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Abstract—Burstable billing is widely adopted by colocation data center providers to charge their users for data transferring. This paper
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on the 95th percentile bandwidth usage. To do this, we first develop a tractable mathematical expression to calculate the 95th
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1 INTRODUCTION

BANDWIDTH cost has become the second largest aspect of
Data Centers (DCs) overall costs, second to energy cost,

reported by Colocation America 1. Cisco forecast that annual
global DC IP traffic will reach 15.3 zettabytes by 2020, rising
from 4.7 zettabytes per year in 2015 [1]. Nearly 23% of the
overall DCs traffic, i.e., the data transferring from/to DCs,
is usually charged by a smart data pricing method called
burstable billing [1]. Burstable billing is used in practice,
by Internet Service Providers and Colocation Data Center
(CDC) providers to charge for transferring data. [2], [3], [4],
[5], [6]. Burstable billing is also widely adopted by CDC
providers such as The ANLX Server Farm2, as a means to
charge their DC users, for bandwidth usages.

In burstable billing mechanism a CDC provider, here
after provider, who supports its users, i.e. the DCs, with links
for data transferring, measures each user’s bandwidth usage
based on the user’s peak usage at a certain percentile, often
at the 95th percentile usage [7]. By construction, burstable
billing neglects the user’s usage of bandwidth during any
time other than periods of peak use. Hence, burstable billing
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Fig. 1. An example for calculating the 95th percentile usage: a total of
8640 samples are collected for a user during one billing cycle. After
throwing away the top 5%, i.e., 5 ∗ 8640/100 = 432 samples, the 95th
percentile usage is obtained as 399.1277 Mbps, which is equal to the
highest recorded bandwidth usage of the remaining 95 ∗ 8640/100 =
8208 samples. The 95th percentile usage is shown by the red line. Here,
the user is allowed to have a total of 432 bursts above the red line without
facing financial penalty.

allows users to exceed their usage thresholds for a short
period without facing financial penalty [4]. An example for
calculating the 95th percentile usage is shown in Fig. 1.

1.1 Motivation

In this paper, as illustrated by Fig. 2, we are interested in
studying burstable billing from the CDC user’s viewpoint .
Large volumes of data transferring leads to extremely high
IP transit cost for users. Accordingly, how to reduce the user
IP transit cost has become a big concern [8], [9], [10].

A common strategy for a user to reduce its IP transit cost,
is to move its traffic across time to avoid coinciding peak us-
age, thus, reducing the overall peak or/and 95th percentile
usage of bandwidth. To get a sense of cost-aware traffic
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Fig. 2. An example setup for the application of burstable billing: a tenant
in a colocation data center who serves outside clients with uncertain
demands.

management, consider a user who is charged by burstable
billing based on its 95th percentile usage. In this case, if
the user decides to use bandwidth on-demand, it’s 95th
percentile usage equals 326.27Mbps (as shown in Fig. 3(a)).
With a simple traffic management though, such as deferring
workload as shown in Fig. 3(b), the user’s 95th percentile
usage can be reduced to 235.52Mbps . The detail of traffic
adjustment is shown in Fig. 3. However, considering that
traffic management may require extra O&M operations
or/and lead to performance degradation, e.g., increase of
latency, whether or not DCs are willing to modulate their
traffic is often overlooked. For instance, 100ms of increase
of latency can cost Amazon 1% loss in sale [11].

In this paper we address the trade-off between cost and
performance based on user’s preferences. Specifically, we
seek to answer this fundamental question: What is the best
way for an individual CDC user who is charged via burstable
billing, to manage its operation and the use of bandwidth? Our
approach to answer this question is based on formulating
and solving an optimization problem for bandwidth usage
which aims at maximizing the user’s surplus, i.e., its net
utility minus cost. A hindrance so far, in accurate tractable
modeling, and optimization of the trade-off between utility
and cost of the user traffic management has been lied on the
tractable modeling of the 95th percentile usage cost within
the optimization. We address this issue in the current work.

We take into consideration the fact that, in practice, nei-
ther the user nor the provider have perfect knowledge about
the traffic, and thus the demand for bandwidth is unknown.
For example, when it comes to a user in a CDC as in Fig. 2,
it has no idea when and how many requests it will receive
from its clients, and thus it cannot perfectly predict its traffic
in the future. Therefore, in our analysis, we address demand
uncertainty within a stochastic optimization framework.

1.2 Contributions
The main contributions of this paper are as follows:

1) We develop a tractable optimization-based model
to obtain the user’s strategy for traffic management
under burstable billing. Our model includes the
user’s cost based on the 95th percentile usage of
bandwidth, as well as the user’s surplus model,
user’s cost and utility, in the bandwidth allocation
problem.

2) The traffic management optimization problem pro-
posed in this work, maximizes the user’s surplus
based on both deterministic, e.g., with a single pro-
file, and stochastic, e.g., with various statistics, pre-
dictions of the user’s demand. Our proposed model
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Fig. 3. Cost-aware traffic management, a use scenario; a) without cost-
aware traffic management, b) with cost-aware traffic management,.

takes into account the uncertainty of bandwidth
demand with arbitrary probability distributions at
the time of decision.

3) We show that the optimization problems, while
non-convex by nature, can be efficiently solved or
approximated using several convex programming
techniques. We extend the models and solutions also
to a more general scenario where users get services
from multiple service providers.

4) We evaluate our design based on a real-world work-
load trace: Wikipedia Page View data [12]. With a
typical workload forecasting method, we show that
the use of our design is particularly rewarding if a
user is charged by high bandwidth price and/or it
is more sensitive to price than to performance.

2 RELATED WORK

Traffic management under burstable billing can be studied
from two different viewpoints: providers and users. While
there are more previous studies on analysis of burstable
billing from the perspective of providers, there have been
few studies from the viewpoint of users and how they
optimally respond and manage their traffic in response to
burstable billing. For studies that address burstable billing
from the providers viewpoint, e.g. in [3], [4], [8], [13], a
common strategy is for the provider to move different users’
workloads across space and time to avoid coinciding their
peak usages, thus, reducing the overall peak demand for
bandwidth [13]. However, whether or not users are willing
to modulate their workloads is often overlooked. In contrast,
our focus in this paper, is to address the traffic management
from a user’s viewpoint and the optimal user response
under burstable billing.

The studies that address burstable billing from the user’s
perspective have emerged only recently. Among those, there
are works that perform various data driven or statistical
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analysis on user traffic and/or costs under burstable billing.
The authors in [3] analysed the impact of the length of time
interval. They find out that a user’s 95th percentile usage is
usually inversely proportional to the length of time interval,
i.e., with the increasing of the length of time interval, the
user’s 95th percentile usage convexly decreases.

For the studies that propose methods for user traffic
management under burstable billing, so far due to the lack
of an optimization-based mathematical model for the 95th
percentile usage cost of the bandwidth, a common approach
in studies such as [6], has been to use experimental and/or
heuristic methods, where as in this work we rather focus on
developing an analytical model for user traffic management.
There are also few studies that are analytical; however,
they still make assumptions to avoid modeling of the 95
percentile billing cost. For example, they develop models
based on the 100 percentile billing (i.e., peak pricing) instead
of 95 percentile billing [14], or they assume that the cost
of bandwidth is volume-based [15], [16], or assume that
the workload has a specified distribution, e.g., Gaussian
distribution [17].

Additionally, previous studies on burstable billing from
the user’s viewpoint, e.g. [7], [9], [18], [19], [20], [21], have
not accounted for performance degradation due to traffic
adjustment, thus, both incentives and extra costs for the
traffic adjustment are not considered simultaneous in the
models. For example, studies in [14], [19], [20], [22] try
to reduce a user’s 95th percentile usage or peak usage
of bandwidth via postponing parts of the user’s traffic.
These studies neglect that the users may not tend to adjust
their traffic if they are not well incentivized since traffic
management may cause extra operation cost and/or perfor-
mance degradation, e.g., increase of latency. In this paper,
we take into consideration the utility loss caused by traffic
management and aim at maximizing a CDC user’s surplus,
i.e., minimizing its utility loss and IP transit cost.

3 MODELING USER’S COST AND SURPLUS UNDER
BURSTABLE BILLING

In this section, we obtain mathematical expressions to model
a user’s bandwidth cost, bandwidth revenue, and net sur-
plus under burstable billing, i.e when users is charged based
on 95th percentile usage, of bandwidth.

3.1 Bandwidth Usage Cost

In burstable billing, a provider divides a billing cycle into
τ time intervals of equal length T . We assume the typical
interval length of of T = 5 minuets [3]. The provider takes
samples of the user’s bandwidth usage , e.g., once every
five minutes during that billing cycle. Let x[1], · · · , x[τ ]
denote the user’s bandwidth usage samples in time slots
t = 1, · · · , τ . The provider charges the user at certain
rate based on the 95th percentile usage of bandwidth. Let
δ ($/Mbps) denotes the price of bandwidth. We assume
that the price of bandwidth in a billing cycle is constant.
We also denote the 95th percentile usage of bandwidth
by µ95(x[t]). Accordingly, the bandwidth cost based on
burstable billing, C95, for the user given the bandwidth
usage samples x[1], . . . , x[τ ] is expressed as

C95(x[t]) = δ · µ95(x[t]), (1)

To obtain the user’s 95th percentile usage, the top 5% of
the samples gathered within the billing cycle are thrown
away and the highest element of the remaining 95% samples
is taken as the user’s 95th percentile usage. An example
for calculating the µ95(x[t]) is shown in Fig. 1. The user’s
95th percentile usage, µ95(x[t]), given the bandwidth usage
samples x[1], · · · , x[τ ] can be mathematically expressed as

µ95(x[t]) = min
ρ

max
t
ρ[t]x[t]

s.t. ρ[t] ∈ {0, 1}, ∀t,
τ∑
t=1

ρ[t] = d0.95τe,
(2)

where d·e denotes the ceiling function. The variables in the
above minimization are ρ[t] for all t = 1, . . . , τ . For each
sample x[t], if ρ[t] = 0, it indicates that its corresponding
usage x[t] is within the top 5% of the values in x[1], . . . , x[τ ]
and thus the usage x[t] at this time slot has no impact on
the 95th percentile usage µ95(x[t]). In other words, if ρ[t] = 0,
the user can always utilize bandwidth on-demand without
worrying about its bandwidth cost. On the contrary, if ρ[t] =
1, the user may restrict its usage at this time slot to reduce
its 95th percentile usage.

3.2 Bandwidth Usage Surplus
Next, we obtain the user’s net surplus prior to a billing
cycle. Let D[t] (Mbps) be the user’s demand for bandwidth
at time slot t, which is the amount of bandwidth needed
by the user to fully satisfy its clients. Note that, the user
may not know its exact demand in the future, rather has a
distribution for its demand, i.e., D[t] is a random variable.
We also assume that the user gains a utility, e.g. a revenue,
from the bandwidth usage. Here, as in [23], [24], we assume
a general net utility function that depends only on user’s
bandwidth usage. The utility function U(·) is a concave and
non-decreasing function of the total bandwidth.

At each time slot, the user obtains the highest utility,
when it fully serves the bandwidth demand, i.e., D[t]. How-
ever, the user may not always choose to serve the demand in
full. Let X[t] (Mbps) be the pre-cycle planned usage of band-
width for the user during time interval t = 1, . . . , τ . Here,
X[t] is decided based on the demand D[t]. Accordingly, we
can formulate the user’s revenue in a billing cycle, that is
corresponding to planned usage samples X[1], · · · , X[τ ] as

τ∑
t=1

U(min{X[t], D[t]}). (3)

From (1) and (3), the user’s surplus is obtained as

S =
τ∑
t=1

U(min{X[t], D[t]})− δ · µ95(X[t]). (4)

4 SURPLUS OPTIMIZATION PROBLEM IN RE-
SPONSE TO BURSTABLE BILLING

Typically, neither the user nor the provider have per-
fect knowledge about the user’s bandwidth demand
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in an upcoming billing cycle. Accordingly, parameters
D[1], . . . , D[τ ] are often uncertain. Since the scope of this
paper does not include workload forecasting, we assume
that the prediction of user’s demand D[t] is given. Such
prediction is either deterministic or stochastic. In this sec-
tion, we formulate the optimization problems to maximize
the user’s surplus prior to a billing cycle under deterministic
and stochastic prediction of D[t].

4.1 Optimization Problem with Deterministic Prediction

If the prediction of demand for bandwidth is deterministic,
i.e., parameters D[1], . . . , D[τ ] are deterministic, from (2) and
(4), we formulate the optimization problem to maximize the
user’s surplus over a billing cycle as:

max
X[t],ρ[t]

τ∑
t=1

U(min{X[t], D[t]})− δmax
t
ρ[t]X[t]

s.t. X[t] ≥ 0, ∀t,
ρ[t] ∈ {0, 1}, ∀t,
τ∑
t=1

ρ[t] = d0.95τe.

(5)

Here, X[t] is the principal variable while ρ[t] is the auxil-
iary variable that is used to calculate the µ95(X[t]). Note
that, since the net utility function does not depend on the
auxiliary variable ρ[t], and also because price parameter δ is
nonnegative, if the principal variable X[t] is set to be fixed,
then the maximization in (5) over X[t] and ρ[t] reduces to
the minimization in (2) over ρ[t]. Therefore, it is guaranteed
that once we solve the problem in (5), the choice of auxiliary
variable ρ[t] is automatically selected in a way that µ95(X[t])
is calculated as in (2). The solution of the deterministic
problem (5) is the highest surplus that can be gained by
the user, in case that the user’s bandwidth demand can be
perfectly predicted.

4.2 Optimization Problem with Stochastic Prediction

If the prediction of demand is uncertain, we maximize the
user’s surplus in an average sense, i.e., we maximize the
user’s expected surplus:

τ∑
t=1

E
{
U(min{X[t], Dk[t]})− δ · µ95(X̄[t])

}
, (6)

A common approach in addressing uncertainty is to obtain
a probability mass function [25] for each random parameter
using historical workload data. This can be done in various
levels of details and accuracy, e.g., see [26]. Specifically,
we assume that each D[t] has Kt possible realizations,
D1[t], . . . , DKt [t], where each realization Dk[t] may occur
with probability πk,t. We have

Kt∑
k=1

πk,t = 1, ∀t. (7)

Once we use the above uncertainty modeling method,
from (6), (7) and (2), we can formulate the following stochas-

tic optimization problem to maximize the user’s expected
surplus over a billing cycle:

max
X[t],ρ[t]

τ∑
t=1

Kt∑
k=1

πk,tU(min{X[t], Dk[t]})− δmax
t
ρ[t]X[t]

s.t. X[t] ≥ 0, ∀t,
ρ[t] ∈ {0, 1}, ∀t,
τ∑
t=1

ρ[t] = d0.95τe.

(8)
The only difference between problem (8) and (5) is the
objective function. In problem (5), the CDC user makes a de-
terministic prediction of demand for bandwidth, i.e., param-
eters D[1], . . . , D[τ ], and thus the expectation of its utility
gain at time slot t can be formulated by U(min{X[t], D[t]}).
While in problem (8), the CDC user makes a stochastic
prediction, and thus the expectation of its utility gain at time
slot t can be formulated by

∑Kt

k=1 πk,tU(min{X[t], Dk[t]}).

5 SOLUTION METHOD

Both problems (5) and (8) are nonlinear mixed-integer
programmings, which are generally considered to be hard
problems to solve. Nevertheless, in this section, we explain
how these problems can be solved with reasonable compu-
tational complexities.

5.1 Deterministic Problem Solution

For the deterministic problem (5), we can intuitively obtain
its optimal solution for the auxiliary variables ρ[1], . . . , ρ[τ ]
without numerically solving the problem. This property can
be expressed mathematically in the following theorem.

Theorem 1. Let ϑ denote the set of all time slots t at which
D[t] is within the top 5% of the values in D[1], . . . , D[τ ].
(a) There exists an optimal solution for the deterministic
problem (5) in which the values of auxiliary variables
ρ[1], . . . , ρ[τ ] are as follows:

ρ?[t] =

{
0, ∀t ∈ ϑ;

1, otherwise.
(9)

(b) Once we replace the ρ in the deterministic problem
(5) by (9), the optimal values of the principal variables
X[1], . . . , X[τ ] of the deterministic problem (5) are ob-
tained by solving the following convex optimization
problem:

max
X[t]

τ∑
t=1

U(X[t])− δmax
t
ρ?[t]X[t]

s.t. 0 ≤ X[t] ≤ D[t], ∀t,
(10)

where ρ?[t] is given by (9).

The Proof of Theorem 1 is given in Appendix A. The
theorem essentially implies that the optimal choice of usage
bursts in (5) is the top 5% of the values in D[1], · · · , D[τ ].
From Theorem 1, one can transform the non-convex prob-
lem (5) onto the convex program (10), which can be effec-
tively solved using convex programming techniques [27].
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5.2 Stochastic Problem Solution

If parameters D[1], . . . , D[τ ] are random, then we do not
know at what time slots the demand bursts will occur. Ac-
cordingly, we cannot use the approach discussed in Section
5.1 to figure out the optimal values of ρ[1], . . . , ρ[τ ]. There-
fore, we have no choice but solving the original stochastic
problem (8).

A key difficulty in solving the stochastic problem (8) is
that even if we relax the binary constraints, i.e., even if we
choose ρ[t] to be a continuous number between 0 and 1,
the relaxed problem is still difficult to solve due to the non-
convex term ρ[t]X[t] in the objective function. Interestingly,
we can tackle this undesirable property as it is explained in
a theorem below.

Theorem 2. We can reformulate the stochastic problem (8) as

max
X[t],ρ[t],φ

τ∑
t=1

Kt∑
k=1

πk,tU(min{X[t], Dk[t]})− δ · φ

s.t. X[t] ≤ φ+ L(1− ρ[t]), ∀t,
X[t] ≥ 0, ∀t,
ρ[t] ∈ {0, 1}, ∀t,
τ∑
t=1

ρ[t] = d0.95τe,

(11)
where L is a large number compared to the available
bandwidth, and φ is another auxiliary variable.

The proof of Theorem 2 is given in Appendix B. Given
the equivalence of the stochastic problem (8) and (11), we
can solve problem (11) instead of (8). Next, we notice that
from (11), once we relax the binary constraints, the relaxed
problem is convex. Therefore, we can find the exact optimal
solution of problem (11) using branch-and-bound method
[28], where at each branching step we need to solve a
convex optimization problem. We refer to this approach as
the convex branch-and-bound (CBB) method.

While the CBB method is effective to obtain the exact
optimal solution of the stochastic surplus maximization
problem, solving a nonlinear (although convex) problem at
each iteration of the branch-and-bound algorithm could be
time consuming. Since the nonlinearity in problem (11) is
due to the nonlinearity of the utility function U(·), one way
to make problem (11) linear is to replace U(·) with its piece-
wise linear approximation:

max
X[t],ρ[t],φ,
Qk[t],hk[t]

τ∑
t=1

Kt∑
k=1

πk,thk[t]− δ · φ

s.t. X[t] ≤ φ+ L(1− ρ[t]), ∀t,
X[t] ≥ 0, ∀t,
ρ[t] ∈ {0, 1}, ∀t,
τ∑
t=1

ρ[t] = d0.95τe,

Qk[t] ≤ X[t], ∀t, k,
Qk[t] ≤ Dk[t], ∀t, k,
hk[t] ≤ U(n∆[t])+

U
′
(n∆[t])(Qk[t]− n∆[t]), ∀t, k, n,

(12)
where n = 1, . . . , N , and N is the number of segments
in piecewise linearizing the utility function U . Also, hk[t]
and Qk[t] are auxiliary variables. Since problem (12 )
maximizes hk[t], and hk[t] appears only in the last con-
straint, at optimality we have Qk[t] = max{X[t], Dk[t]}.
Consequently, from the last constraint in (12 ) at op-
timality the variablehk[t] is the piecewise linearized
U(max{X[t], Dk[t]}) at the points n∆. Therefore, problem
(12 ) is equivalent to problem (11) when N → ∞. The
solution of problem (12) depends on the choice of parameter
N . However, as we will discuss further, the problem (12)
gives a solution near optimal solution of problem (11) even
for smaller N . Problem (12) is a mixed-integer linear pro-
gram (MILP) and can be solved by existing solvers such as
CPLEX [29]. In Section 7.2 we will see that the computation
time of solving problem (12) is substantially less that the
computation time of the CBB method.

Before we end this section, we must point out that
one can obtain an approximate solution for problem (12) by
terminating the optimization solver at certain guaranteed
optimality bounds in order to significantly lower compu-
tational complexity. We will further discuss this option in
Section 7.2.

6 EXTENSIONS AND REMARKS

We may extend our design to a scenario where a user has
the option to receive service from multiple providers. An
example for this scenario is when a user can download
specified content over different transit links that is owned by
different ISPs, who charge the user via burstable billing. In
this section, we also show that a user can further improve its
surplus by updating the usage of bandwidth in real-time, i.e.
during the billing cycle, based on the newly exposed actual
demand information.

6.1 Extension to Multiple Providers

Let Xi[t] denote the planned usage of bandwidth at provider
i at time slot t decided based on the demand D[t]. Let δi
($/Mbps) denote the price of bandwidth at provider i. In
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this case, in each billing cycle, the expected surplus of the
user is obtained as

S =
τ∑
t=1

E

{
U(min{

I∑
i=1

Xi[t], D[t]})
}
−

I∑
i=1

δi · µ95(Xi[t]).

(13)

From (7) and (13), following optimization problem maxi-
mizes user’s expected surplus:

max
Xi[t],ρi[t]

τ∑
t=1

Kt∑
k=1

πk,tU(min{
I∑
i=1

Xi[t], Dk[t]})−

I∑
i=1

δi max
t
ρi[t]Xi[t]

s.t. Xi[t] ≥ 0, ∀t, i,
ρi[t] ∈ {0, 1}, ∀t, i,
τ∑
t=1

ρi[t] = d0.95τe, ∀i.

(14)
The deterministic user’s surplus maximization is a spe-

cial case of problem (14) where ∀t, Kt = 1 and πk,t = 1.
Note that, for the case of multiple providers, the exact
solution of the optimization in (14), even for the determin-
istic optimization, cannot be obtained from the method dis-
cussed in Theorem 1. Therefore, we propose the following
approach for solution of the problem in (14).

As in Section 5.2, we can transform the nonlinear mixed-
integer programming (14) into an equivalent mixed-integer
convex programming (11) or MILP (12 ) , where the mixed-
integer convex programming and the MILP can be solved
via CBB and MILP solvers such as CPLEX [29], respectively.

6.2 Updating Usage of Bandwidth During a Cycle
Next, we show that the user can further improve its surplus
during a billing cycle, by updating its planned usage of
bandwidth at each time slot based on the newly exposed
actual demand. Therefore the user’s final surplus after a
cycle will be no less than expected surplus. Here, we assume
that, at the beginning of each time slot, the user’s demand
for bandwidth is exposed to the user. We denote the exposed
demand value at time slot t by D̄[t].

Generally, the demand D[t] may not be the same as the
exposed value D̄[t]. Therefore, a user can update its planned
usage of bandwidth in real-time based on the newly learned
exposed demand information, i.e., D̄[t], to further improve its
surplus while keeping its bandwidth cost unchanged. For
example, if X[t] < D̄[t] and X[t] < µ95(X[t]), the user can
increase its usage from X[t] to min{D̄[t], µ95(X[t])}. In this
way, the user’s net utility can be enhanced while remaining
its bandwidth cost unchanged.

In practice, the expected 95th percentile usage µ95(X[t]) is
treated as a rate limiter. According to (2), when ρ[t] = 1,
the user restricts its usage at this times slot to reduce its
95th percentile usage. Specifically, when ρ[t] = 1, if D̄[t] ≤
µ95(X[t]), the user can utilize bandwidth on-demand, and
if D̄[t] > µ95(X[t]), the user needs to restrict its utilization
of bandwidth to ensure that its 95th percentile usage equals

to µ95(X[t]). On the contrary, the user can always utilize
bandwidth on-demand when ρ[t] = 0 since the usage at this
time slot has no impact on the 95th percentile usage. There-
fore, we formulate the user’s updated usage of bandwidth at
each time slot, which is denoted by X̄[t], as

X̄[t] =

{
D̄[t], if ρ[t] = 0 or D̄[t] ≤ µ95(X[t]);

µ95(X[t]), otherwise.
(15)

From (15), we ensure that ∀t, X̄[t] ≤ D̄[t]. Similar to
(3) and (4), after a billing cycle, the net utility with updated
usage values X̄[1], . . . , X̄[τ ] can be calculated as

R̄ =
τ∑
t=1

U(X̄[t]). (16)

Further, from (2), (1) and (16), we formulate the user’s
surplus with updated usage values X̄[1], . . . , X̄[τ ] via

S̄ =
τ∑
t=1

U(X̄[t])− δ · µ95(X̄[t]). (17)

We can show that a user’s surplus with updated usage
values X̄[1], . . . , X̄[τ ] is always no less than its surplus with
planned usage values X[1], . . . , X[τ ]. From (15), we ensure
that µ95(X̄[t]) ≤ µ95(X[t]). Therefore, the bandwidth cost
over a billing cycle with updated usage values X̄[t] is always
no higher than the bandwidth cost with planned usage
values X[t].

Next, we notice that the net utility over a billing cycle
with updated usage values X̄[t] is always no less than the
bandwidth cost with planned usage values X[t], i.e.,

U(min{X̄[t], D̄[t]}) ≥ U(min{X[t], D̄[t]}), ∀t. (18)

To verify that (18) indeed holds, consider three cases:
Case 1: If ρ[t] = 0, X̄[t] = D̄[t]. Since the net utility function
U(·) is nondecreasing and T > 0, (18) is satisfied.
Case 2: If ρ[t] = 1 and D̄[t] ≤ µ95(X[t]), X̄[t] = D̄[t]. Same
as case 1, in this case, (18) is satisfied.
Case 3: If ρ[t] = 1 and D̄[t] > µ95(X[t]), X̄[t] = µ95(X[t])
and X[t] ≤ µ95(X[t]). In this case, (18) is also satisfied.

Accordingly, it can readily be concluded that a user’s
surplus with updated usage values is also no less than its
surplus with planned usage values.

Identically, if the user can receive service from multiple
providers, we can also update its planned usage of band-
width at provider i, i.e., X[t], in real-time based on the
newly learned information of the exposed demand D̄[t]. Let
X̄i[t] denote the updated usage of bandwidth at provider i at
time slot t and it is defined as

X̄i[t] =

{
D̄[t], if ρi[t] = 0 or D̄[t] ≤ µ95(Xi[t]);

µ95(Xi[t]), otherwise,
(19)

where ρi[t] is the auxiliary variable as used in (2). Then, we
formulate the user’s surplus over a billing cycle via

S̄ =
τ∑
t=1

U(
I∑
i=1

X̄i[t])−
I∑
i=1

δi · µ95(X̄i[t]). (20)

Similarly, a user can also further improve its surplus via
updating its planned usage according to (19) if it can receive
service from multiple providers.
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Fig. 4. Examples for the real-world workload traces used in this paper
from [12]; a) data trace of Wikipedia English, b) data trace of Wikipedia
English Mobile.

Note that, since the final surplus a user can achieve in
our design is obtained from (17) and (20), we use these
values as the user’s surplus, in the rest of this paper.

7 CASE STUDIES

In this section, with real-world data traces, we first study
the computation time and performance of our proposed
solution methods for solving the stochastic problem (11).
Second, we evaluate the performance of our design with
a simple method to forecast the demand for bandwidth.
Third, we discuss the impact of price and utility factor on
the performance of our design. Forth, we show that, in the
presence of multiple providers, the user can further improve
its surplus by using our design.

7.1 Setup
We use two data sets in our case studies: 1) Wikien: the page
view data of Wikipedia English from January 2014 to May
2015 [12], 2) Wikimw: the page view data of Wikipedia En-
glish Mobile from January 2014 to May 2015 [12]. Example
traces of these data sets are shown in Fig. 4. Each time slot
takes one hour and the billing cycle takes 28 days for Wikien
and Wikimw data sets.

The utility functions are selected as follows [30], [31]:

U(x) =

{
A(1− a)−1x1−a, if a ∈ (0, 1);

Alog(x), if a = 1.
(21)

Here, A > 0 is the utility factor decided by the user and
a ∈ (0, 1] measures the concavity of the user’s utility.
Namely, as a increases, the user’s utility becomes more
concave. Specifically, we assume that a = 0.1, A = 0.08
and the impact of the utility factor A on the surplus of user
will be discussed in Section 7.4.
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Fig. 5. Comparing different solution methods in solving problem (11): (a)
Computation time, (b) Optimality.

We use a very simple workload forecasting method. Let
D1[t] and D2[t] denote the workload at time slot t in the last
two billing cycles, respectively. Suppose that π1,t = π2,t =
0.5, ∀t = 1, . . . , τ . Specifically, for deterministic surplus
maximization, we assume that D[t] = π1,tD1[t] + π2,tD2[t],
for any t = 1, . . . , τ .

7.2 Computation Complexity of Proposed Solution
Methods

Recall from Section 5.2 that there are multiple options to
solve the stochastic problem (11). Specifically, the proposed
CBB method leads to the exact optimal solution. The ef-
ficiency of the MILP method, however, depends on the
number of tangent lines N . Here, we let ∆[t] = TDk[t]/N
and we assume that N = 3.

We evaluate the computation time for each solution
method. We use a personal computer with Intel Xeon CPU
E5-2450 @2.50GHZ. The results are shown in Fig. 5(a). We
can see that the computation time of CBB is much longer
than MILP. Even for the MILP approach, it may take several
hours to find the global optimal solution of problem (12) as
the size of the problem increases.

As we pointed out in Section 5.2, one can obtain an
approximate solution for problem (12) by terminating the op-
timization solver at certain guaranteed optimality bounds.
This can be done by setting up a stopping condition for the
MILP method based on the ratio between the upper-bound
and the lower-bound solutions. The upper-bound solution
is the surplus that can be achieved if we relax the remaining
binary variables at the current branching stage. The lower-
bound solution is the surplus at the best binary solution
that has been obtained so far at the current branching
stage. Clearly, this ratio indicates a guaranteed optimality
in the solution of MILP that has already been reached at the
current branching stage. In this paper, we obtain an approxi-
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(a)

(b)

Fig. 6. Comparing normalized bandwidth cost under different methods
and different workloads: a) Wikien, b) Wikimw.

mate solution by stopping the MILP method in CPLEX once
the above mentioned ratio reaches 5%, which guarantees at
least 95% optimality. We refer to this approximate solution
approach as the Near method.

Fig. 5 shows the comparison among CBB, MILP and
Near in computation time and result of optimality. As we
can see in Fig. 5(a), the Near method is significantly less
complex in terms of required computation, compared to
the CBB and MILP methods. Specifically, the computational
time for the Near method grows only linearly with respect
to the number of time slots while CBB and MILP grow
exponentially. Interestingly, we can see in Fig. 5(b) that the
actual achieved optimality is around 99% or more, i.e., much
better than the guaranteed 95% worst case optimality value.
Therefore, for the rest of this paper, we use the Near method
at 95% guaranteed optimality.

7.3 Performance Evaluation
As a Baseline for performance comparison, we consider the
case where the bandwidth is allocated on-demand, i.e.,
X[t] = X̄[t] = D̄[t], for any t = 1, . . . , τ . Note that,
this approach resembles how the bandwidth is currently
allocated in practice. Next, we also assume an Ideal case
where the usage of bandwidth is optimized based on true
knowledge of demand, i.e., ∀t,D[t] = D̄[t]. While the Baseline
shows how well we can perform compared to the existing
practice, the Ideal case shows the best performance that we
can ever get, assuming that we can perfectly predict the
upcoming workload.

Next, we compare the Baseline and Ideal cases with our
proposed Deterministic and Stochastic methods. The Deter-
ministic method refers to the case where the bandwidth

(a)

(b)

Fig. 7. Comparing normalized surplus under different methods and
different workloads: a) Wikien, b) Wikimw.

(a)

(b)

Fig. 8. Comparing average bandwidth cost and surplus under different
methods and different workloads: a) Wikien, b) Wikimw.

usage is scheduled based on the optimal solution of the
deterministic surplus maximization problem in (10). The
Stochastic method refers to the case where the bandwidth
usage is scheduled based on the optimal solution of the



9

(a)

(b)

Fig. 9. The impact of the price of bandwidth on average surplus under
different workloads: a) Wikien, b) Wikimw.

stochastic surplus maximization problem in (12) using the
Near method with 95% guaranteed optimality. The method
of forecasting the workload in each case was already ex-
plained in Section 7.1.

The results on performance comparison are shown in
Fig. 6, Fig. 7 and Fig. 8, where the results for all methods
are normalized with respect to the results of the Ideal case.
Here, the price of bandwidth is set to be $15 per Mbps. We
can make the following observations based on these results:

• As shown in Fig. 6 and Fig. 8, Deterministic and
Stochastic solutions may result in less bandwidth
cost than Ideal, due to under-prediction of demands.
In this case, their bandwidth costs reduce, as well as
their surpluses.

• As shown in Fig. 6 and Fig. 7, even though we use
a very simple method to forecast the demand for
bandwidth, the Deterministic and Stochastic solu-
tions outperform the Baseline in both bandwidth cost
reduction and surplus improvement. Meanwhile,
Deterministic and Stochastic have similar outcomes.
Thus, our method is robust to the error of prediction
of user’s demand.

• As shown in Fig. 8, on average, our proposed
optimization-based approach to respond to burstable
billing can greatly reduce the user’s bandwidth cost
while improving its surplus when comparing against
Baseline. For example, with data trace of Wikien,
both Deterministic and Stochastic surplus maximiza-
tion can reduce the user’s bandwidth cost by 26%
while increasing its total surplus by 23%.

(a)

(b)

Fig. 10. The impact of the utility factor on average surplus under different
workloads: a) Wikien, b) Wikimw.

(a)

(b)

Fig. 11. Comparing normalized bandwidth cost with multiple providers
under different workloads: a) Wikien, b) Wikimw.

7.4 Impact of Price and Utility Factor
Intuitively, increasing the price for bandwidth would in-
crease the user’s cost. Accordingly, the surplus that the
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(a)

(b)

Fig. 12. Comparing normalized surplus with multiple providers under
different workloads: a) Wikien, b) Wikimw.

user may gain decreases as we increase price parameter
δ. However, the rate of such decrease is not the same for
different methods. The results are shown in Fig. 9. We
can see that the rate of decrease in surplus is higher for
the Baseline compared to the Deterministic and Stochastic
methods. As a results, the surplus improvements with our
proposed optimization-based approaches are higher when
the price of bandwidth is high.

Next, we analyze the impact of utility factor A. Clearly,
increasing the parameter A in (21) results in higher surplus
for the same usage of bandwidth. By analysing Fig. 10, we
find that the distance between Baseline and Determinis-
tic/Stochastic is slightly larger when parameter A is small.
Namely, users with smaller utility factors, who are more
sensitive to price than performance, are more likely to
response to the burstable billing to improve their surpluses.
We can also see that the Deterministic and Stochastic meth-
ods outperform the Baseline at all choices of parameter A.

7.5 Impact of Multiple Providers

Suppose the user can receive service from two providers,
who are referred to as providers 1 and 2. Both of them
offer bandwidth at $15 per Mbps. To evaluate our proposed
approach to response to burstable billing with multiple
providers, we simulate six different cases:

• Ideal-MSP: It is defined as the outcome of maximizing
surplus, under the assumption that the demand for
bandwidth is known with multiple providers.

• Baseline-SSP: In this case, the user utilizes bandwidth
from provider 1 on-demand.
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Fig. 13. Examples for the real-world workload traces used in this paper
from [32]; a) web hits to the 2nd server during WorldCup 98, b) web hits
to the 72nd server during WorldCup 98.

• Deterministic-SSP: In this case, the user utilizes band-
width from provider 1 and makes its decisions based
on our design with deterministic prediction about its
demand.

• Stochastic-SSP: In this case, the user utilizes band-
width from provider 1 and makes its decisions based
on our design with stochastic prediction about its
demand.

• Deterministic-MSP: In this case, the user utilizes
bandwidth from both provider 1 and 2 and makes
its decisions based on our design with deterministic
prediction about its demand.

• Stochastic-MSP: In this case, the user utilizes band-
width from both provider 1 and 2 and makes its deci-
sions based on our design with stochastic prediction
about its demand.

Figures 11 and 12 show the normalized bandwidth cost
and surplus, obtained in six different cases, where the base
for normalization is the surplus under the Ideal-MSP case.
We can see that Deterministic-MSP and Stochastic-MSP
methods always outperform Baseline-SSP in both band-
width cost reduction and surplus improvement. Finally, we
also find that Deterministic-MSP and Stochastic-MSP are
always better than Deterministic-SSP and Stochastic-SSP. We
may infer that the availability of multiple providers further
reduce the user’s bandwidth cost and improves its surplus
under optimal response mechanism to burstable billing.

7.6 Performance Evaluation with ”Bursty” Data Traces
In this section we further evaluate our proposed mechanism
using additional data traces:

• WC2: 0.1 percent of web hits to the 2nd server during
WorldCup 98 from June 13, 1998 to July 12, 1998 [32];
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Fig. 14. Comparing normalized bandwidth cost with multiple providers
under different workloads: a) WC2, b) WC72.
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Fig. 15. Comparing normalized surplus with multiple providers under
different workloads: a) WC2, b) WC72.

• WC72: 0.1 percent of web hits to the 72nd server
during WorldCup 98 from June 13, 1998 to July 12,
1998 [32].

Example traces of these data sets are shown in Fig. 13.
Comparing Fig. 13 with Fig. 4, one can easily find that the
WorldCup data traces as shown in Fig. 13 is quite ”bursty”.

Figures 14 and 15 show the normalized bandwidth cost
and surplus with WorldCup data traces, where the base for
normalization is the surplus under the Ideal-MSP case. We
can see that Deterministic-MSP and Stochastic-MSP meth-
ods outperform Baseline-SSP in most cases.

8 CONCLUSION AND FUTURE WORK

A novel cost-aware traffic management mechanism was
proposed to select the usage of bandwidth for a CDC
user, who is charged for bandwidth usage under burstable
billing. Our proposed mechanism considers workload de-
mand uncertainty, and is general in the sense that it does

not make any assumption about the statistical character-
istics of workload. Numerical results based on empirical
case studies confirm that even with a simply workload
forecasting method, the user can significantly reduce its IP
transit cost while increasing its surplus with our proposed
mechanism for responding to burstable billing, compared
to the current practice of allocating bandwidth on-demand.
We also extended our design to another emerging practical
scenario where a user can receive service from multiple
providers. Accordingly, besides bandwidth allocation, our
problem formulation also addresses workload distribution.

This paper can be extended in several directions. First,
one can adopt a more advanced workload forecasting
method to better model probability distribution functions
for the demand for bandwidth. In fact, with enough accu-
rate prediction, the performance of the proposed methods
are guaranteed to improve. Second, one can try to further
reduce a user’s 95th percentile usage via traffic shaping [21],
traffic aggregation [7], traffic shifting in time and space [13],
simultaneously. Finally, one can revisit the problem from
the provider’s viewpoint based on the knowledge of how a
user optimally responds to burstable billing and adjusts the
billing parameters to achieve better results for the provider.

APPENDIX A
PROOF OF THEOREM 1

Let ϑ̄ denote the complement set of ϑ, i.e., ϑ̄ = {1, · · · , τ}−
ϑ. Problem (5) is always feasible and therefore has at least
one solution (ρ∗[t], X∗[t]). If ∃tϑ ∈ ϑ such that ρ[ϑ] = 1,
then from the last constraint in problem (5) ∃tϑ̄ ∈ ϑ̄ for
which ρ[tϑ̄] = 0. In order to prove Theorem 1, we only have
to show that there exist an optimal solution for problem (5),
for which

ρ̃[t] =


0 t = tϑ

1 t = tϑ̄
ρ∗[t] Otherwise.

(22)

First we notice that, problem (5) implies that

X̃[tϑ] = D[tϑ] and X∗[tϑ̄] = D[tϑ̄]. (23)

We Consider two cases:

Case 1, where:

D[tϑ̄] ≥ X∗[tϑ]. (24)

Let X̃[t] denote

X̃[t] =


D[tϑ] t = tϑ

X∗[tϑ] t = tϑ̄
X∗[t] Otherwise.

(25)

The couple (ρ̃[t], X̃[t]) is feasible in problem (5) and we
have:

max
t
ρ̃[t]X̃[t] = max

t
ρ∗[t]X∗[t]. (26)
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Also,

τ∑
t=1

U(min{X̃[t], D[t]})−
τ∑
t=1

U(min{X∗[t], D[t]}) =(
U(min{X̃[tϑ̄], D[tϑ̄]}) + U(min{X̃[tϑ], D[tϑ]})

)
−(

U(min{X∗[tϑ̄], D[tϑ̄]}) + U(min{X∗[tϑ], D[tϑ]})
)

=

(U(X∗[tϑ]) + U(D[tϑ]))−
(U(D[tϑ̄]) + U(min{X∗[tϑ], D[tϑ]})) =

(U(D[tϑ])− U(D[tϑ̄]))+

(U(X∗[tϑ])− U(min{X∗[tϑ], D[tϑ]})) ≥ 0.
(27)

The first equality is concluded from (22) and (25), and the
second equality is concluded from (23) and (24). Also, the
inequality is concluded from the fact that:

D[t] ≥ D[t′] ∀t ∈ ϑ, ∀t′ ∈ ϑ̄, (28)

and

U(X∗[tϑ]) ≥ U(min{X∗[tϑ], D[tϑ]}). (29)

From (26) and (27), (ρ̃[t], X̃[t]) gives an objective value
for problem (5) that is no less that the objective value
that (ρ∗[t], X∗[t]) gives for the same problem. Therefore,
(ρ̃[t], X̃[t]) is an optimal solution for problem (5).

Case 2, where:

D[tϑ̄] < X∗[tϑ]. (30)

Let X̃[t] denote

X̃[t] =


D[tϑ] t = tϑ

D[tϑ̄] t = tϑ̄
X∗[t] Otherwise.

(31)

The couple (ρ̃[t], X̃[t]) is feasible in problem (5) and we
have:

max
t
ρ̃[t]X̃[t] ≤ max

t
ρ∗[t]X∗[t], (32)

where the inequality is concluded from (30). Also,

τ∑
t=1

U(min{X̃[t], D[t]})−
τ∑
t=1

U(min{X∗[t], D[t]}) =(
U(min{X̃[tϑ̄], D[tϑ̄]}) + U(min{X̃[tϑ], D[tϑ]})

)
−(

U(min{X∗[tϑ̄], D[tϑ̄]}) + U(min{X∗[tϑ], D[tϑ]})
)

=

(U(D[tϑ̄]) + U(D[tϑ]))−
(U(D[tϑ̄]) + U(min{X∗[tϑ], D[tϑ]})) ≥ 0,

(33)
where the first equality is concluded from (30), and the
inequality concluded from the fact that:

D[tϑ] ≥ U(min{X∗[tϑ], D[tϑ]})). (34)

From (32) and (33), (ρ̃[t], X̃[t]) gives an objective value
for problem (5) that is no less that the objective value
that (ρ∗[t], X∗[t]) gives for the same problem. Therefore,
(ρ̃[t], X̃[t]) is an optimal solution for problem (5).

APPENDIX B
PROOF OF THEOREM 2
At each time slot t, if ρ[t] = 0, then the first constraint in
problem (11) reduces to X[t] ≤ φ + L, ∀t, which always
holds regardless of the values of X[t] and φ. If ρ[t] = 1, then
the first constraint in (11) reduces to X[t] ≤ φ, ∀t. In that
case, since the objective function in (11) is to minimize φ,
we necessarily obtain that φ = maxt ρ[t]X[t] at any optimal
solution of problem (11). This is clearly an outcome that we
intended.
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