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Abstract—Data centers spend millions of dollars on their
electricity bills annually. Therefore, there is an interest among
data center operators to control the electricity usage so as to
minimize energy expenditure. However, when it comes to cloud
data centers, the electricity usage is mainly controlled by the
tenants. Yet, since most cloud data centers charge their tenants
with flat rates, the tenants do not have incentives to change
their electricity usage to contribute in cutting electricity bills by
participation in demand response. Accordingly, in this paper, we
propose a game-theoretic framework together with a time varying
pricing (TVP) mechanism for cloud data centers to charge their
tenants. In this approach, the TVP propagates the actual energy
bill, which comprises both demand and energy charges, onto
tenants’ service costs. As an extension to this core idea, the time-
varying amount of renewable energy generated by data center’s
on-site renewable generators is also taken into account to affect
the payments. Our proposed pricing method is evaluated under
various experimental data and simulations. We show that TVP
can boost data center’s profit by 8.2% and reduce the energy
bill by 33.0% and improve tenants’ aggregate surplus by 12.3%,
when comparing it with a flat rates model that uses a widely
employed billing method in today’s cloud data centers.

I. INTRODUCTION

In 2011, data centers (DCs) consumed about 1.5% of the
total generated electricity worldwide [1]–[3]. In 2012, this
portion increased by 63% [4]. This growing trend is expected
to continue over the next decade [5]. Hence, the cost of
electricity will continue to be a major factor for data centers.

The electricity utilities usually charge their large consumers,
such as DCs, via Peak Pricing (PP), which comprises energy
charge and demand charge [6]–[8]. The energy charge is the
cost of total kWh electricity consumed by the DC. The demand
charge is about the average peak load in kW, e.g., within 1 hour
intervals, during a billing cycle, e.g., a month. The demand
charge is deployed in order to shed the electricity utilities’
peak loads. The demand charge of a DC can be equal to or
even exceed the energy charge [9], [10].

Two practical methods have been discussed in the literature
for reducing electricity bill of a data center. The first method
is to generate renewable energy (e.g., wind power and solar
power) to power their own facilities [11]. However, renewable
generation is intermittent and its amount depends on external
factors, e.g, wind speed or solar irradiance. The second method
is to better management power consumption of computation
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servers by turning off the idle servers. Of course, this has
to be done by in a careful and coordinated way in order to
assure quality-of-service (QoS) requirements. Otherwise, the
performance of DC may suffer a sudden degradation, violating
the QoS terms in service-level-agreements (SLAs).

Most prior work on cloud data center energy management
focuses on how a DC should respond to the energy price
to reduce its energy bill [12]–[17]. However, the fact that
these are the tenants but not the data center itself that should
respond to such price changes is often neglected. For example,
today’s DCs charge their tenants via flat rates [18], i.e.,
tenants’ payments depend on the number of machines they rent
and the time of renting the machines, but not how the tenants
utilize their rented machines. Accordingly, the tenants have no
incentive to optimize the use of their computation resources to
minimize their payments. This issue can be resolved if the DCs
propagate the energy bill onto their tenants service payments.
In this case, tenants can be aware of their contributions to the
overall energy cost in the data center system and can receive
some monetary incentives to adjust their workloads properly.

Interestingly, the DC operators have already pointed out
their interests in using pricing mechanisms that provide tenants
with right incentives to proactively manage their workloads:
For instance, according to a Microsoft whitepaper, “To further
smooth demand, sophisticated pricing can be employed. For
example, similar to the electricity market, customers can be
incented to shift their demand from high utilization periods
to low utilization periods. Demand management will further
increase the economic benefits of cloud” [19]. However, the
technical challenges are yet to be addressed.

In this paper, we design a pricing method to encourage
tenants to response to time-varying and complex electricity
rates. Tenants are allowed to periodically adjust their purchases
of machines based on the current price of machine and their
real demands. Data centers can then turn on/off the machines
accordingly to maximize their profit, i.e., their revenue minus
energy cost. In summary, our contributions are as follows:

• We model the aggregate utility function of tenants in
terms of the number of active machines. We also model
the profit of DC by taking into account the bursty
nature of tenants’ workloads, QoS, DC’s power usage
effectiveness, the PP for energy bill, the time-varying
amount of generation of renewable power.



• We propose a game-based framework for a DC to deduce
the Time Varying Pricing (TVP) to charge its tenants.
Specifically, we assume that tenants decide their ag-
gregate purchase of machine towards maximizing their
aggregate surplus (i.e., aggregate utility minus cost).
Further, DC can deduce the optimal price of machine
that can optimize its profit based on the knowledge of its
tenants’ aggregate utility and the real time energy price.

• We evaluate our proposed pricing with various experi-
mental data, such as real workload data, various elec-
tricity rates at different locations and real renewable
energy generation data. Meanwhile, we compare our
proposed pricing with a representative of the pricing that
is widely adopted in today’s DCs. We demonstrate that
our proposed pricing can boost DC’s profit and reduce its
energy bill while improving tenants’ aggregate surplus.

II. RELATED WORK

We first sketch the pricing policies that are widely employed
by today’s DCs. Traditionally, cloud providers prefer simple
pricing methods which are easier to understand by users,
such as flat rates and usage-based pricing [20]. For instance,
Amazon provides its EC2 tenants with flat rates, e.g., $0.140
per hour per m3.large instance [18]. Clearly, such flat rates
do not offer tenants any incentive to shed their peak demands
or reduce their demands when the price of energy is relatively
high. To ensure that the scarce DC resources are consumed by
tenants who value them most, Amazon has also implemented a
novel machine purchase option: Spot Instances, where tenants
must bid for the spare instances and the DC will then allocate
resources to the tenant with the highest bid. But this still does
not propagate the energy bill onto tenants’ payments.

Next, we briefly discuss demand response policies in DCs.
In [16], a mathematical framework is developed for DCs to
decide the optimal number of machines that are needed to
be switched on in order to maximize DC’s profit. In [9], the
authors explained that the data center is more likely to be
charged with PP than any other pricing tariff. Therefore, they
focus on responding to PP scenarios. The authors also adopted
a partial execution of service requests to reduce the DC’s
energy bill, based on the assumption that many DC services
can tolerate. On a related work, in [21], the authors designed
a hierarchical framework to minimize DC’s energy bill via
both partial execution and workload deferring mechanisms,
where the workload deferring can be adopted if the workload
is latency-tolerable, e.g., for batch workload. Note that, to
be effective in a cloud data center, the above methods need
to adjust tenant’s workload. However, they neglect that the
tenants, who actually own the workload, may not allow DC to
drop or defer their workload if they are not well-incentivized.

Another branch of prior work aims at providing tenants with
incentives to cooperate with DCs to reduce the energy cost.
In [22], the authors proposed Virtual Electric Utility (VEU)
that can fairly propagate the energy cost onto tenants’ costs.
However, it is assumed that the DC needs to inform the tenants

of the whole information of energy bill and their contributions
to the bill. As a result, the scheme in [22] is quite complex and
may not be viable to be implemented by DCs [20]. Also, in
[23], the authors presented an auction-based pricing method, in
which tenants bid for the machines they need by submitting a
bid function that shows the tenants’ willingness to pay if the
tenant can obtain those machines before period t. However,
the proposed method only takes into account the time-varying
electricity rates, which is not likely to be used for charging
large electricity consumers such as DCs. Next, we address
this shortcoming by considering peak hour pricing as a more
common pricing tariff that is deployed for large DCs [6]–[8].

III. PROBLEM FORMULATION

A. Data Center’s Energy Bill and Profit
We divide the operating time of DC into time slots of length

T and assume that a billing cycle contains τ time slots. Next,
we provide a model for the DC’s electricity bill and profit at
each time slot t ∈ {1, · · · , τ}. Consider a DC that procures
energy from both a local renewable energy generator such as
wind turbines by itself and also an electricity utility via a pre-
assigned wholesale contract. We assume that the pricing tariff
between the DC and electricity utility is peak hour pricing and
denote the Energy charge and Demand charge at time slot t by
$α(t) per KWh and $β per KW, respectively. We denote the
amount of renewable power that is generated at time slot t by
Gt and the amount of renewable generation that is not used by
DC is injected to the power grid or will be dropped. However,
DC is not paid for the power it injects to the power grid. Thus,
the energy bill of DC over a billing cycle is obtained as

Energy Bill =
∑
t

α(t)T max{Pt −Gt, 0}

+ βmax
t
{max{Pt −Gt, 0}},

(1)

where Pt is the average power usage of DC at time slot t.
Let mt denote the total amount of machines that are

purchased by the tenants of DC at time slot t. In this paper,
TVP is adopted to charge DC’s tenants, i.e., the price of
machines can be changed over the time. Let δt denote the
price of a machine at time slot t. The total revenue of DC
over a billing cycle is obtained as

Revenue =
∑
t

δtmt. (2)

We assume that the power consumption of DC is a linear
function of the number of switched on machines. The average
power consumption at time slot t is defined as:

Pt = Epueρmt, (3)

where Epue is the Power Usage Effectiveness (PUE) and ρ
is a machine’s average power draw. From Equation (1) (2)
and (3), the total profit of data center over a billing cycle is
obtained as

Profit =
∑
t

(δtmt − α(t)T max{Epueρmt −Gt, 0})

− βmax
t
{max{Epueρmt −Gt, 0}} .

(4)
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Fig. 1. Impact of γt: (a) % Maximum utility gained by tenants when
#machine=5 under different γt. (b) #machine needed to gain 95th-percentile
of maximum utility under different γt

B. Tenants’ Aggregate Utility and Surplus

We assume that the aggregate utility of tenants is a non-
decreasing and concave function of the number of their
purchased machines. Meanwhile, we assume that an average
of λt service requests are generated by the tenants at time slot
t. Also, let κ denote the number of service requests that can
be handled by a switched on machine at DC. If the requests
arrive uniformly, λt/(κT ) machines are sufficient to handle
the service requests. However, considering the bursty nature of
service requests arrival rates, tenants need more machines than
λt/(κT ) to process their service requests without degradation
of QoS. Therefore, we model the aggregate utility of tenants
by

U(mt) = Vtλt

(
1− exp(−mt

κT

γtλt
)

)
, (5)

where Vtλt > 0 is the maximum utility that can be gained by
the tenants at time slot t and γt > 0 is a parameter to model the
burstiness of the service requests. As an illustration example,
Figure 1 shows the impact of γt on tenants’ aggregate utility,
where λt/(κT ) is set to be 5. Specifically, Figure 1(a) shows
how many percent of utility can be gained by the tenants when
they purchase 5 machines. Meanwhile, Figure 1(b) shows the
number of machines that are needed by the tenants if they
want to gain 95th-percentile of maximum utility. From (5),
the aggregate surplus gained by the tenants at time slot t is

S(mt) = Vtλt

(
1− exp(−mt

κT

γtλt
)

)
− δtmt. (6)

IV. DESIGN OF GAME-THEORETIC FRAMEWORK

We aim at maximizing DC’s profit in this paper. To achieve
this goal, DC needs to provide its tenants with right incentives
(i.e., monetary incentives). Namely, DC will propagate its
energy bill onto the price of machine. In this case, tenants of
DC may reduce their demands at the peak hour or/and when
the energy price is relatively high. By increasing the price of
machines, DC gains more profit per each purchased machine
by tenants. However, with the increasing of price, tenants may
purchase less machines, which decreases the total profit of DC.
To capture this trade-off, in this section, we design a game-
based price framework for DC to optimize its profit.

A. Tenants’ Optimal Machine Purchase

In this section, we analyse tenants’ aggregate response to the
price of machine. To ensure the quality of service, we assume
that the number of machines that are purchased by tenants
at time slot t is lower bounded by Mt, i.e., mt ∈ [Mt,∞).
We assume that the lower bound is proportional to tenants’
aggregate service requests λt:

Mt = lλt, (7)

where l ≥ 0 is a parameter that is set by the tenants. The
optimum number of machines that should be purchased to
maximize the tenants’ aggregate surplus is obtained by solving
the following optimization problem

maximize
mt

Vtλt

(
1− exp(−mt

κT

γtλt
)

)
− δtmt

subject to mt ≥Mt.

(8)

The above optimization problem is a convex program [24], as
the objective function is concave with respect to mt, when
mt ≥Mt. The proof is omitted due to space limitation.

Lemma 1: The solution of program (8) at each time t is:

m∗
t =

{
−γtλt

κT

(
log δt + log γt

VtκT

)
, if δt ≤ VtκT

γt
exp(−lκTγt );

Mt, otherwise.
(9)

We assume that tenants temporarily quit from the DC if
their optimal aggregate surplus is negative.

Theorem 1: The tenants’ aggregate surplus is non-negative
if and only if

δt ≤
Vt
l

(
1− exp(−lκT

γt
)

)
. (10)

Proof 1: Firstly, when

δt ≤
VtκT

γt
exp(

−lκT
γt

),

we have

m∗
t = −

γtλt
κT

(
log δt + log

γt
VtκT

)
and

S(m∗
t ) = Vtλt −

δtγtλt
κT

(
1− log

δtγt
VtκT

)
.

Since ∂S(m∗
t )/∂δt ≤ 0, the minimal S(m∗

t ) is reached when

δt =
VtκT

γt
exp(

−lκT
γt

). (11)

Thus, in this case, we can ensure that S(m∗
t ) ≥ 0. Secondly,

when

VtκT

γt
exp

(
−lκT
γt

)
< δt ≤

Vt
l

(
1− exp(−lκT

γt
)

)
,

we have m∗
t =Mt and S(Mt) ≥ 0. Thirdly, if

δt >
Vt
l

(
1− exp(−lκT

γt
)

)
,
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Fig. 2. Tenants’ optimal aggregate purchase: a simple example

m∗
t = Mt. In this case, tenants’ aggregate surplus is always

less than 0.

Figure 2 shows an example of tenants’ optimal aggregate
purchase under different prices of machine. Apparently, if the
price is unreasonably low, tenants purchase extremely large
amount of machines, which leads to the waste of DC resource.
By increasing the price of machine, tenants’ aggregate pur-
chase is convexly decreased. Further, when the price reaches
VtκT
γt

exp(−lκTγt ), tenants keep purchasing Mt machines till the

price exceeds Vt

l

(
1− exp(−lκTγt )

)
. Then, tenants purchase no

machine, i.e., tenants temporarily quit from the DC.

B. DC’s Optimal Control

We assume that the DC has perfect knowledge of its
tenants’ optimal machine purchase i.e., m∗

t in response to
machine price δt. To maximize the DC’s profit, the following
optimization problem should be solved to obtain the optimum
machine price at each time slot δ1, · · · , δτ .

maximize
δt

∑
t

(δtm
∗
t − α(t)T max{Epueρm∗

t −Gt, 0})

− βmax
t
{max{Epueρm∗

t −Gt, 0}}

subject to 0 ≤ δt ≤
Vt
l

(
1− exp(−lκT

γt
)

)
,

∀t ∈ {1, · · · , τ}.
(12)

According to Theorem 1, if δt > Vt

l

(
1− exp(−lκTγt )

)
, tenants

purchase no machine. Thus, the only constraint of optimization
problem (12) ensures profitability of DC. Meanwhile, m∗

t in
the objective function can be replaced by

m∗
t = max

{
−γtλt
κT

(
log δt + log

γt
VtκT

)
,Mt

}
. (13)

Apparently, the objective function of the optimization prob-
lem (12) is not convex or concave. However, problem (12)
becomes a convex program for the special case of l = 0:

Theorem 2: When l = 0, then problem (12) is convex.

Algorithm 1 Calculation of optimal price
Require:

δ∗t (optimal price of machine at time slot t)
l (factor of lower bound of purchase of machine)

1: Get δ∗t by solving convex program (14).
2: if l = 0 then
3: return δ∗t .
4: else if l > 0 then
5: for all ∀t ∈ {1, · · · , τ} do
6: if δ∗t ≥ VtκT

γt
exp(−lκTγt ) then

7: δ∗t = Vt

l

(
1− exp(−lκTγt )

)
.

8: end if
9: end for

10: end if
11: return δ∗t .

Proof 2: ∀t ∈ {1, · · · , τ}, when l = 0, the optimization
problem (12) can be transformed into

maximize
δt

∑
t

(δtm
∗
t − α(t)T max{Epueρm∗

t −Gt, 0})

− βmax
t
{max{Epueρm∗

t −Gt, 0}}

subject to 0 ≤ δt ≤
VtκT

γt
, ∀t ∈ {1, · · · , τ},

(14)
where

m∗
t = −

γtλt
κT

(
log δt + log

γt
VtκT

)
. (15)

The feasible set of the optimization problem (14) is convex and
m∗
t is convex and nonincreasing in δt. Thus, max{Epueρm∗

t−
Gt, 0} and maxt{max{Epueρm∗

t − Gt, 0}} are both convex
with respect to δt. Further, let f(δt) = δtm

∗
t . Since

∇2f(δt) = −
γtλt
κTδt

≤ 0,

f(δt) is concave over δt. Therefore, the objective function of
problem (14) is concave.

Now, we explain Algorithm 1 in two steps, to solve the
optimization problem (12) for the general case of l ≥ 0:

Step 1: Let l = 0 to relax the lower bound on tenants’
aggregate machine purchase. Then, solve the relaxed problem
via a convex programming tool, e.g., CVX [25] (line 1).

Step 2: Check and adjust the price of machine to maximize
DC’s profit. Firstly, if tenants’ lower bound equals to 0, i.e.,
l = 0, according to Theorem 2, the optimal price equals to
the optimal solution of the convex program (14) (line 1− 3).
Secondly, ∀t ∈ {1, · · · , τ}, if l > 0 and

δ∗t ≥
VtκT

γt
exp(

−lκT
γt

),
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Fig. 3. Comparison of energy consumption between our proposed pricing and Baseline: (a) The aggregate workload [26]; (b) Energy consumption of Baseline;
(c) Energy consumption of DC with our proposed pricing.

TABLE I
ELECTRICITY RATES

Location Demand Charge (β) Energy Charge (α(t))
Wasco County Schedule-250 [6] $ 4.25 per KW $ 0.0372 per KWh

South California LGS-30 [8] $ 10.94 per kW for the first 5,000 kW $ 0.0547 per KWh
North California LGS-32 [8] $ 11.23 per kW for the first 5,000 kW $ 0.05566 per KWh

where δ∗t is the optimal solution of the convex program (14) at
time slot t, m∗

t = Mt. Note, in this case, with the increasing
of the price of machine till

δ∗t =
Vt
l

(
1− exp(−lκT

γt
)

)
,

tenants’ aggregate purchase will remain to be Mt. Namely,
DC can gain more revenue while keeping the energy bill
unchanged by setting δ∗t to be (line 4− 11):

Vt
l

(
1− exp(−lκT

γt
)

)
. (16)

V. PERFORMANCE EVALUATION

A. Simulation setting

We simulate a DC with sufficient number of machines to
support any peak workload. For each switched on machine,
ρ = 200 watts. As in [16], we set Epue = 1.2 and κ = 0.1.
Meanwhile, we assume that a billing cycle is set to repeat
on a monthly basis (i.e., 30 days), T = 1 hour, l = 0 and
∀t ∈ {1, · · · , τ}, Vt = 0.001, γt = 0.8. Further, the aggregate
workload of World Cup 98 web hits data [26] spanning from
June 13, 1998 to July 12, 1998 is used in our simulation,
which is shown in Figure 3(a). Obviously, the workload is
not smooth. Instead, it has remarkable peak hour and off-peak
hour.

Besides, we build a Baseline, which is a representative of
the pricing policy that is widely employed by today’s DCs.
Baseline charges its tenants via flat rates, i.e., the price of
each machine will remain unchanged during an relatively
long period. For obtaining the optimal flat rates of Baseline,
we solve the optimization problem (12) with an additional
constraint that the price of machines are same for all the time
slots, that is, ∀t ∈ {1, · · · , τ} and ∀t′ ∈ {1, · · · , τ}, we have
δt = δt′ .

B. Simulation Results without Renewable Generation

Firstly, we evaluate our proposed pricing without taking
into account the generation of renewable energy, i.e., ∀t ∈
{1, · · · , τ}, Gt = 0. We adopt several electricity rates in dif-
ferent locations to charge DC for energy consumption, which

are listed in Table I. Figure 3 shows the energy consumption
of DC, which is charged by the electricity rates of North
California LGS-32 [8]. Apparently, tenants of Baseline do not
adjust their demands in response to the electricity rates since
they do not receive any incentives to do so (comparing Figure
3(b) with Figure 3(a)). On the contrary, DC with our proposed
pricing has provided its tenants with right incentives. In this
case, the tenants will proactively ”smooth” and reduce their
peak demands (comparing Figure 3(c) with Figure 3(b)).

Next, Figure 4 shows the DC’s profit and energy bill and
tenants’ aggregate surplus under different electricity rates.
Obviously, with our proposed pricing, DC can gain more
profit and reduce its energy bill while improving its tenants’
aggregate surplus when comparing with Baseline. For instance,
with our proposed pricing, the profit of DC that is charged by
the electricity rates of North California LGS-32 [8] can be
boosted by 8.2% and its energy bill is reduced by 33.0%.
Meanwhile, its tenants’ aggregate surplus is increased by
12.3%.

C. Impact of Renewable Generation

Figure 5 shows the results of DC’s profit and energy bill
and tenants’ aggregate surplus, where DC is equipped with 20
local wind turbines. The power generated by the these wind
turbines is shown in Figure 6. The wind speed data is gathered
from January 1, 2012 to January 30, 2012 and is available
in [27]. By comparing Figure 5 with 4, we can find that
the local generation of renewable power can further increase
DC’s profit and tenants’ aggregate surplus while reducing
the energy bill. Meanwhile, with renewable generation, our
proposed pricing can also enhance DC’s profit and greatly
reduce its energy bill while improving the tenants’ aggregate
surplus when comparing with Baseline.

VI. CONCLUSION

We proposed a game-theoretic framework for cloud data
centers to deduce a time varying pricing (TVP) mechanism to
charge their tenants. The advantage of TVP is to propagate
the energy bill onto tenants’ costs, which will provide tenants
with right incentives to cooperate with DC in response to
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Fig. 4. Performance comparison between our proposed pricing and Baseline without renewable energy: (a) DC’s profit over a month. (b) DC’s energy bill
over a month. (c) Tenants’ aggregate surplus over a month
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Fig. 6. Wind power generation [27]

the electricity rates. This resolves an important shortcoming
in the existing DC energy management literature that often
ignores the central role of tenants in shaping the electricity
load profile of cloud data centers. Our model is general and
takes into account the options to charge tenants also based
on local renewable power generation. We demonstrate that
our proposed pricing can increase DC’s profit and reduce its
energy bill while improving tenants’ aggregate surplus when
comparing with a representative of the pricing that is widely
employed by today’s DCs. Therefore, our proposed pricing
method helps both the cloud data center and the tenants.
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