The overhead of MII scheduler
is composed of only 1.1% under continuous power and 3.2%
under intermittent power of the entire system runtime.

B. Offline Effectiveness
CM Search Algorithm. To evaluate the effectiveness of

our offline search across various energy patterns, we use the
offline searched optimal CMs found from the energy pattern
E1 and apply these CMs to E2-E5. During a one-hour period,
we measure for each inference task how many jobs execute
successfully (denoted as finished jobs). For a level comparison,
Zygarde’s finished jobs are captured by executing the complete
DNN inference without relying on the early-exit feature. This
feature will be assessed in the online evaluation in Sec. VIII-C.
The results in Fig. 12 showcase that, for E1, MII outperforms
QuickRecall, Zygarde, and iNAS by completing 41%, 18%
and 40% more jobs, respectively. This is somewhat expected
since the CMs are searched using E1. Although QuickRecall
finished 7% more jobs on average than MII for smaller
DNNs from TC1 in E2-4, it suffers from out-of-memory when
running large DNNs and finishes the least TC2-3 inference
jobs across all baselines. Interestingly, even when the IPD
runs inference tasks using the E1-optimized CMs for E2-5,
MII still achieves 10% and 28% more jobs than Zygarde and
iNAS, respectively. These results show that the CMs searched
by MII in a single energy pattern demonstrate efficacy across
all examined energy patterns compared to the other methods.
This underscores the robust generality of our search algorithm.

Peak Memory. Fig. 14 shows the peak memory usage
when applying the CMs obtained from MII’s offline methods
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Fig. 13: Left: Successful Jobs of 4 TCs combinations with 6 energy patterns. Task periods are scaled with the energy pattern
and are indicated by the numbers above green dashed lines. Right: Response Time of TCs under one stable energy pattern.

Fig. 14: Peak memory usage. MII uses E1 to search CMs.

under the E1 energy pattern. From these results, MII can
effectively reduce the peak memory compared to QuickRecall
and Zygarde. QuickRecall consistently accesses the layer’s
IFM, OFM, and weights, resulting in the highest peak memory.
Although Zygarde often needs to load the entire layer’s OFM
for an early exit, its memory usage is still smaller than Quick-
Recall. iNAS has the smallest because it only loads partial
IFM, weights, and OFM in each power cycle; however, it
suffers from increased execution time. MII’s reduction in peak
memory, compared to QuickRecall and Zygarde, is primarily
due to that MII can choose a non-JIT CM or finer-grained ST
for a large layer by imposing the memory constraint.

MII Offline Phase: The derived optimal layer-wise CMs
effectively tackle the challenges highlighted in Obs. 1 and
Obs. 2 and are applicable to various energy patterns.

C. Online Scheduling and Adaption Effectiveness

Successful Jobs. The left part of Fig. 13 illustrates the
number of successful jobs in four combinations of TC1-4,
with the total number of generated jobs indicated by green
dashed lines. If an optimal solution exists for each online
energy pattern (E1-E5), its number of successful jobs is upper-
bounded by the green dashed lines. Hence, the gap in each
subplot between the green line and each bar represents the
deviation between each baseline and the optimal solution.
Although it does not reach the optimal performance because

Fig. 15: Observed wasted work under execution with E1

of the heuristic approach used in online adaption, MII still
achieves on average a 21% increase of successful jobs in stable
energy conditions (E1-E2) and on average 39% successful jobs
increase under dynamic energy conditions (E3-E5) compared
to other methods. When comparing these results with the
offline evaluation, MII’s online phase significantly improves
job success rates over the other three methods. Specifically,
for (A) TC1 All in E1, there is a 56% increase in successful
jobs, thanks to the online scheduler and adaptation of MII.

In addition to the MII’s significant improvement in total
successful jobs, the following two observations can be made:
(i) The LST variant of MII mitigates starvation of short-period
jobs and helps achieve fairness across tasks. For example, in
Fig. 13(B)-E5, when using MII, the short-period task C7 can
complete up to 94% of its generated jobs, and the long-period
tasks M7 and FC4 complete 99% and 84% of their generated
jobs. On the other hand, when using Zygarde, which uses an
EDF variant, one of the long-period tasks M7 completes 95%
while the other two tasks complete only 73% and 58% of
their jobs, showing a much higher discrepancy in successful
jobs per task than MII. (ii) If we ignore the correctness of
inference results of jobs, Zygarde has executed more jobs than
MII in most cases due to its early-exit feature, which executes
only a mandatory portion of the job. However, if a task uses
a large DNN model, this feature makes Zygarde suffer from
low accuracy, resulting in a lower number of successful jobs.
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Fig. 16: Real-world solar energy pattern

Fig. 17: Experiment setup in Lab and Greenhouse.

Therefore, in Fig. 13(D)-E5, although Zygarde achieves 2%
more successful jobs than MII for a small DNN task C7, it
achieves 30% and 10% less successful jobs than MII for large
DNNs tasks C12 and MBV1, respectively.

Response Time. The right side of Fig. 13 showcases the
response time of DNN inference tasks under one stable energy
pattern (E1 or E2). This supplements the successful job results.
Although the response time is not the major optimization
objective of MII (successful job is), MII tends to yield more
preferable results overall, with a shorter average response time
and a smaller variation. QuickRecall suffers from the out-of-
memory issue when executing a large model such as AutoEn-
coder and MBV1. Hence, although it gives a shorter response
time for small models (A-E1 in the figure), it completes 35%,
40%, and 22% less successful jobs on average compared to
MII for TC1+TC2, TC2+TC3, and TC1+TC3, respectively.
Zygarde often gives a shorter response time due to its early-
exit feature, but it comes at the cost of low accuracy.

Wasted Work. We characterize the amount of wasted work
by profiling the number of output features discarded during
shutdown. Fig. 15 depicts the wasted work of each DNN when
running the four combinations of TCs under the E1 energy
pattern. Both Zygarde and iNAS show some wasted work
due to the issue discussed in Sec. VI-A. For QuickRecall,
since it uses JIT, it obviously has zero wasted work. However,
to ensure that JIT successfully checkpoints all tasks’ largest
layers, a higher JIT threshold is required for QuickRecall
compared to MII, i.e., 3.7V vs. 3.3v. MII has zero wasted work
while keeping a smaller JIT threshold because of our proactive
shutdown technique (Sec. VI-A) as well as the ability to avoid
using JIT for large layers.

IX. REAL WORLD EVALUATION

Experiment Setting. The IPD was deployed in two settings:
lab window side (Lab) and Greenhouse (GH). We evaluated
the system under Sunny and Cloudy conditions, both occurring
within a single day. The lighting changes for each setting
are depicted in Fig. 16. In Lab, the IPD was positioned
under direct sunlight with minimal interference. However, in
GH, IPD faced consistent interference from leaf shades and
plant shadows. To demonstrate effectiveness in common smart
sensing applications, all TC1 DNNs listed in Table II were

TABLE III: Successful jobs of MII compared to Zygarde
DNN Lab Sunny Lab Cloudy GH Sunny GH Cloudy

C7 +17% +51% +20% +61%
C12 +38% +47% +38% +9%
M7 +18% +34% +33% +6%
H5 +19% +35% +33% −7%

selected for the experiment and ran continuously from 6AM
to 6PM on a day (Fig. 16). A comparison setup, running the
same set of DNNs with Zygarde [4], was placed adjacent to the
experimental setup. Zygarde was chosen as it is state-of-the-
art and capable of adapting to environmental changes. Fig. 17
illustrates our setup in both Lab and GH.

Successful Jobs. Table III presents the percentage differ-
ence in the number of successful jobs executed by MII com-
pared to Zygarde. In the GH Clody setting, MII outperformed
Zygarde for all three DNNs, executing 61%, 9%, and 6% more
jobs than Zygarde. However, for H5 in the same setting, MII
completed 7% fewer jobs. It was mainly due to that, although
Zygarde executed only mandatory layers under the cloudy
condition, it still managed to produce around 95% of inference
results that matched the results of H5’s complete inference.
However, this favorable outcome for Zygarde is largely con-
fined to small models with inherently low accuracy, which are
not substantially affected by the accuracy degradation of early
exits. Overall, MII outperformed Zygarde by an average of
33% more successful jobs in the Lab and 24% in the GH.

MII Online Phase: With the runtime scheduler and
adaptation methods, MII outperforms the state-of-the-art
across diverse energy patterns and in real-world environ-
ments, addressing the challenge from Obs. 3.

X. RELATED WORK

A. Intermittent Computing
In the context of IPD software systems, prior work has

focused on issues such as memory inconsistency [7–9, 12, 13,
15, 29, 47], task idempotency [10, 12, 16, 18, 26], and sensing/-
computation task coordination [14, 17, 19, 31]. There are nu-
merous studies on IPD hardware improvement [11, 40, 48, 49]
and energy harvesting circuits [27, 50].

Emergent research about running machine learning work-
loads on IPDs is still in its very early stage. Existing work
focuses on learning [25] as well as inference tasks [3–
6, 18, 26, 31] on IPDs. However, none of these has studied the
tradeoff between JIT [10, 15, 16] and ST [3, 5, 12, 14, 17–19]
checkpointing mechanisms as well as the different granularity
of atomic blocks in ST for DNN inference tasks. Although
there have been some attempts to co-use JIT and ST in the
same system [17, 31], they use ST exclusively for peripheral
access and JIT for computational tasks, meaning that when
applied to inference tasks, all will be governed by JIT.

Recent work [40] has proposed to put the device into
sleep mode and trigger JIT checkpointing only when no more
energy is available. While this has the potential to improve the
standard JIT method used in MII, depending on the leakage
current in sleep mode, it can increase the recharge time of the
capacitor. For example, in our evaluation platform [1], using
its default deep sleep mode results in at least 58% more time
to fully recharge under the E2 energy pattern in Sec. VIII-A.
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B. Real-time Scheduling on IPD

Supporting task Scheduling on IPDs has been considered a
big challenge because environment fluctuations lead to varying
task response times [14, 19]. Existing work has approached
this issue in two ways: energy prediction [21–23], which
analyzes the supply energy pattern and makes scheduling
decisions accordingly; and workload reduction [4, 19, 29–31],
which reactively changes the amount of workload with respect
to environment variations. Specifically, Celebi [21] leverages
the energy prediction approach and presents both offline and
online schedulers to meet task deadlines on IPDs. Zygarde [4]
trains a DNN to be early exit-able at every layer and splits
the layers into mandatory and optional parts. It then schedules
either only mandatory layers or both types of layers based on
ambient conditions. However, none of the existing work has
studied the effect of execution patterns given different CMs.
MII addresses these limitations.

XI. CONCLUSION

This paper presents MII: a Multifaceted framework for
Intermittent Inference and scheduling. The design of MII
originated from the three key observations in Sec. III and
divided into offline and online phases. MII is compared with
three representative state-of-the-art methods [4, 5, 15] through
a controlled environment evaluation as well as a real-world
field study. The results show that MII is able to achieve
performance efficiency in intermittent DNN inference, adapt-
ability to environment changes, and applicability to real-world
scenarios. Future work includes the consideration of different
learning tasks, such as deep reinforcement learning, on IPDs.
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