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Abstract—This paper provides a data-driven phase identi-
fication approach for a power distribution system with high
photovoltaic (PV) penetration in both wye-connected and delta-
connected loads. The proposed approach is built upon concepts
in information theory, followed by a mathematical proof to
solve the challenge when the penetration of PV is up to 100%.
The proposed method is based on a joint analysis of the event
signatures between the smart meter at the customer side and
those at the feeder head. The high accuracy of the proposed
method is confirmed by conducting case studies on the IEEE
34 bus test system with different load profiles with different
PV penetration levels. The maximum distinguishable number of
customers for the proposed method is also estimated based on
theory of probability.
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I. INTRODUCTION

Phase imbalance in power distribution systems can increase power
loss, decrease system efficiency, and raise maintenance cost. Load
imbalance consistently exists in distribution systems due to factors
such as aging and poor maintenance. The growing penetration of
distributed renewable energy resources is also aggravating the system
imbalance. However, before solving the issue of phase imbalance, it
is necessary to first identify the phase for each load.

Broadly speaking, three types of methods have been dis-
cussed in the literature to address the phase identification problem
[1]: hardware-based, power-based, and voltage-based approaches.
Hardware-based methods require installation of probing devices on
both the substation and customer sides. These methods ensure accu-
racy, but the installations can be costly and labor-intensive [2]. Power-
based methods utilize the principle of energy conservation between
power consumption and generations for each phase [3]. The accuracy
of these methods depend on the number of loads, the network’s
topology, and the coverage of smart meters (SMs). Voltage-based
methods assess the correlations between the voltage variations across
the SMs to identify which customers are on the same phase [4]. In
this paper, a new approach for phase identification is proposed by
combining the power-based and voltage-based approaches.

Phase identification poses challenges for several reasons, includ-
ing: limited SMs coverage, low reporting rates in measurements,
insufficient measurement capabilities, variations in infrastructure due
to different load transformers, lack of labeled phase data, and
inaccuracies in topology information.

Regarding the first challenge above, a good method for phase
identification should be independent of the coverage of SMs. For the
reporting rates, an advanced sensor (such as phasor measurement unit,
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PMU) allows comparison of phase angles that can solve the problem
easily [5]. However, setting up PMUs on the customer side is too
expensive. Furthermore, traditional meters only measure real power
consumption. They do not provide reactive power or the magnitude
of voltage, which makes phase identification even more challenging
[6, Section 2.8.3].

Another key challenge is related to load connections. A load con-
nection could be single-phase wye-connected (i.e. connected between
a phase wire and a neutral wire) [1], single-phase delta-connected (i.e.
connected between two phase wires) [7], or three-phase [8] (balanced
or unbalanced) using either wye or delta configuration. When an event
or disturbance happens in a power system, such as a voltage sag, it
affects loads differently depending on the types of connection. On the
one hand, the event signature is only visible on a wye-connected load
when the event occurs on the corresponding phase of the feeder. On
the other hand, a delta-connected load can reflect the event signature
on two phases simultaneously. The cross interference can hinder
phase identification by the traditional methods, such as correlation or
regression across the event signatures. Therefore, solving the phase
identification problem is very difficult when the load connections are
a mix of both wye- and delta-connected loads [9]. In addition, lacking
label and topology information can cause difficulties for a machine
learning method to solve the phase identification problem [9].

Several studies have concentrated on phase identification using
either exclusively wye-connected loads [10] or exclusively delta-
connected loads [7]. Few papers addressed phase identification in
power systems that involved a combination of wye- and delta-
connected loads. Also, few studies considered the impact of PV
penetration on phase identification, such as [11], [12]. In [11], the
authors proposed a random forest method that showed 86.5% and
94.4% accuracy on phase identification in two real-world feeders with
70% and 24% PV penetration relative to the peak load. However, it
was shown that there is potential for overfitting. In [12], two PVs
are considered in an IEEE 13 bus test system using a weighted
least square optimization technique for phase identification. Although
the studies in [11], [12] considered PV in their systems, we are
more interested in the phase identification problem with a higher
PV penetration percentage and reliable results.

In this research, data collected from the customer-side (i.e. SMs)
and the feeder side are used to answer the following questions: (1)
Can we identify the phases with a mix of loads in single-phase wye-
connected, single-phase delta-connected, and unbalanced three-phase
in the system? (2) Can we identify the phases on the customer side
with different penetration of PVs and coverage of SMs? (3) Can we
identify the phases despite the insufficient information, such as lack
of labeled data, line impedance, and topology? The contributions of
the proposed method are:

1) Phase identification with high accuracy even when the loads on
the feeder are a combination of wye and delta connections.



2) Accurate phase identification regardless of the PV penetration
and SM coverage.

3) Applied the probability theory to demonstrate the applications
of the maximum distinguishable number of customers.

4) The proposed method is low calculation burden and ability to
use a relatively small dataset to solve the phase identification
problem despite various challenges. The proposed method does
not rely on the topology, line impedance, labels, and training.

II. METHODOLOGY - A DATA-DRIVEN EVENT-TRIGGERED
APPROACH BASED ON INFORMATION THEORY

A. Data Pre-process
Consider a power distribution network where SMs are installed

at the load buses. Each SM at customer k can provide three
measurements: real power (Pk), reactive power (Qk), and magnitude
of voltage (|Vk|). Then, one can estimate the current magnitude on
the customer side as:

|Ik| =
|Sk|
|Vk|

∀k ∈ [1, c], (1)

where |Sk| is the magnitude of the apparent power, which can be
found by the real power and the reactive power. The customer k is
an integer number in the range of [1, c], where c is the total number
of customers in the distribution system.

The data are measured in time series by the SM on the customer
side. A set Ic is used to combine the time series current in the
given time n for all the customers as Ic = {|I1|, ..., |Ic|} ∈ Rn×c.
Another advanced sensor on the feeder head can be used to measure
the current in three phases. Note that the three phases are in set
Φ = {A,B,C}. The magnitude of current at the source side is
noted as |IΦs | for different phases in a set IΦ. Given time n, we
have IΦ ∈ Rn×3. Then, we we create the differential set using
Ic(t)− Ic(t− 1) [13], where Idc ∈ R(n−1)×c. The same differential
process is applied to IΦ, which is noted as IdΦ ∈ R(n−1)×3. Note
that the given time is from 1 AM to 7 AM in this research, similar
to [14] to avoid noise from PVs.

Then, we use the function f(.) to extract useful information from
both the customer side and the feeder side as:

χ = f(Idk) for Idk /∈ [Ln
k , L

p
k], (2)

where χ is a set for event Idk if it shows event signature beyond upper
threshold Lp

k or lower threshold Ln
k . The threshold Ln

k is defined as
Idk − σ(Idk) and the threshold Lp

k is defined as Idk + σ(Idk). Note that
Idk is the mean and σ(Idk) is the standard deviation (S.D.) of signal
Idk. In this research, we select only fluctuations that are beyond the
range [Ln

k , L
p
k] as “events” for analysis.

It should be noted that the selection of events is crucial because
not every Idk is useful for phase identification. For example, suppose
a customer uses an appliance from 6:00 to 6:02 AM. When the
appliance is turned on at 6:00 AM, a current increment at the
customer side would show between 5:59 and 6:00 AM. Conversely,
a current decline at the customer side will show between 6:02 and
6:03 when the customer turns off the appliance. If both the customer
and source meters are synchronized on the same phase, the sensor
on the source side will also detect the on/off fluctuations.

If the customer does not turn on additional appliances, the PV
installed on the customer side has no power supply before sunrise, and
the other appliances operate at a constant power, then no fluctuations
will be observed on both the customer side and the feeder side during
the two-minute period. In such a case, no event signature can be
captured even if we compare the same phase from the customer and
the source sides. In other words, we can only identify the phase if
the event signatures are clear from both the customer and the feeder.

B. Mutual Information among Joint Events
When both the customer and source sides simultaneously observe

an event, it does not necessarily mean that they are on the same phase.
First, there can be two separate events which occur concurrently on
each of the customer and source sides. For example, if an event at
customer k is greater than Lp

k while an event at phase Φ is less than
Ln

k , it is highly possible that they are different events and customer k
does not belong to phase Φ. Second, even if both events are greater
than Lp

k or less than Ln
k , it does not guarantee that they are on the

same phase. It is possible that different customers have similar load
profiles and coincidentally show a similar pattern during the same
event. Thus, mutual information is used to solve this issue.

Suppose the number of events m (hereafter m) is chosen between
a pair of customer k and phase A in Φ, we can obtain the probability
table as follows:

pA,k(u, v), (3)
where

u =

{
1 if ∀ m : IdΦ(m) ≥ Lp

k,

2 if ∀ m : IdΦ(m) ≤ Ln
k ,

(4)

v =

{
1 if ∀ m : Idk(m) ≥ Lp

k,

2 if ∀ m : Idk(m) ≤ Ln
k .

(5)

Here, pA,k(1, 1) shows that the probability of fluctuations in both
source A and customer side are greater than Lp

k; pA,k(1, 2) shows that
the probability of fluctuations in source A is greater than threshold
Lp

k while the fluctuations in the customer k is less than threshold
Ln

k ; pA,k(2, 1) shows the probability of fluctuations in source A is
less than threshold Ln

k while the fluctuations in customer k is greater
than threshold Lp

k; and pA,k(2, 2) is the probability of fluctuation less
than Ln

k in both source A and customer side. By using (3), (4), and
(5), we can now transform m into a probability table and describe
the relationship between phase A at the source side and customer k.

It is possible that a probability table, such as (3), includes bias. It
is also possible to mitigate bias in the probability table by increasing
the number of events. In other words, the larger of m, the more
accurate the results will be. In this paper, we only analyze the load
phases when m ≥ 12 over the period of seven days. Since we utilize
the differential time series data, we have 359 = 60 minutes × 6
hours minus 1 data for a day. Over seven days, this yields a total
of 2,513 = 359 × 7 time series of differential data. Thus, choosing
m ≥ 12 represents close to 0.5% of the total time series data in the
given period, which is large enough for our numerical verification.
Mathematical verification is provided in section IV.

Note that equation (3) can be expanded into:

pA,k(u) and pA,k(v), (6)
where

pA,k(u) =

{
pA,k(1, 1) + pA,k(1, 2) if u = 1,
pA,k(2, 1) + pA,k(2, 2) if u = 2,

pA,k(v) =

{
pA,k(1, 1) + pA,k(2, 1) if v = 1,
pA,k(1, 2) + pA,k(2, 2) if v = 2.

(7)

Notations pA,k(u) and pA,k(v) in equation (6) are the marginal
probability of equation (3); and pA,k(u = 1) is the probability that m
at A are greater or equal to Lp

k and pA,k(u = 2) is the probability
that m at A are less or equal to Ln

k . Similarly, pA,k(v = 1) and
pA,k(v = 2) is the probability that m at customer k are greater or
equal to Lp

k and less or equal to Ln
k , respectively.

Equations (3) and (6) can be utilized for constructing a mutual
information index [15, Ch 4] as:

MI(Φ; k) =
∑

pΦ,k(u)

∑
pΦ,k(v)

pΦ,k(u, v) log
pΦ,k(u, v)

pΦ,k(u)pΦ,k(v)
. (8)

When the relationship of phase Φ and customer k is higher, the
value of mutual information index is higher in (8), revealing the



answer for phase identification. Therefore, for a wye-connected load,
we can use (9) to estimate the load phase Φ̂ as:

Φ̂ = argmax
Φ,k

MI(Φ; k). (9)

Note that, {Φ̂} is one phase because customer k is a wye-connected
load. The process for identifying a delta-connected load is:

Φ̂′ = argmin
Φ,k

MI(Φ; k), (10)

and
Φ̂ = Φ− Φ̂′. (11)

The lowest value in (10) implies the relationship of phase Φ̂ and
customer k is low. We can remove the phase Φ̂′ and derive the phase
Φ̂ by (11). Note that {Φ̂} from (11) should be two phases because
customer k is a delta-connected load between two phases.

Before we end this section, we shall point out a special feature
to the mutual information: two different cases could have the same
mutual information index in equation (8), even if both cases have
opposite probability tables. For example, suppose a probability table
U is p(1, 1) = 0.1, p(1, 2) = 0.4, p(2, 1) = 0.4, p(2, 2) = 0.1,
the result will be the same as another table V which is p(1, 1) =
0.4, p(1, 2) = 0.1, p(2, 1) = 0.1, p(2, 2) = 0.4. Although the
results of (8) by different inputs U and V are the same, the Φ-k
relationships are different because they are positively correlated in V
but not in U .

The same values of (8) between different Φ and k is not an issue
if {Φ̂} = 1 in (9). However, suppose {Φ̂} > 1 in (9), we need to
decide which phase is the correct one for k. In this research, we
choose the phase based on the highest summation value of p(1, 1)
and p(2, 2) as:

Φ̂ = argmax
Φ̂

(
pΦ̂,k(1, 1) + pΦ̂,k(2, 2)

)
. (12)

The reason is that p(1, 1) and p(2, 2) imply that phase Φ and k
have the same pattern, which also imply that phase Φ and k can be
on the same phase if k is a wye-connected load. Note that {Φ̂} > 2
in (11) is rare and is not considered in this research.

C. Process with Descending Order of Load Sequence
Due to a heavier load may show event signatures that can be

identified easier than a lighter load, a strategy is designed for all the
loads in the distribution system. This approach follows the descending
order of load sequence in the system, which starts from identifying
the phase of heaviest load to the lightest load in the distribution
system. Once the phase for each load is identified, we update the
current on the source side by subtracting the customer-side current
from the corresponding source phase.

Note that the process to subtract the current will be different
between a wye-connected load and a delta-connected load. For a
wye source and a wye-connected load, the updated current on the
source side is:

|IΦ̂s | = |IΦ̂s | − |Ik|. (13)

We cannot use (13) for a delta-connected load because the current
flow is between two phases. Also, a π

6
angle difference in radius

occurs naturally between a wye source and a delta-connected load.
We assign Φ̂(1) and Φ̂(2) to denote the input and output phases of
the delta-connected load. The updated currents from the source sides
are:

|IΦ̂(1)
s | = |IΦ̂(1)

s − Ik| and |IΦ̂(2)
s | = |IΦ̂(2)

s + Ik|, (14)

where
Ik =

(
Sk

Vk

)∗

=
Pk − jQk

|Vk|e
−j

(
π
6
+∠V

Φ̂(1)
s

) (15)

Note that the SM at the customer side can only measure the real
power (Pk), the reactive power (Qk), and the magnitude of voltage
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Fig. 1. The flow chart of the proposed method for phase identification in the
distribution with c loads.
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Fig. 2. The IEEE 34 bus test system [18].

(|Vk|). We assume the voltage angle is the same between the source
and customer k because the phase angle difference in the distribution
system is small. Since we have identified the phase at k, the voltage
angle at k can be estimated by the voltage at corresponding phase
add π

6
due to the connection between wye source and delta load.

Therefore, we can calculate the current at customer k in a complex
number by (15) and update the current on source side by (14).

Fig. 1 shows the process of the proposed method. Note that
although the utility companies may have incorrect phase information
of the load, it should have information of power consumption. For
example, in the State of California, U.S., the default MWh should
be included [16]. Accordingly, the proposed method is available
to identify the phase based on the default load sequence in the
distribution system.

The cross entropy in the proposed method can perform better than
correlation because correlation only consider the linear relationship.
However, the relationship between the customer side k and its
corresponding substation phase could be positively related but not
linearly related. Thus, it is better to use cross entropy to solve the
problem; see [17] for the related theoretical discussion.

TABLE I
DEFAULT LOADS IN IEEE 34 BUS SYSTEM.

Phase Wye Load Phase Delta Load
kW kVAr kW kVAr

A 351 224 AB 255 133
B 330 210 BC 254 134
C 213 155 CA 366 188

Total 894 589 Total 875 455

III. RESULTS AND PERFORMANCE EVALUATION

The IEEE 34 bus test system (see Fig. 2 for the topology and
Table I for the load distribution) is used in this study because default



TABLE II
ACCURACY OF THE PROPOSED METHOD ON

DIFFERENT PV PENETRATION RATES IN DIFFERENT PERIODS

PV Penetration
Rate (%)

Data Period
1 AM to 7 AM 11 AM to 16 PM

0 100.0 100.0
33.3 100.0 86.7
66.7 100.0 60.0

100.0 100.0 70.0

loads are half wye-connected and half delta-connected [18]. The per
minute load profiles are from the IEEE European Low Voltage Test
Feeder (EuLVTF) [18]. The load profiles are normalized to the [0,1]
scale. Then, multiply the default loads in the IEEE 34 system by
the normalized load. Since the IEEE 34 test system only has thirty
distributed loads while the EuLVTF has a hundred load profiles, the
load profiles are shuffled and assigned randomly to the load in the
IEEE 34 test system on the same day with the power factor set at 0.95.
For this study, daily simulation is used, but there is no relationship
between days since the load profiles are assigned randomly.

PVs are added to the IEEE 34 test system with different penetration
rates. Note that each PV rated power is 3.5 kW. The irradiation and
temperature for PVs are using July 1st, 2021, from NSRDB (National
Solar Radiation Database) [19]. Since the database of NSRDB is
per-five-minute resolution, we used linear interpolation to treat the
data in per-minute resolution. Also, since the IEEE 34 test system
is a distribution system, we use the same weather conditions for all
PVs. The connection of PV to each load is single-phase and parallel
connected. All the PVs are behind-the-mete (i.e. we cannot see the
power and current generated by the PVs). All the simulations are
conducted using MATLAB and Simulink [20].

A. Different PV Penetration Rates in Different Time Periods
The PV penetration rates of 0%, 33.3%, 66.7%, and 100%, respec-

tively correspond to PVs in 0, 10, 20, and 30 out of all thirty loads in
the IEEE 34 bus test system. Table II shows results of the proposed
method. The accuracy is 100% for all the PV penetration rates when
the proposed method works with the differential time series data from
1 AM to 7 AM. The reason is that PVs have less impacts on the
event signature due to less irradiance while the proposed method
can still recognize the event signatures between source and customer
sides. The results of a different period, 11 AM to 16 PM, are also
listed in the same table to show the impact of PVs. Although the
proposed method can still work with 100% accuracy when no PVs
are installed, the accuracy of the proposed method can decrease to
60% with PVs. The main reason is that the proposed method depends
on the event signature, and the contribution of behind-the-meter PVs
can bring challenges to phase identification. One may notice that the
accuracy decreases to 60% when the PV penetration rate is 66.7% but
increases to 70% when the PV penetration rate is 100%. A possible
reason is that the simulation in this study assumes all the PVs in the
IEEE 34 bus test system have the same irradiation and temperature
inputs. This assumption may help the proposed method separate load
profiles easily when the PV penetration rate is 100%. For the rest of
the analysis, we use the differential time series data from 1 AM to
7 AM.

B. Different Percentages of Wye- and Delta-connected Loads
Although the default loads in IEEE 34 bus system are half wye-

and half delta-connected, it is important to verify the proposed
method on different percentage of wye- and delta-connected loads.
Suppose we keep the same topology but switch all the delta connected
loads into wye-connected loads (i.e. switch delta load in phase AB
to phase A, phase BC to phase B, and phase CA to phase C), one
can then test the proposed method with 100% wye-connected loads.

However, we cannot switch all the wye loads into delta connected
loads because some wye loads are at single phase. We can only
switch the wye-connected load into delta-connected if the load is at
the topology with more than one phase. Based on the new settings,
the modified IEEE 34 bus system includes 30% wye and 70%
delta connected loads. Using different percentage of wye- and delta-
connected loads, the proposed method can still reach 100% accuracy.

C. Different SM Coverage
It is possible that not all the customers have SMs installed, which

means equations (13) or (14) are unavailable for all customers.
Therefore, here we test the performance of the proposed method
with different SM coverage. Assuming each customer has only two
options, to install an SM or not, we can define SM coverage (%) as:

SM coverage (%) = Number of SM installed/c× 100%.

Since the proposed phase identification method can only be available
for customers who installed SM, the accuracy for different SM
coverage is calculated as:

Average Accuracy (%) =
1

nM

nM∑
j=1

(
1

c

nSM∑
k=1

i× 100%

)
. (16)

The variable nM is the Monte Carlo testing number, nSM is the
total number of SM deployed in the distribution system, i is 1 if
Φ̂k = ΦT

k , and i is 0 if Φ̂k ̸= ΦT
k , where ΦT

k is the true phase of the
customer k. A Monte Carlo test with nM = 100 is used for testing
and the results are summarized in Figure 3 (a), which shows that
the proposed method can still maintain a high accuracy level for the
customer who installed the SM in the distribution system.

D. Measurement Errors of SMs
Measurement errors are possible for all kind of sensors. Since

the SMs can measure the real power, the reactive power, and the
magnitude of voltage, we assume the measurement errors caused by
the summation of each measurement belong to a normal distribution
with zero mean and different standard deviations (S.D.) as 0.01, 0.05,
and 0.1. With a hundred Monte Carlo tests (i.e. nM = 100), the
average accuracy of the proposed method is summarized as Figure 3
(b). The average accuracy with nSM = c will drop to 97.2%, 90.4%,
and 68.9% respectively, corresponding to the settings of S.D.

E. Comparison with Cross Correlation and kNN
Two traditional methods, correlation and k nearest neighbor

(kNN), are considered in this section [4], [21], [22]. For correlation,
we use the same differential time series data as Section II-A and
remove the corresponding current after the phase is recognized. For
kNN method, we build the data set using the same differential time
series data as Section II-A. By considering the combination of differ-
ent source Φ and customer k, we labeled the correct combinations as
1 and incorrect ones as 0. The dimension of the data set for kNN is
∈ R5027×90. MinMaxScaler is used for kNN data pre-processing, and
the results remain in the same when we switch from MinMaxScaler
to StandardScaler. The data set is divided into 80% in a training set
and 20% in a testing set. A preliminary search of k = 3 is used for
kNN. The data set is shuffled every time before running kNN.

The results for all three methods are shown in Figure 3 (c) based on
equation (16) with one hundred cases. The proposed method provides
a significantly higher accuracy compared other methods. Note that in
the kNN process, the current is not removed from the source side
once we obtain the phase of customer.

IV. DISTINGUISHABLE NUMBER OF CUSTOMERS

Section III shows that the proposed method can successfully
identify the load phase. However, suppose two customers have exactly
the same load profiles in a given period, the proposed method will en-
counter challenges in distinguishing their phases. The more customers
in the distribution system, the higher possibility that two customers
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and 0.1, and Figure (c) different method comparison.

have the same load profiles. We can solve this problem by giving
a confidence probability to estimate the maximum distinguishable
number of customers, denoted as C.

Suppose P (.) is denoted as the probability of an occurrence and
suppose a load changing is a binary variable with 50% for each on/off
switching, the probability of any on/off sequence at customer k with
m events is P (customer k) = (0.5)m. Next, the probability that
no customer in C has the same on/off sequence as customer k can
be denoted as (1− (0.5)m)C . Suppose the confidence probability is
99%, which means that any other customers in C has the same load
profile as customer k is 1%, we can have 1− (1− (0.5)m)C = 1%
with C as:

0.99 = (1− (0.5)m)C ⇒ C =
log(0.99)

log (1− (0.5)m)
. (17)

We can solve (17) with m = 12 and result in the C in a truncation
integer, C = 41. Since the feasible number of customer is greater
than the customers we tested in IEEE 34, it explains the reason that
the proposed method can fully identify the phase of customers in the
case study. For a distribution system with more customers than C,
three strategies can be applied to the proposed method: (1) increase m
for mutual information, (2) split the distribution system into smaller
systems, or (3) decrease the probability of the same load profile, such
as from 1% to 0.1%.

Note that the proposed method is unable to distinguish customer
phases when the load profile and power consumption are identical
across all phases. We can use the proposed method to effectively
recognize the customer phases for single-phase wye-connected loads,
single-phase delta-connected loads, and unbalanced three-phase loads
in both wye and delta configurations under a reasonable size of
system. However, balanced three-phase loads are not considered in
this method because the event signatures remain identical across all
three phases.

V. CONCLUSION AND FUTURE WORK

Identifying load phases in a distribution system with wye- and
delta-connected loads poses significant challenges. The problem
escalates with higher PV penetration. This paper used advanced SMs
capable of measuring real power, reactive power, and voltage magni-
tude per minute to address the problem. Based on the technology,
we propose an approach for identifying the phase of a wye- or
delta-connected load with different PV penetration rates. As a data-
driven method, the accuracy of the proposed method depend on the
accuracy of measurements but does not require labels, topology nor
line impedance in the distribution system. An application approach
for feasible number of customers is also discussed in this paper,

showing strategies for applying the proposed method to distribution
systems with more customers.

Future work can address the phase identification for a balanced
three-phase load and PVs, excess PV power generated, and extend
the proposed method on a larger system.
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