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Abstract—A series of methodologies are proposed to transform
conventional waveform measurements from legacy power quality
meters into synchro-waveforms. This study is motivated by the
presence of thousands of legacy power quality meters in operation
worldwide that provide event-triggered waveform measurements
but lack time-synchronization among their data. Consequently,
the waveform measurements from these legacy meters cannot be
directly used as synchro-waveforms, limiting their applicability
in the promising synchro-waveform applications that have been
introduced in the literature in recent years. We address this issue
without requiring legacy power quality meters to be equipped
with GPS receivers or other time-synchronization hardware. Our
data-driven methods operate in two steps: first, they perform
optimization-based event signature alignment, and then they use
the results to estimate a synchronization operator between any
two legacy meters. The proposed methods are accurate, robust,
and computationally efficient. All case studies presented in this
paper are based on real-world waveform measurements.

Keywords: Synchro-waveforms, synchronization operator, con-
ventional waveform sensors, data-driven method, real-world
measurements, event signature alignment, optimization.

I. INTRODUCTION

Synchro-waveforms, i.e., time-synchronized waveform mea-
surements, have emerged recently as a new measurement tech-
nology with diverse applications in power system monitoring
and situational awareness; e.g., see the overview in [1]. The
device to measure synchro-waveforms is often referred to as a
Waveform Measurement Unit (WMU). The common approach
to achieve time-synchronization among WMUs is to use the
Global Positioning System (GPS); see [2], [3], [4, Section 4.6].

A. Motivation: A Practical Challenge

WMU installations are still very rare in practice. In fact,
although there is already a wide range of sensor technology
deployments that do provide voltage and current waveform
measurements, such measurements are not time synchronized.

One of such conventional technologies that is currently
widely used in practice is the power quality sensor. The
majority of the existing power quality sensors that have been
deployed by many utilities over the past two decades are not
equipped with time-synchronization capabilities, such as GPS;
due to the high cost. In fact, it was observed in a recent study
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in [5] that the time stamps from conventional power quality
sensors can be off by several milliseconds to several seconds.

As a result, while many utilities do have various conven-
tional power quality sensors to measure voltage and current
waveforms, they are unable to use such existing measure-
ments as synchro-waveforms due to lack of proper time-
synchronization. Thus, most utilities are still currently unable
to support the emerging applications of synchro-waveforms.

B. Summary of Contributions

In this paper, we seek to address the above open problem.
The contributions in this paper can be summarized as follows:
(a) Through an automated process, we take waveform mea-
surements from existing conventional power quality meters
that are not time-synchronized and convert them into synchro-
waveforms. Our proposed algorithm is data-driven, working
solely by analyzing the event signatures in event-triggered
waveform measurements. (b) The first step in the proposed al-
gorithm includes novel methodologies to align event signatures
among unsynchronized sensors. Different optimization-based
approaches are developed to achieve computational efficiency
and robustness. (c) The second step in the proposed algo-
rithm estimates the unknown synchronization operators among
legacy power quality meters. Here, synchronization operators
are the offsets in time that are applied to the local clocks at
the ordinary power quality meters to time-synchronize their
waveform measurements. (d) Two approaches are developed
to extend the methodology to be applicable to any number of
sensors, either with minimum computational burden or with
the option to utilize redundancy to enhance performance.

C. Related Literature

Three recent overview papers about the emerging field of
synchronized waveform measurements are published in [1]–
[3]. The link to a related IEEE Power and Energy Society Task
Force is available in [6]. Some of the applications of synchro-
waveforms have been recently discussed in the literature, such
as for event and fault location identification [7]–[9], wildfire
monitoring [5], power system oscillation monitoring [10], [11],
power system protection [12], [13], and dynamic modeling of
the sub-cycle behavior of inverter-based resources [14], [15].

The use of GPS to time-synchronize waveform measure-
ments is discussed in [3]. The use of communications pro-
tocols for time-synchronization is discussed in [16]. The
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Fig. 1. Two time-series of voltage waveform measurements of the same
phase of the power system but from two different power quality sensors at
two different locations. The two sensors are not time synchronized.

difficulties in achieving time alignment among unsynchronized
measurements is discussed in [17], with focus on phasor
measurements (not waveform measurements). In [18], it is
explained that, in practice, it is rare to have access to time-
synchronized waveform measurements due to the high cost
of time-synchronization equipment. Some papers focus on the
analysis of waveform data at only one sensor, such as in [19].

In another line of research, the focus has been on addressing
temporary loss of time synchronization, such as when the GPS
signal is momentarily lost. This issue has been discussed in
the literature for Phasor Measurement Units (PMUs), such as
for fault location identification based on model-based methods
[20], or for anomaly sequence detection and damping control
based on data-driven methods [21], [22]. Other causes of
latency or time offset among PMUs is discussed in [23]. None
of the studies in [20]–[22] is related to waveform measure-
ments; as they focus on phasor measurements. In [24], the
problem of addressing momentary loss of time synchronization
is discussed for both PMUs and WMUs, specifically for the
problem of fault location identification. The proposed method
is model-based and it requires access to the circuit model.

Compared to our conference paper in [25], the methods in
this journal paper are completely redesigned to significantly
improve performance, as we will see through performance
comparisons. The new methods are also more robust. Fur-
thermore, they can be applied to an arbitrary number of
conventional power quality sensors, while the analysis in [25]
is limited to only two sensors. Hence, the approach in this
journal paper are overall more effective and more practical.

II. PROBLEM STATEMENT

Consider two ordinary (unsynchronized) power quality sen-
sors on a power network. They record voltage and current
waveforms during power quality events. The waveform mea-
surements that are captured by these two sensors are event-
triggered [4, Section 4.2]. In practice, a wide range of events
can trigger waveform-capture by power quality sensors, such
as voltage sags and swells, faults, and changes in harmonic
distortions. Although each sensor has a local clock to time-
stamp its own waveform measurements, the two local clocks
are not synchronized with each other. Therefore, the waveform
measurements from the two sensors are not time-synchronized.

An example is shown in Fig. 1. Only one phase of the
waveform measurements are shown in this figure. Notations x

and y denote the two time-series of the voltage waveform mea-
surements that are recorded by two ordinary power equality
sensors during the same physical event in the power system:

x = x[1], . . . , x[n] and y = y[1], . . . , y[n], (1)

where n is the number of measurement samples. For the
measurements in Fig. 1, we have n = 6×128 = 768 samples;
because 6 cycles of waveforms are captured at 128 samples per
cycle. Due to lack of time synchronization between the two
power quality sensors that provide the measurements, there
is δ = 2 milliseconds offset between the voltage waveform
measurements from the two sensors. We refer to δ as the
synchronization operator between the two measurements.

If δ is known, then we can shift one of the two time-series
x and y by δ and turn the two time-series into synchro-
waveforms. However, the challenge is that δ is not known.

The objective in this paper is to examine the waveform
measurements that are recorded by unsynchronized power
quality sensors to estimate the offsets among their local clocks,
and hence to time-synchronize their waveform measurements.

Furthermore, we seek to expand our analysis to also time-
synchronize waveform measurements from an arbitrary num-
ber of unsynchronized ordinary power quality meters.

Throughout this paper, we focus on the analysis of volt-
age waveform measurements, rather than the analysis of
current waveform measurements. Event signatures in current
waveform measurements often vary significantly across the
power system, depending on the location of each sensor
and the nearby circuit elements. Therefore, current waveform
measurements are typically not suitable for the analysis that
is conducted in this paper. However, once data-driven time
synchronization is achieved among a group of sensors by
examining their voltage waveform measurements, subsequent
applications of time synchronization may involve both voltage
and current waveform measurements from those sensors.

The fact that we specifically focus on the analysis of
“events” in this paper directly stems from the fact that thou-
sands of legacy power quality meters are currently in operation
around the world that provide event-triggered waveform cap-
tures but without time synchronization. If no power quality
event occurs in the power system, then there would be no
event-triggered waveform captured by the legacy power quality
meters. Accordingly, there would be no need for time syn-
chronization, as there would be no waveform measurements
to time-synchronize. However, in reality, power quality events
occur regularly, often a few times each day. These events
happen for a multitude of reasons, including utility equipment
switching, major load switching, operation or misoperation of
distributed energy resources, faults, and self-clearing incipient
failures. Therefore, in reality, each legacy power quality meter
regularly generates event-triggered waveform measurements
that can be analyzed using the methodologies in this paper to
achieve data-driven time synchronization among the waveform
measurements from multiple legacy power quality meters.

Next, we will break down the above problem into two
specific sub-problems. We will develop the methods to solve
these two sub-problems in Sections III and IV. We will present
the extension to the case with several sensors in Section V.
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Fig. 2. Top arrows indicate the timing of the events and the corresponding
time-series of the waveform captures at the first power quality sensor. Bottom
arrows indicate the timing of the events and the corresponding time-series of
the waveform captures at the second power quality sensor. The amount of the
time-synchronization operator between the two sensors is shown by δxy.

A. Problem 1: Alignment of Unsynchronized Events
A power quality sensor records (captures) the waveforms

only if it detects an event. It is possible that the power quality
sensor at one location does capture an event while the power
quality sensor at another location does not capture the same
event. This is because the same physical event can affect
the voltage waveforms at each location of the power system
differently from the other locations on the same network. The
strategy for event capture may also differ among different
sensors. As a result, the set of events that are captured by
one power quality sensor can be different from the set of the
events that are captured by another power quality sensor.

Let X denote the set of time-series of the events that are
captured by one power quality sensor. Let Y denote the set of
time-series of the events that are captured by another power
quality sensor on the same network during the same period of
time. Take the case in Fig. 2 as an example. Three events are
captured by the first power quality sensor, and four events are
captured by the second power quality sensor. We have:

X = {x1,x2,x3} and Y = {y1,y2,y3,y4}. (2)

The second event at the first sensor, i.e., x2, and the first event
at the second sensor, i.e., y1, correspond to the same physical
cause. This event is major enough to affect the waveforms
at the locations of both sensors. The third event at the first
sensor, i.e., x3, and the third event at the second sensor, i.e.
y3, also correspond to the same physical cause. The rest of
the events, i.e., x1, y2, and y4, are captured only by one of
the two sensors. Accordingly, we need to align event x2 with
event y1 and also align event x3 with event y3.

The above alignments are not known in advance in practice.
Accordingly, Problem 1 is concerned with identifying which
pairs of the waveform time-series from the two unsynchro-
nized sensors should be aligned to be used for the purpose
of estimating the synchronization operator. For the example
in Fig. 2, solving Problem 1 would result in identifying the
following pairs for event alignment between the two sensors:

X ∩ Y = {x2,y1} and {x3,y3}. (3)

B. Problem 2: Estimation of the Synchronization Operator
Given the waveform measurements of the pairs of the events

in set X ∩ Y , the next step is to conduct a data-driven
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Fig. 3. Extending the example in Fig. 2 to the case with three power quality
sensors. The unknown synchronization operator between the first and the
second sensors is denoted by δxy. The unknown synchronization operator
between the second and the third sensors is denoted by δyz.

analysis to estimate the unknown synchronization operator
δ. This requires estimating the time difference between the
two time-series of the waveform measurements for each pair
{xi,yj} ∈ X ∩Y . In principle, this can be done by matching
the patterns between the waveform signatures in xi and yj .

However, this is a challenging task. The same physical event
can affect the voltage waveforms at each location differently
from other locations on the same power network. Therefore,
even if both sensors do capture the same event, the waveform
signature of the event at one sensor may not be exactly the
same as the waveform signature of the same event at another
sensor. As an example, in Fig. 1, the two event signatures are
caused by the same event. However, there are considerable
differences between these two signatures. These differences
can cause difficulties in matching the two signatures.

Another challenge is with regards to accurately estimating
the start of the event in the waveform measurements at each
power quality sensor based on the event signature that is
captured by that sensor. Some events, such as major faults,
can create severe event signatures for which the start of the
event can be identified somewhat easily. Some other events,
such as switching actions, may not create major signature. In
such cases, identifying the start of the event can be difficult.

Furthermore, since an event can occur at any location in the
power system, the electrical distance between the location of
the event and the location of the sensor is not the same among
the sensors. Therefore, due to the differences in waveform
propagation delay, there can be some inherent (albeit not
major) drift in estimating the synchronization operator. This
needs to be addressed by developing a statistical method
that can estimate the synchronization operator based on the
waveform measurements from several pairs of events.

C. Extension to Several Sensors

If there are more than two sensors, then the above problems
can be more complicated. An example is shown in Fig.
3. Here, the waveform measurements are captured by three
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sensors that are not time synchronized. As we previously
defined in (2), X is the set of the events that are captured by
the first sensor, and Y is the set of the events that are captured
by the second sensor. Similarly, we define Z as the set of the
events that are captured by the third sensor. Five events are
captured by the third power quality sensor. We have:

Z = {z1, z2, z3, z4, z5}. (4)

Similar to the event alignment in (3), we can obtain:

X ∩ Z = {x2, z2} and {x3, z4},
Y ∩ Z = {y1, z2} and {y3, z4}.

(5)

From (3) and (5), we can also obtain:

X ∩ Y ∩ Z = {x2,y1, z2} and {x3,y3, z4}, (6)

which is the set of the events that are captured by all the
three power quality sensors. Of course, it is also possible that
some of the events are captured only by a subset of the power
quality sensors. In that case, there can be fewer events in set
X ∩ Y ∩ Z than in sets X ∩ Y , X ∩ Z , and Y ∩ Z .

The above alignments are not known in advance. Thus,
Problem 1 is concerned with identifying which waveform
time-series from the three (or many more) sensors should be
aligned to use their alignment for the purpose of estimating the
synchronization operators among the unsynchronized sensors.

With three unsynchronized power quality sensors, we can
define the following synchronization operators among them:

δxy = −δyx, δxz = −δzx, δyz = −δzy. (7)

Problem 2 is concerned with estimating the above unknown
synchronization operators. The number of unknown synchro-
nization operators increases as we increase the number of
sensors. For example, if there are four sensors, then the
number of synchronization operators would be six, i.e., the
combinations of two out of four. Interestingly, the unknown
synchronization operators are not independent. This can help
us in solving Problem 2, as we will discuss in Section V.

III. METHODOLOGY: STEP 1 - DATA-DRIVEN
OPTIMIZATION-BASED EVENT SIGNATURE ALIGNMENT

In this section, we develop new methods to solve Problem
1 that we introduced in Section II-A. Throughout this section,
we assume that the waveform measurements come from two
ordinary power quality sensors that are not time-synchronized.
Our focus is on identifying a subset of the event signatures
from the two power quality sensors to pair and align them to
help us estimate the unknown syncrhonization operator.

We propose three different approaches in this section. They
are summarized in Table I. In each approach, we first assume
that we know parameter M = |X ∩ Y|, i.e., the total number
of the pairs of the event signatures that need to be aligned. We
then relax this auxiliary assumption to also estimate parameter
M itself. Our goal is to ultimately achieve a methodology that
is both computationally efficient and robust (in Approach 3).

TABLE I
SUMMARY OF APPROACHES FOR EVENT SIGNATURE ALIGNMENT

Approach Optimization
with Fixed M

Finding
M

Computational
Efficiency Robustness

1 Eq. (19) Eq. (20) High Low
2 Eq. (22) Eq. (23) Low High
3 Eq. (19) Eq. (23) High High

A. Metric to Compare Event Signatures

Consider two time-series of the waveform measurements
that are captured (through event-triggered waveform recording
mechanisms) by two unsynchronized power quality sensors.
As we defined in (1), the time-series of the waveform mea-
surements from the first power quality sensor is denoted by
vector x and the time-series of the waveform measurements
from the second power quality sensor is denoted by vector y.

Let us derive the differential waveforms corresponding to
time-series x and time-series y as follows [4, Section 4.2.5]:

∆x = x[CT + 1 : n]− x[1 : n− CT ],

∆y = y[CT + 1 : n]− y[1 : n− CT ],
(8)

where T is the sampling rate of the power quality sensors,
such as T = 128 samples per cycle for all the real-world
case studies that we use in this paper. The differential wave-
forms in (8) are the difference between the original waveform
measurements and the delayed versions of the same waveform
measurements, where the delay is C cycles. In this paper, we
set C = 3 cycles to assure separating the duplicate event sig-
natures in differential waveforms; see [4, p. 168]. Comparing
event signatures based on differential waveforms (instead of
raw waveforms) has many advantages, such as removing the
impact of the background load to focus only on the waveform
signature that is caused by the event. Whenever needed, we
can use the per-unit representation of the waveforms before
extracting ∆x and ∆y to have comparable event signatures.

Events in a correct event pair {xi,yj} should show similar
patterns between ∆xi and ∆yj ; because they are supposed to
be captured during the same physical event in the system.

To quantify the similarity between the event signatures in a
pair of differential waveforms in ∆xi and ∆yj , we define:

σRL
ij = max

k=1:⌊η/2⌋−1
Corr

(
∆xi(k :η),∆yj(1 :η − k + 1)

)
, (9)

and

σLR
ij = max

k=1:⌊η/2⌋−1
Corr

(
∆xi(1 :η−k+1),∆yj(k :η)

)
, (10)

where η = n−CT denotes the length of the time-series of the
differential waveforms, and Corr(·, ·) denotes the correlation
coefficient between the two time-series. In (9), we compare
a right-moving window in ∆xi with a left-moving window
in ∆yj , as shown in Fig. 4(a). The correlation coefficient
is calculated at each step in such comparison; creating the
correlation coefficient time-series in Fig. 4(c). The maximum
in such correlation coefficient time-series is denoted by σRL

ij ,
at the point that is marked with the black dot on this figure.

Similarly, in (10), we compare a left-moving window in
∆xi with a right-moving window in ∆yj , as shown in Fig.
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4(b). The correlation coefficient is calculated at each step;
creating the correlation coefficient time-series in Fig. 4(d). The
maximum in such correlation coefficient time-series is denoted
by σLR

ij , at the point that is marked on this figure.
In (9), we move ∆xi along ∆yj . In (10), we move ∆yj

along ∆xi. Together, these two comparisons fully examine the
similarities between ∆xi and ∆yj . In practice, a typical power
quality meter records the waveform measurements from n/2
samples before the event-trigger point to n/2 samples after
the event-trigger point [4, p. 147][26, p. 154]. As a result, the
recorded event signature always starts at the midpoint of the
time-series of the captured waveform in (1). Therefore, we set
the range of k in (9) and (10) based on η/2 instead of η. This
reduces computation time and also ensures that correlation
coefficient calculation always includes at least η/2 samples.

We then use the following metric to assess the similarity
between the event signature time-series in xi and in yj :

σij = max{σRL
ij , σ

LR
ij }. (11)

This metric indicates the maximum correlation that can be
achieved between xi and yj among all possible alignments
between a window with a length of at least η/2 samples.

Importantly, the maximization in (9) and the maximiza-
tion in (10) can also provide us with the positions (sample
numbers) of the moving windows that result in achieving the
highest correlation coefficients. In this regard, we can obtain:

kRL
ij = argmax

k=1:⌊η/2⌋−1

Corr
(
∆xi(k :η),∆yj(1 :η− k+1)

)
, (12)

and

kLR
ij = argmax

k=1:⌊η/2⌋−1

Corr
(
∆xi(1 :η− k+1),∆yj(k :η)

)
. (13)

The values of σRL
ij and kRL

ij are marked respectively with the
horizontal and the vertical dashed lines in Fig. 4(c). Similarly,
the values of σLR

ij and kLR
ij are marked respectively with the

horizontal and the vertical dashed lines in Fig. 4(d). Similar
to the definition of σij in (11), we can define kij as follows:

if σRL
ij ≥ σLR

ij then kij = kRL
ij else kij = kLR

ij . (14)

Here, kij is the position of the moving windows that result in
σij . Next, we propose three approaches to utilize σij and kij
to conduct event signature alignment, i.e., to solve Problem 1.

B. Event Signature Alignment - Approach 1

Let bij denote a binary decision variable to indicate whether
waveform xi and waveform yj correspond to the same phys-
ical event. This variable can be defined as follows:

bij =

{
1, if xi and yj are the same event,
0, otherwise. (15)

Since the pairing of the event signatures is inherently one-
on-one (i.e. an event xi can only be paired with one event yj),
the binary variables need to comply with the constraints:∑

j

bij ≤ 1, ∀ xi ∈ X ,
∑
i

bij ≤ 1, ∀ yj ∈ Y. (16)

Next, we note that, although the two power quality sensors
are not time-synchronized, the local clock at each sensor can
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Fig. 4. The moving windows in (a) result in obtaining the time-series of the
correlation coefficients in (c), based on the formulations in (9) and (12). The
black dot and its dashed lines indicate the values of σRL

ij and kRL
ij . Similarly,

the moving windows in (b) result in obtaining the time-series of the correlation
coefficients in (d), based on the formulations in (10) and (13). The black dot
and its dashed lines indicate the values of σLR

ij and kLR
ij . Accordingly, we can

obtain σij and kij based on (11) and (14).

help us determine the sequence of the waveform captures at
each power quality sensor. For example, from (2), we know
that x1 was captured before x2, and x2 was captured before
x3. We must maintain these sequences when we identify which
waveform from set X corresponds to which waveform (if any)
from set Y . For instance, it does not make sense to pair x1 and
y4 while we also pair x3 and y2; because this would violate
the sequence of the waveforms in sets X and Y . To address
this issue, for each i and each j, we must have:

brs ≤ 1− bij , ∀r, s : r < i, s > j. (17)

If bij = 1, i.e., xi and yj are deemed to correspond to the
same event, then (17) becomes brs ≤ 0; which means brs = 0
for any pair of xr and ys for which r < i and s > j. If
bij = 0, i.e., xi and yj are not deemed to correspond to the
same event, then (17) becomes brs ≤ 1; which would not
impose any constraint on binary variable brs for any r or s.

If we seek to pair exactly M waveform captures across the
two unsynchronized power quality sensors, then we must have:∑

i

∑
j

bij = M, (18)

where M is an integer number that is upper bounded by the
number of members in set X and the number of members in
set Y . That is, M is upper bounded by min{|X |, |Y|}.

1) Optimization with Fixed M : First, suppose M is given.
Accordingly, we need to pair exactly M waveform captures
across the two power quality sensors. For notional simplicity,
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we stack up bij for all xi ∈ X and all yj ∈ Y into vector b. In
this regard, we propose the following optimization problem:

maximize
b

∑
i

∑
j

bijσij

subject to Eqs. (15) and (16) and (17) and (18).
(19)

The above optimization problem is an integer linear program
(ILP). It can be solved using solvers such as CPLEX [27]. The
goal of the above optimization is to identify M pairs of event
signatures across the two power quality sensors to maximize
the total correlation among the paired waveform signatures.

It would be insightful to discuss a special case where two
unrelated disturbances occur almost at the same time at two
different locations. If the two events are sufficiently distanced
in time (such as by at least 30 cycles for the SEL power quality
meters that we have used in this study), then the two sensors
would capture them as two separate events. As a result, each
event would be examined separately; just like any other event.
However, if the two events are very close to each other in time,
then they would fall within a single event-triggered waveform
capture. In that case, each sensor would record the two events
as a single event, with an inherently combined event signature.
The shape of the combined event signature at each sensor
would depend on the timing of the two events, as well as the
electrical distance between the location of each event and the
location of each sensor. If the two combined event signatures
match each other, then the two combined events would be
paired as part of the solution in (19); just like any other pair of
events. If the two combined event signatures match each other
(such as when one sensor is much closer to the location of one
event and the other sensor is much closer to the location of the
other event), then the two combined event signatures would not
be paired in (19) due to low similarity. In that case, the pair of
the combined events from this special case would not be used
for the purpose of estimating the synchronization operator. The
latter outcome would be acceptable; because we can still use
several other pairs of events to achieve time synchronization.

2) Finding M : For a given M , let us denote the optimal
objective value of the optimization problem in (19) by u(M).
Increasing M results in adding more non-negative terms to
the optimal objective value in (19). However, the amount of
increase in u(M) diminishes as we increase M ; due to the
decreasing similarities between the event signatures of the
additional pairs of events. To find the right M , we can start
from M = 2 and we repeatedly solve (19) by incrementing
M until we either reach M ’s upper bound at min{|X |, |Y|}
or we drop below a threshold on the amount of increase in the
optimal objective value of the optimization problem in (19),
i.e., until the following stopping criteria is reached:

Φ(M) ≜ |u(M)− u(M − 1)| ≤ ϵ. (20)

The value of threshold ϵ can be set based on the minimum
required correlation between two event signatures for them to
be deemed to correspond to the same physical event.

In practice, there could be disturbances for which the event
signatures from different sensors do not align well, such as
when two unrelated disturbances happen simultaneously at two
different locations. Such events are likely not to be paired

when solving the optimization in (19). However, this would be
acceptable; because it is permissible if some event signatures
are not paired for the ultimate purpose of time synchronization.
What is most important in Step 1 is to have a stopping criterion
that yields as many correctly aligned pairs of events as possible
from the two sensors. This has a direct implication for the
process of finding M : it is not necessary to always determine
the exact value of M in Step 1. While the estimation of M
should not exceed its true value, it is acceptable to choose an
M that is slightly less than the true value. This is because if
the estimation of M exceeds its true value, it will result in the
inclusion of incorrect event pairs, thereby compromising the
accuracy of the synchronization operator estimation in Step 2.

C. Event Signature Alignment - Approach 2
The method in Approach 1 in Section III-B only utilizes the

values of σij , which are based on (9)-(11). It does not utilize
the values of kij , which are based on (12)-(14). In this section,
we propose Approach 2 to utilize kij instead of σij .

Let κi denote the sample number in time-series ∆xi that
corresponds to the starting sample of the moving window that
resulted in obtaining kij . Similarly, let κj denote the sample
number in time-series ∆yj that corresponds to the starting
sample of the moving window that resulted in obtaining kij .

Next, suppose ti denote the time-stamp of sample number
κi based on the local clock at the first power quality sensor.
Similarly, suppose tj denote the time-stamp of sample number
κj based on the local clock at the second power quality sensor.
Accordingly, for each pair {xi,yj}, we can define:

λij = ti − tj . (21)

In essence, λij is an estimation of δxy that is obtained solely
based on pairing event-triggered time-series xi from the first
sensor with event-triggered time-series yj from the second
sensor. Whether or not λij is a good estimation of δxy depends
on whether or not xi and yj correspond to the same event.

1) Optimization with Fixed M : For a given M , we propose
to replace (19) with the following optimization problem:

minimize
b

∑
i,r

∑
j,s

bijbrs
∣∣λij − λrs

∣∣
subject to Eqs. (15) and (16) and (17) and (18),

(22)

where the vector of binary optimization variables b is identical
to the one in (19). The constraints in (22) are also identical
to the constraints in (19). However, the objective function in
(22) is different from the objective function in (19). Notice
that while we maximize the objective function in (19), we
minimize the objective function in (22). To understand this
new formulation, we note that if xi and yj are paired together
and xr and ys are also paired together, then bijbrs = 1. In that
case, the objective function would include |λij − λrs|, which
is the difference between the estimation of synchronization
operator δ based on pairing xi and yj and the estimation of
synchronization operator δ based on pairing xr and ys.

Problem (22) is an integer nonlinear program (INLP). The
non-linearity is due to the multiplication of variable bij with
variable brs. An INLP can be solved using GUROBI [28].



7

2) Finding M : For a given M , let us denote the optimal
objective value of the optimization problem in (22) by v(M).
Increasing M results in adding more non-negative terms to
the optimal objective value in (22). The amount of increase in
v(M) depends on the amount of discrepancies among the esti-
mations of the synchronization operator that are obtained from
different pairs of event signatures by solving the optimization
problem in (22). If we exceed the correct number of event
signatures that need to be paired, i.e., if we exceed the correct
choice of M , then there will be a sudden and major jump in
the optimal objective value in (22). To find the right M , we can
start from M = 2 and repeatedly solve (22) by incrementing
M until we either reach M ’s upper bound at min{|X |, |Y|}
or we exceed a threshold on the amount of increase in the
optimal objective value of the optimization problem in (22),
i.e., until the following stopping criteria is reached:

Ψ(M) ≜ |v(M)− v(M − 1)| ≥ ε. (23)

As we will see in the case studies, the above stopping criteria
is robust, i.e., it is not sensitive to the choice of ε. The
different direction of the inequalities in (23) and (20) is
due to the differences between the objective functions in the
minimization in (22) versus the maximization in (19).

D. Event Signature Alignment - Approach 3

Approach 1 is computationally efficient; because the opti-
mization in (19) is linear. However, Approach 1 is not robust;
because the stopping criteria in (20) is sensitive to the choice
of its threshold. On the contrary, Approach 2 is not computa-
tionally efficient; because the optimization in (22) is nonlinear.
However, Approach 2 is robust; because the stopping criteria
in (23) is not sensitive to the choice of its threshold.

Approach 1 only utilizes the values of σij from (9)-(11).
Approach 2 only utilizes the values of kij from (12)-(14).

In this section, we propose a new approach that is both
computationally efficient and robust. It utilizes both the values
of σij from (9)-(11) and the values of kij from (12)-(14).

1) Optimization with Fixed M : This aspect in Approach 3
is similar to Approach 1. To obtain vector b, we solve the
optimization problem in (19). Recall that this optimization
problem is linear, and it utilizes σij from (9)-(11).

2) Finding M : Once we obtained b by solving the opti-
mization problem in (19), we use the resulting b to calculate
the objective value based on the optimization problem in (22).
To see this, let us denote the solution from (19) by b(19). Let
us also denote the solution from (22) by b(22). The below list
shows the differences and similarities between the stopping
criteria in Approach 3 versus in Approach 1 and Approach 2.

• Approach 1: Use b(19) to obtain u(M) to check Eq. (20).
• Approach 2: Use b(22) to obtain v(M) to check Eq. (23).
• Approach 3: Use b(19) to obtain v(M) to check Eq. (23).

Here, we ensure computational efficiency; because we solve
the ILP in (19) instead of the INLP in (22). Nevertheless, we
still use the formulation of the objective function in (22) to
find M in a robust fashion. As a result, Approach 3 inherits
the key advantages from both Approach 1 and Approach 2.

To better clarify the differences among the above different
approaches, let us compare the solutions from Problem (19)
with the solutions from Problem (22). To do so, we need to
consider the choice of M . For a given M that is less than the
true value of M , the solutions from (19) may or may not match
the solutions from (22). In principle, it is possible that both
solutions provide correctly aligned pairs for the given choice of
M ; yet, they provide different subsets of the correctly aligned
pairs. If the given M is equal to the true value of M , then
a mismatch between the solution from (19) and the solution
from (22) would indicate the presence of at least one incorrect
alignment. However, we did not encounter any such case in
our various case studies. If the given M is greater than the
true value of M , then the solutions from (19) and (22) would
both include incorrect alignments. In this last scenario, the key
question is whether the algorithm would stop due to choice of
the stopping criteria in each approach. The stopping criteria
in Approaches 2 and 3 based on v(M) are more robust than
the stopping criterion in Approach 1 in based on u(M). We
will see one such example in a case study in Section VI-B.

IV. METHODOLOGY: STEP 2 - STATISTICAL
ESTIMATION OF THE SYNCHRONIZATION OPERATOR

Recall from Section III-C that λij in (21) provides an
estimation of the synchronization operator δxy based on pairing
the event-triggered time-series xi from the first power quality
sensor with the event-triggered time-series yj from the second
power quality sensor. However, as we will discuss in this
section, there are multiple (often stochastic) factors that can
undermine the accuracy of estimating δxy by using only one
pair of time-series xi and yj . Therefore, we need to conduct a
statistical analysis based on several pairs of such time series.

A. Factors Affecting the Estimation of Parameter δ

Even if xi and yj indeed correspond to the same event, we
may still experience some discrepancies between the estimated
value λij and the true value δxy. Broadly speaking, we have:

λij = δxy + Difference in Propagation Delay
+ Error in Data-Driven Event Alignment.

(24)

The difference in propagation delay often exists between
any two sensor locations, relative to the location of the event.
When an event, such as a fault, occurs, its impact may not be
seen at the same time if the electrical distance is not the same
between the location of the event and the locations of the two
sensors. Importantly, the difference in propagation delay is not
fixed. It varies depending on the location of each event.

As for the error in data-driven event alignment, it comes
from various sources. Recall from Section III-A that we use
correlation to align the event signatures from different sensors.
In practice, it is unlikely that we achieve precise alignment,
given the data-driven nature of the analysis. For example,
although we extract the differential waveforms to minimize
the impact of the background load and other unrelated fac-
tors, we cannot fully eliminate such impact. Thus, the event
signatures are still distorted. Furthermore, the same physical
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event can affect the voltage waveforms at each location of the
system differently. Hence, the event signatures from different
power quality sensors can have major differences; making it
practically impossible to exactly align those signatures.

B. Statistical Estimation of Parameter δ

In this section, we propose a statistical approach to estimate
δxy, while considering the challenges that we discussed in
Section IV-A. Our goal is to extract δxy from the following
results which come from the methods in Section III:

λij , ∀{xi,yj} ∈ X ∩ Y. (25)

Suppose we stack up all the above values in one vector,
denoted by λ. The number of rows in λ is equal to the
cardinality of set X ∩ Y . For example, for the scenario in
Fig. 2, and is based on set X ∩ Y in (3), we have:

λ =
[
λ2,1 λ3,3

]T
. (26)

In practice, vector λ can be a long vector; because set
X ∩Y can have several members due to pairing several event
signatures over a period of several hours or few days.

One option to estimate δxy based on the expected value:

δ̂xy = 1Tλ / |λ|, (27)

where |λ| denotes the length of vector λ and 1 is a vector
with the same length as λ with all entries equal to one.

To eliminate outliers, we can use the Median Absolute
Deviation (MAD) [29], which is calculated as follows:

MAD = median (|λ− median (λ)1|) . (28)

We can then exclude all entries in λ that are more than γMAD
away from median(λ), where γ is often set to 1.4826 [29].

C. The Overall Algorithm

The combined process across Step 1 and Step 2 is summa-
rized in Algorithm 1. The input to Algorithm 1 is the time-
series of all the event-triggered waveform captures at each of
the two unsynchronized sensors. The output from Algorithm
1 is the result of estimating the corresponding synchronization
operator. Step 1 is implemented from Line 3 to Line 25. Step 2
is implemented from Line 26 to Line 30. A “for loop” is used
from Line 7 to Line 25 to determine M . Inside the for loop,
we have implemented Approach 1, Approach 2, and Approach
3, which are separated using “if then” structures. Stopping
criteria are implemented in Lines 16 and 22, depending on
the approach. The outcome of Step 1 is b⋆ and M⋆, which
are updated in Line 24 inside the “for loop” every time that
M does not trigger the stopping criteria. The final values of
b⋆ and M⋆ are then used in Step 2 to obtain and refine λ in
Lines 27 to 30. The algorithm ends by estimating δxy from λ.

Running Algorithm 1 inherently requires access to sets X
and Y; which are the inputs to the algorithm in Line 1.
Therefore, we need to first accumulate at least a handful of
event-triggered waveform measurements before we can run
Algorithm 1. In practice, accumulating one or two days of
event-triggered waveform measurements is usually sufficient
to construct X and Y , enabling the execution of Algorithm 1.

Algorithm 1 Combining Step 1 and Step 2
1: Input : Event sets X = {xi} and Y = {yj}.
2: Output : Synchronization operator δxy.
3: \\ Step 1
4: Obtain ∆xi and ∆yi by using (8).
5: Obtain σij by using (9)-(11).
6: Obtain kij by using (12)-(14).
7: For M = 1, . . . ,min{|X |, |Y|} Do
8: If Approach 1 or Approach 3 Then
9: Obtain b by solving the maximization in Problem (19).

10: Else \\ Approach 2
11: Obtain b by solving the minimization in Problem (22).
12: End If
13: Set u(M) =

∑
i

∑
j bijσij .

14: Set v(M) =
∑

i,r

∑
j,s bijbrs

∣∣λij − λrs

∣∣.
15: If M ≥ 2 Then
16: If Approach 1 Then
17: Obtain Φ(M) by using u(M) and u(M −1) in (20).
18: If Φ(M) ≤ ϵ Then Go To Line 25 End If
19: Else \\ Approach 2 or Approach 3
20: Obtain Ψ(M) by using v(M) and v(M −1) in (23).
21: If Ψ(M) ≥ ε Then Go To Line 25 End If
22: End If
23: End If
24: Set b⋆ = b and M⋆ = M .
25: EndFor
26: \\ Step 2
27: Use b⋆ and M⋆ to obtain X ∩ Y.
28: Use X ∩ Y to obtain λ.
29: Exclude outliers in λ by using (28).
30: Obtain and return δxy by using (27).

As needed, Algorithm 1 can be used on a regular basis to
re-calibrate time-synchronization. This can be necessary espe-
cially if the local clock at some sensors in unreliable and likely
to drift, such as due aging, losing power for several hours, or
major change in operational temperature [30]. The interval for
recalibration can be set by the operator, such as to be daily,
weekly, or monthly, depending on the type and age of the
sensors and the operational needs. Recalibration can be set up
in different ways. One option is to reset X and Y in Line 1 to
include only the events that have occurred since the previous
recalibration. Another option is to give higher weights to the
more recent entries in λ when we estimate δxy in Line 30.

V. EXTENSION TO MULTIPLE SENSORS

So far, we have assumed that the event-triggered waveform
measurements come from only two unsynchronized power
quality sensors. In this section, we extend the analysis to an
arbitrary number of unsynchronized power quality sensors.

Let S denote a set that includes all the sets of the time-
series of the event-triggered waveform measurements that are
captured by all the unsynchronized power quality sensors. For
example, for the scenario in Fig. 3, we have:

S = {X ,Y,Z} , (29)
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δxz δzy

δxy

Sensor 1: X Sensor 3: Z Sensor 2: Y
δxz

δzyδxy

Sensor 1: X Sensor 3: ZSensor 2: Y

Fig. 5. The relationships among synchronization operators. Two scenarios
for the sequence of the waveform measurements from three unsynchronized
sensors are shown. In the top figure, the third sensor has a clock that is behind
the clock for the first sensor and ahead of the clock for the second sensor. In
the bottom figure, the third sensor has a clock that is behind the clocks for
the first sensor and the second sensor. In both scenarios, as well as in every
other possible sequence among these three sensors, we have: δxy = δxz +δzy.

where X and Y are defined in (2) and Z is defined in (4).
We can apply any of the methods in Sections III and IV to

the waveform signatures in any two members in set S. Such
pairwise analysis will lead to the following results:

δ̂xy, ∀X ,Y ∈ S. (30)

For example, for the scenario in Fig. 3, we can obtain:

δ̂xy, δ̂xz, δ̂yz. (31)

However, the above estimations are not independent. To see
this, first, we note that from (7), we have:

δ̂xy = −δ̂yx, δ̂xz = −δ̂zx, δ̂yz = −δ̂zy. (32)

Next, we note that

δ̂xy = δ̂xz + δ̂zy = δ̂xz − δ̂yz, (33)

where the second equality is due to (32). The above relation-
ship is illustrated in Fig. 5. The arrangements in this figure are
based on the true synchronization operators δxy, δxz, and δzy,
where δxy = δxz + δzy. A similar arrangement must hold also
among the estimated synchronization operators, as in (33).

The relationship in (33) can be generalized as follows:

δ̂xy = δ̂xz + δ̂zy, ∀X ,Y,Z ∈ S. (34)

Next, we propose two methods that are both built upon (34).
Both methods can estimate δ between any two unsynchronized
power quality sensors. However, the first method seeks to
achieve this goal with minimal computation time. Specifically,
the first method runs Algorithm 1 for |S|−1 times. Conversely,
the second method seeks to take full advantage of the available
redundancy to make the results more robust. The second
method runs Algorithm 1 for |S| × (|S| − 1)/2 times. If the
number of sensors is relatively small, then it is recommended
to use the second method. If the number of sensors is relatively
large, then it is recommended to use the first method.

A. Method without Utilizing Redundancy

Suppose we are working with a large number of unsynchro-
nized sensors, all of which provide event-triggered waveform:

S = {A,B, C,D, . . . ,X ,Y,Z} . (35)

In the first method, we propose the following:
• Run Algorithm 1 between A and B to estimate δab.
• Run Algorithm 1 between B and C to estimate δbc.

...
• Run Algorithm 1 between Y and Z to estimate δyz.

Thus, we run the algorithm |S| − 1 times to obtain:

δ̂ab, δ̂bc, . . . , δ̂yz. (36)

Note that Algorithm 1 can be run in parallel for the above
separate estimations. From (36) and (34), we can estimate δ
between any two sensors. For example, for the first sensor, we
estimated δab in (36). Using (34), we can also estimate:

δ̂ac = δ̂ab + δ̂bc

...

δ̂az = δ̂ab + δ̂bc + . . .+ δ̂yz.

(37)

B. Method with Utilizing Redundancy

The method in Section V-A has low computational com-
plexity to be applicable to a large number of sensors. Next,
we propose another method that leverages redundancy for in-
creased robustness, but with higher computational complexity.

From (34), we have two ways to estimate δxy:
• Directly from X ∩ Y , and
• Indirectly from X ∩Z and Z∩Y , for any Z ∈ S\{X ,Y}.

Together, the above two options can provide us with a total of

1 + (|S| − 2) = |S| − 1 (38)

different estimations for δxy. This provides us with significant
redundancy in our estimation process as we increase the
number of unsynchronized power quality sensors. For instance,
we can take the following average as the ultimate estimation:

1

|S| − 1

(
δ̂xy +

∑
Z∈S\{X ,Y} δ̂xz + δ̂zy

)
. (39)

As a special case, we can limit the estimations in (39) to
only those events that have been captured by all the available
unsynchronized power quality sensors. In that case, our focus
would be only on the events that belong to the intersection of
all the sets in set S, such as X ∩ Y ∩ Z for the case in (35).

VI. EXPERIMENTS

In this section, we use real-world waveform measurements
to assess the performance of the proposed methods. Three
Schweitzer Engineering Laboratories (SEL) 735 Power Qual-
ity Meters are used to conduct our experiments. All three
sensors are equipped with GPS signal receivers, utilizing the
SEL 2401 Satellite-Synchronized Clock to ensure precise time
synchronization among the measurements. Throughout the
case studies, we are consistently aware of the ground truth
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TABLE II
COMPARISON BETWEEN THE PROPOSED

METHOD (APPROACH 3) AND THE METHOD IN [25]

M
Reference [25] Proposed Method

Event Pairs Stop Criteria Event Pairs Stop Criteria
1 {x1, y1} 0.180 {x1, y1} -

2 {x1, y1}
{x2, y2}

0.385 {x1, y1}
{x2, y2}

0

3
{x1, y1}
{x2, y2}
{x3, y3}

0.610
{x1, y1}
{x2, y2}
{x3, y3}

0.466

4

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y21}

0.868

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y21}

0.483

5

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y21}
{x14, y22}

1.205

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y21}
{x5, y23}

0.490

6

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y14}
{x5, y21}
{x14, y22}

1.583
Stop: M = 5

{x1, y1}
{x2, y2}
{x3, y3}
{x14, y14}
{x15, y16}
{x18, y22}

146422
Stop: M = 5

regarding the timing of all waveform measurement samples
and the values of the synchronization operators. Two sensors
are installed at 480 V (three-phase), and one sensor is installed
at 12.47 kV (three-phase). The sampling rate for all waveform
measurements is 128 samples per cycle. Each event capture
contains 62 cycles, i.e., 7,936 measurement samples, based on
a common setting for the SEL 735. The duration of the events
varies, such as from only a quarter of a cycle to several cycles.

A. Comparison with the Method in [25]

In this section, we compare the performance of the proposed
method with the state-of-the-art method in [25]. Recall from
Section I-C that the method in [25] seeks to solve the same
problem as in this paper, albeit it requires the number of
unsynchronized power quality sensors to be limited to two.
Accordingly, we consider a scenario with two unsynchronized
sensors. The first sensor captures 28 events. The second sensor
captures 53 events during the same period. We have:

|X | = 28 and |Y| = 53. (40)

Among the two sensors, there are |X ∩Y| = 5 events that are
paired, i.e., they were captured by both sensors. Set X ∩ Y
comprises the following pairs of event-triggered time-series:

{x1, y1}, {x2, y2}, {x3, y3}, {x4, y21}, {x5, y23}. (41)

Table II provides a detailed comparison between the pro-
posed method (Approach 3) and the method in [25]. For both
methods, we change M from 1 to 6, and provide the list of the
events that are paired and the stopping criteria accordingly.

First, notice that the stopping criteria in both methods
correctly identify the number of pairs to be M = 5 = |X ∩Y|.
However, the process to find M is much more robust in the
proposed method, where the stop index goes from 0.490 to
146422, versus in the method in [25], where the stop index

goes from 1.205 to 1.583. The latter is only a 30% increase
while the former is a 300,000 fold increase. Therefore, the
proposed method is much more robust in its stopping criteria.

Furthermore, at M = 5, the outcome of the event alignment
from the method in [25] is incorrect, while the outcome of the
event alignment from the method in this paper is correct. In
fact, the method in [25] identified {x14, x22} as a pair, which
is incorrect. This is marked with color red in Table II. The
correct pair is rather {x5, x23}, as we previously saw in (41).

Regarding the last row in Table II, at M = 6, the event pairs
are marked in gray. This is because the analysis in this row is
only an auxiliary analysis that triggers the stopping criteria to
identify M = 5. Accordingly, the event pairs in this row are
not useful. Only the stopping criteria is useful in this row.

It is insightful to compare the runtime between our method
(Approach 3) and the method in [25]. The runtime for our
method (Approach 3) was 43 minutes. The runtime for the
method in [25] was almost 60 days, i.e., almost 2000 times
longer. In fact, it was impossible to use a single PC to run
the method in [25]. We had to use multiple PCs as well as
cloud resources, all in parallel, with a total runtime adding up
to 60 days. The much better runtime for our method was due
to using the new metric in Section III-A to compare the event
signatures, instead of using the metric in Section IV-A in [25].

B. Comparison among Approaches 1, 2, and 3

Next, we compare the three methods that we proposed in
Section III. We consider two unsynchronized sensors. The first
sensor captures 10 events. The second sensor too captures 10
events during the same period. We have: |X | = |Y| = 10.
Among the two sensors, there are |X ∩Y| = 5 events that are
paired, i.e., they were captured by both sensors. Set X ∩ Y
comprises the following pairs of event-triggered time-series:

{x1, y1}, {x2, y2}, {x3, y3}, {x4, y8}, {x5, y10}. (42)

The above scenario is smaller than the scenario in Section
VI-A. This is because Approach 2 is computationally complex,
much more so than Approaches 1 and 3. Hence, in order to
compare all three methods, we need to consider a smaller case.

Importantly, Approaches 1, 2, and 3 can all provide correct
results for event alignment, i.e., they all achieve (42). However,
these three methods are different in terms of their runtime and
robustness. This is shown in Table III. First, we note that the
runtime for Approaches 1 and 3 is very low, while the runtime
for Approach 2 is high. For instance, at M = 5, the runtime
for Approaches 1 and 3 is a small fraction of a second, while
the runtime for Approach 2 is 3347 seconds (∼56 minutes).

Next, let us consider the robustness in the stopping criteria.
Approach 1 uses the criteria in (20), which requires Φ(M) to
drop below a threshold. To assess robustness, we notice that
at M = 6, we have: Φ(M − 1)/Φ(M) = 0.78/0.04 ≈ 20.
Approaches 2 and 3 use the criteria in (23), which requires
Ψ(M) to exceed above a threshold. To assess robustness,
we notice that at M = 6, we have: Ψ(M)/Ψ(M − 1) =
21114/1.23 ≈ 17166 for Approach 2, and Ψ(M)/Ψ(M−1) =
146422/1.23 ≈ 119042 for Approach 3. Therefore, Approach
2 and Approach 3 are more robust; because they demonstrate a
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TABLE III
COMPARING RUNTIME AND ROBUSTNESS ACROSS APPROACHES 1, 2, AND 3.

M Approach 1 Approach 2 Approach 3
Event
Pairs

Stop Criteria
Φ(M)

Runtime Event
Pairs

Stop Criteria
Ψ(M)

Runtime Event
Pairs

Stop Criteria
Ψ(M)

Runtime

1 {x1, y1} - - {x1, y1} - - {x1, y1} - -

2 {x1, y1}
{x2, y2}

0.93 0.04 {x1, y1}
{x2, y2}

0.01 650 {x1, y1}
{x2, y2}

0.01 0.05

3
{x1, y1}
{x2, y2}
{x4, y8}

0.91 0.04
{x1, y1}
{x2, y2}
{x4, y8}

0.32 1537
{x1, y1}
{x2, y2}
{x4, y8}

0.32 0.05

4

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y8}

0.80 0.04

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y8}

0.77 2442

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y8}

0.77 0.04

5

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y8}
{x5, y10}

0.78 0.05

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y8}
{x5, y10}

1.23 3347

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y8}
{x5, y10}

1.23 0.05

6

{x1, y1}
{x2, y2}
{x3, y3}
{x7, y5}
{x9, y6}
{x10, y7}

0.04
Stop:M=5 0.15

{x1, y1}
{x2, y2}
{x3, y3}
{x4, y8}
{x5, y9}
{x6, y10}

21114
Stop:M=5 4089

{x1, y1}
{x2, y2}
{x3, y3}
{x7, y5}
{x9, y6}
{x10, y7}

146422
Stop:M=5 0.33

The unit for runtime is second.

drastically higher change in their metric for stopping criteria;
which makes it much easier to find the correct value of M .

Table III also shows the solutions from each method for
pairing the events. Recall that Approaches 1 and 3 solve
Problem (19) while Approach 2 solves Problem (22). When
M ≤ 5, the event pairing solutions are the same in each
row. However, when M = 6, which is when the choice of
M exceeds the true value of M , the event pairing solutions
become different. In fact, all three approaches result in some
incorrect event pairs in this last row; however, those incorrect
results are not the same. To see this, notice that the last three
(gray) pairs at M = 6 under Approaches 1 and 3 are different
from the last three (gray) pairs at M = 6 under Approach 3.
As a result, the value of Ψ(M = 6) is different in Approach
2 from the the value of Ψ(M = 6) in Approach 3.

C. Accuracy in Estimating δ

Once the event signatures are aligned, the next step is to
estimate the synchronization operator. Consider the scenario
in Section VI-B, where |X | = |Y| = 10 and |X ∩Y| = 5. The
true value for the synchronization operator is set to δxy = 100
milliseconds. Using M = 5 pairs of aligned event signatures,
we obtain the following values for λij , all in milliseconds:

106.34, 105.43, 138.23, 103.26, 120.11. (43)

From (27), we can obtain δ̂xy = 114.7 milliseconds, which
has 14.7% error. From (28), and by setting γ = 1.4826,
we can use MAD to exclude two outliers at 138.23 and
120.11 milliseconds. Accordingly, we obtain δ̂xy = 105.0
milliseconds, which has 5% error. Thus, with as few as only
five aligned event signatures, we can achieve reasonable accu-
racy in estimating δ. In practice, one can use event-triggered
waveform measurements over multiple days; thus increasing

the number of pairs of aligned waveform signatures. This can
further improve accuracy due to increased redundancy in data.

The percentage of error in estimating δ can significantly
reduce (improve) if the true value of δ increases. For example,
if δ is 1 second, then the percentage error can be much less
than 1%. This is because the amount of error in estimating
δ is almost fixed, regardless of the value of δ. Such error
depends on two types of factors, as we listed in (24) in Section
IV-A. Both of those factors are within microseconds to few
milliseconds. Therefore, for a higher δ, the value of |δ − δ̂|
reduces in percentage; resulting in a smaller percentage error.

D. Importance of Sequence Constraints

The optimization-based methods in Section III use various
constraints. The constraint in (17) is distinctly subtle. It holds
the sequence of the events at each unsynchronized sensor.

In this section, we investigate the importance of including
the constraint in (17) as part of the optimization-based method
in Approach 3. The results are shown in Table IV. Here, we
repeat the case study in Section VI-A for Approach 3, but
this time we remove constraint (17) from the optimization
problem formulation in (19). Interestingly, removing constraint
(17) can significantly reduce the runtime in Approach 3. Recall
from Section VI-A that Approach 3 with constraint (17) takes
several minutes to run. However, the runtime for Approach 3
without constraint (17) is only a fraction of a second.

Nevertheless, removing constraint (17) from the optimiza-
tion problem in (19) can lead to incorrect results. This is
evident from the column on event pairs and the column on
stop criteria in Table IV. Not only some of the paired events
are incorrect, but also the choice of parameter M is incorrect.
The incorrect results are marked in red in Table IV. Therefore,
it is necessary to include the sequence constraints in (17) in
the proposed optimization-based methods in Section III.
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TABLE IV
APPROACH 3 WITHOUT THE SEQUENCE CONSTRAINTS IN (17)

M Event Pairs Stop Criteria Runtime
1 - - -

2 {x1, y1}
{x2, y2}

0.00 0.25

3
{x1, y1}
{x2, y2}
{x4, y21}

0.47 0.10

4

{x1, y1}
{x2, y2}
{x14, y22}
{x4, y21}

48792
Stop: M = 3

0.10

TABLE V
ALIGNED EVENTS AND ESTIMATION RESULTS

FROM THREE SENSORS AS IN (45)

Aligned Event Signatures λij in milliseconds
{x,y} {x, z} {y, z}

{x3,y4, z1} 60.22 101.74 41.52
{x5,y6, z2} 60.13 117.72 57.46
{x7,y9, z4} 60.22 98.44 38.17
{x10,y12, z5} 60.22 131.76 71.63
{x11,y13, z6} 60.17 131.80 71.63
{x12,y14, z7} 60.17 114.47 54.29
{x14,y16, z9} 59.35 95.48 36.05
{x15,y17, z10} 74.60 112.51 37.91
{x16,y18, z11} 58.35 95.92 37.52
{x17,y19, z12} 74.68 110.21 35.40

E. Impact of Data-Driven Factors

As we discussed in Section IV-A, several factors can affect
the data-driven estimation of the synchronization operator. For
a given pair of correctly aligned event signatures {xi,yj}, we
almost always have some mismatch between λij in (21) and
the true value of δxy. This was previously discussed in (24).

To see this, again consider the five pairs of event-triggered
time-series in (42) that we previously discussed in Section
VI-B. The corresponding values of λij are obtained as:

λ1,1 based on {x1, y1} is 6.34 milliseconds,
λ2,2 based on {x2, y2} is 5.43 milliseconds,
λ3,3 based on {x3, y3} is 32.23 milliseconds,
λ4,8 based on {x4, y8} is 3.26 milliseconds,
λ5,10 based on {x5, y10} is 20.11 milliseconds.

(44)

In theory, the above values must be equal; since they all
estimate the synchronization operator between the same two
sensors. However, in practice, these values are different. The
differences are due to the various data-driven factors that we
explained in Section IV-A. Using (27), we can combine all the
results in (44) to obtain δ̂xy = 14.67 milliseconds.

F. A Case with More Than Two Sensors

In this section, we use real-world waveform measurements
from three sensors. The first sensor captures 17 events. The
second sensor captures 19 events. The third sensor captures 12
events. Accordingly, we can construct set S as in (35), where:

|X | = 17, |Y| = 19, |X | = 12, |X ∩ Y ∩ Z| = 10. (45)

The true values for the synchronization operator are as follows,
all in milliseconds: δxy = 60, δxz = 100, and δyz = 40.

Table V shows the results. The first column shows all the
event signatures from the three sensors that are aligned with
each other by Approach 3. The second column shows the data-
driven estimation of λij for the aligned events between the
first and the second sensors. The third column shows the data-
driven estimation of λij for the aligned events between the first
and the third sensors. The last column shows the data-driven
estimation of λij for the aligned events between the second
and the third sensors. The definition of λij is given (21).

By using the analysis in (28), we remove several outliers for
each pair of sensors, including four entries of λij for {x,y},
two entries of λij for {x, z}, and four entries of λij for {y, z}.

First, suppose we use the method without redundancy, as in
Section V-A. This method would require running Algorithm
1 by |S| − 1 = 2 times. From (27), we can use the results in
Table V to estimate δ for |S| − 1 = 2 pairs of sensors:

δ̂xy = 60.19, δ̂yz = 37.76. (46)

From (46), together with (37), we can also obtain

δ̂xz = δ̂xy + δ̂yz = 97.95. (47)

Next, suppose we use the method with redundancy, as in
Section V-B. This method would require running Algorithm
1 by |S| × (|S| − 1)/2 = 3 times. Two runs of Algorithm 1
would provide the same estimations as in (46). The third run,
i.e., the additional run, will use Table V to further provide:

δ̂xz = 105.81. (48)

From (39), we combine the results in (46) and (48) to obtain:

(105.81 + 97.95)/2 = 101.88. (49)

By comparing (47) and (49), We can see that both methods
from Section V provide acceptable results for δ̂xz; however,
the results from the second method in (49) is more accurate
than the results from the first method in (47) in this case.

G. Example Application: Monitoring DER Dynamics

Time-synchronizing waveform measurements from ordinary
power quality sensors can be used in a wide range of ap-
plications in power systems, especially in power distribution
systems where access to GPS-synchronized waveform mea-
surements is limited. One such application is in studying
the dynamic behavior of inverter-based distributed energy
resources (DERs) in response to various disturbances in power
systems. Such analysis can shed light on how different events
may potentially disrupt the operation of DERs. This will allow
distribution system operators to plan accordingly.

Consider the examples in Fig. 6. Here we examine time-
synchronized waveforms from two power quality meters at
two PV units during four different disturbances. Both PV units
are DERs. They are interconnected at 480 V at two different
locations. The inverters of the two PV units are from the same
manufacturer; however, the two PV units have different sizes,
with up to 100 kW and 200 kW rated generation capacity,
respectively. The disturbances are as follows:
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Fig. 6. Application of time-synchronized waveform measurements in benchmarking the behavior of DERs on power distribution systems during: (a) a voltage
sag; (b) a fault where the DERs managed to ride through the fault; (c) a fault where the DERs could not ride through the fault; (d) sub-cycle oscillations.

• Voltage Sag: Fig. 6(a) shows the simultaneous responses
of the two PV units to a voltage sag. Both PV units
momentarily experience slight increases in their injected
current; with no major impact on their normal operation.

• Fault with Ride-through: Fig. 6(b) shows the simulta-
neous responses of the two PV units to a fault in the
power system, where both PV units experience significant
agitation. Nevertheless they both manage to ride through
the fault. Notice the “bump” in the dynamic response of
DER 2 that is marked with an arrow. This shows the
visible presence of low-frequency modulated oscillations
at about 5 Hz that are likely developed in the inverter’s
phase locked loop control system due to the disturbance
that the fault caused in the inverter’s terminal voltages;
e.g., see [31]. A similar phenomena also appears in the
dynamic response of DER 1 to the same fault; but it is
less significant (and harder to see) in DER 1.

• Fault without Ride-through: Fig. 6(c) shows the simul-
taneous responses of the two PV units to another fault.
Both PV units trip during the fault. However, they do
not trip exactly at the same time. They also demonstrate
slightly different dynamic behavior during their tripping.

• Oscillations: Fig. 6(d) shows the simultaneous damping
oscillations that occurred at the two PV units in response
to another fault in the power system. The frequency of
the oscillations at both PV units is around 1 kHz.

These and other similar analysis can be used not only to
model the dynamic behavior of DERs, but also to conduct

benchmarking and health monitoring of DERs. For instance,
one can compare how different DERs (from the same vendor
or from different vendors) within a certain distribution or sub-
transmission system respond to the same disturbances. Such
comparison can lead to early detection of DER malfunctions.
It can also be used to fine-tune the control parameters of
the DERs by using the desirable responses of other similar
DERs as reference points. The results will also directly help
network operators to better predict and prepare for the dynamic
responses of DERs to various disturbances as the penetration
of DERs continues to grow in their network.

Time-synchronizing waveform measurements can also sup-
port other applications in distribution systems, such as event
and fault location identification on distribution feeders, wild-
fire monitoring in distribution networks, and power distribution
system protection; e.g., see the studies in [5], [8], [12].

VII. CONCLUSIONS AND FUTURE WORK

Novel data-driven optimization-based methods were pro-
posed to transform the output of conventional unsynchronized
event-triggered waveform sensors into synchro-waveforms. By
developing a series of techniques, we achieved methods that
are accurate, robust, and computationally efficient.

The proposed methods were tested by real-world waveform
measurements from field sensors in a test site in California.

The methods in this paper can provide utilities with the
practical means to benefit from the increasing applications
of synchro-waveforms without the need to upgrade their
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existing conventional waveform sensors. Since there are tens of
thousands of unsynchronized waveform sensors in operation,
such as power quality meters and fault recorders, the practical
impact of the proposed methods can potentially be significant.

Since, by construction, the measurements from each event-
triggered waveform capture contain an event, one should
focus on analyzing the event signatures for the purpose of
data-driven time synchronization. However, if, in the future,
the legacy power quality meters are upgraded to capture
waveforms more frequently, even in the absence of an event,
one could also consider taking advantage of those additional
“ambient” measurements to potentially enhance the perfor-
mance in data-driven time synchronization.

REFERENCES

[1] H. Mohsenian-Rad and W. Xu, “Synchro-waveforms: A window to
the future of power systems data analytics,” IEEE Power and Energy
Magazine, vol. 21, no. 5, pp. 68–77, Sep. 2023.

[2] W. Xu, Z. Huang, X. Xie, and C. Li, “Synchronized waveforms
– a frontier of data-based power system and apparatus monitoring,
protection, and control,” IEEE Trans. on Power Delivery, vol. 37, no. 1,
pp. 3–17, 2022.

[3] Alvaro Furlani Bastos, S. Santoso, W. Freitas, and W. Xu, “Syn-
chrowaveform measurement units and applications,” in Proc. of the IEEE
PES General Meeting, Atlanta, GA, Jul. 2019.

[4] H. Mohsenian-Rad, Smart Grid Sensors: Principles and Applications.
Cambridge University Press, UK, Apr. 2022.

[5] H. Mohsenian-Rad, A. Shahsavari, and M. Majidi, “Analysis of power
quality events for wildfire monitoring: Lessons learned from a California
wildfire,” in Proc. of the IEEE PES ISGT, San Juan, Puerto Rico, 2023.

[6] https://ieee-synchrowaveform.engr.ucr.edu/.
[7] M. Mansour Lakouraj, H. Hosseinpour, H. Livani, and M. Benidris,

“Waveform measurement unit-based fault location in distribution feeders
via short-time matrix pencil method and graph neural network,” IEEE
Trans. on Industry Applications, vol. 59, no. 2, pp. 2661–2670, 2023.

[8] M. Izadi and H. Mohsenian-Rad, “Synchronous waveform measurements
to locate transient events and incipient faults in power distribution
networks,” IEEE Trans. on Smart Grid, vol. 12, pp. 4295–4307, 2021.

[9] I. Khan, H. Sun, K. Kim, J. Guo, and D. Nikovski, “Combined detection
and localization model for high impedance fault under noisy condition,”
in Proc. of the IEEE PES General Meeting, Orlando, FL, Jul. 2023.

[10] T. Zaman et al., “Multimode synchronous resonance detection in con-
verters dominated power system using synchro-waveforms,” in Proc. of
the Int. Conference on Electricity Distribution, Rome, Italy, Jun 2023.

[11] N. Ehsani, F. Ahmadi-Gorjayi, Z.-J. Ye, A. McEachern, and
H. Mohsenian-Rad, “Sub-cycle event detection and characterization in
continuous streaming of synchro-waveforms: An experiment based on
gridsweep measurements,” in Proc. of the IEEE North American Power
Symposium, Asheville, NC, Oct 2023.

[12] B. Sharma, M. K. Jena, and S. Dash, “Assessment of signal similarity
index based line protection scheme for systems with inverter based
resources,” IEEE Systems Journal, vol. 17, no. 3, 2023.

[13] H. Mohsenian-Rad, M. Kezunovic, and F. Rahmatian, “Synchro-
waveforms in wide-area monitoring, control, and protection: Real-world
examples and future opportunities,” IEEE Power and Energy Magazine,
vol. 22, no. 6, Nov. 2024.

[14] F. Ahmadi-Gorjayi and H. Mohsenian-Rad, “Data-driven models for
sub-cycle dynamic response of inverter-based resources using WMU
measurements,” IEEE Trans. on Smart Grid, pp. 4125–4128, Sep 2023.

[15] H. Mohsenzadeh-Yazdi, F. Ahmadi, and H. Mohsenian-Rad, “Sub-cycle
dynamics modeling of ibrs using lstm methods and synchro-waveform
measurements,” in Proc. of the IEEE PES General Meeting, Jul. 2024.

[16] M. Alberto et al., “Newly implemented real-time PQ monitoring for
transmission 4.0 substations,” Electric Power Systems Research, vol.
204, p. 107709, Mar 2022.

[17] Z. Dai and J. E. Tate, “Emulating synchrophasor frequency mea-
surements with transient stability simulation,” IEEE Trans. on Power
Systems, vol. 36, no. 5, pp. 4066–4074, 2021.

[18] M. MansourLakouraj, H. Hosseinpour, H. Livani, and M. Benidris,
“Waveform measurement unit-based fault location in distribution feeders
via short-time matrix pencil method and graph neural network,” IEEE
Trans. on Industry Applications, vol. 59, no. 2, pp. 2661–2670, 2023.

[19] Z. Long, F. Lin, F. Zhou, W. Li, Y. Liu, J. Fan, K. Hu, F. Li, and S. Xie,
“Development and traceability method of a 100 ka reference impulse
current measuring system,” IEEE Trans. on Industry Applications,
vol. 59, no. 2, pp. 2246–2253, 2023.

[20] R. F. Buzo, H. M. Barradas, and F. B. Leão, “A new method for fault
location in distribution networks based on voltage sag measurements,”
IEEE Trans. on Power Delivery, vol. 36, no. 2, pp. 651–662, 2021.

[21] K. R. Mestav, X. Wang, and L. Tong, “A deep learning approach to
anomaly sequence detection for high-resolution monitoring of power
systems,” IEEE Trans. on Power Systems, vol. 38, no. 1, pp. 4–13, 2023.

[22] Q. Li, S. Liu, and H. Chaoui, “A reinforcement learning based model-
free wide-area damping control under random pmu time delays,” in Proc
of the IEEE International Symposium on Industrial Electronics, 2021.

[23] P. Castello, G. Gallus, P. Pegoraro, and S. Sulis, “Measurement platform
for latency characterization of wide area monitoring, protection and
control systems,” IEEE Trans. on Inst. and Meas., vol. 73, 2024.

[24] Z.-J. Ye, M. Izadi, M. Farajollahi, and H. Mohsenian-Rad, “A remedy to
losing time synchronization at D-PMUs, H-PMUs, and WMUs in event
location identification in power distribution systems,” IEEE Trans. on
Smart Grid, vol. 15, no. 1, pp. 651–654, 2024.

[25] Z.-J. Ye and H. Mohsenian-Rad, “A data-driven time-synchronization
method to convert conventional power quality waveform measurements
into synchro-waveforms,” in Proc. of the IEEE PES SGSMA, May 2024.

[26] Schweitzer Engineering Laboratories, “Instruction Manual: SEL-735
Power Quality and Revenue Meter,” 2024.

[27] https://www.ibm.com/products/ilog-cplex-optimization-studio.
[28] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”

2023. [Online]. Available: https://www.gurobi.com
[29] P. J. Huber and E. M. Ronchetti, Robust Statistics. Wiley, 2009.
[30] H. Zhou, “Adaptive high-accuracy timing module: Algorithms and

performance bounds - MS Thesis,” Ottawa, Canada, Nov. 2009.
[31] Y. Cheng et al., “Real-world subsynchronous oscillation events in

power grids with high penetrations of inverter-based resources,” IEEE
Transactions on Power Systems, vol. 38, no. 1, pp. 316–330, 2023.

Zong-Jhen Ye (S’20) received M.S. degree in envi-
ronmental engineering from National Cheng Kung
University, Tainan, Taiwan, and the second M.S.
degree in electrical engineering from National Taipei
University of Technology, Taipei, Taiwan. He is cur-
rently working toward the Ph.D. degree in electrical
engineering at University of California, Riverside,
CA, USA. His research interests are the applications
of optimization techniques on transmission lines and
distribution systems.

Hamed Mohsenian-Rad (M’09-SM’14-F’20) re-
ceived the Ph.D. degree in electrical and computer
engineering from the University of British Columbia,
Vancouver, BC, Canada, in 2008. He is currently
a Professor of electrical engineering and a Bourns
Family Faculty Fellow at the University of Cal-
ifornia, Riverside, CA, USA. His research is on
monitoring, data analysis, and optimization of power
systems and smart grids. He is the author of the
textbook Smart Grid Sensors: Principles and Ap-
plications by Cambridge University Press - 2022.

He was the recipient of the National Science Foundation (NSF) CAREER
Award, the Best Paper Award from the IEEE Power and Energy Society
General Meeting, the Best Paper Award from the IEEE Conference on Smart
Grid Communications, and a Technical Achievement Award from the IEEE
Communications Society. He has been the PI or co-PI on sixteen million
dollars research grants in the area of smart grid. He has served as Editor for the
IEEE TRANSACTIONS ON POWER SYSTEMS, IEEE TRANSACTIONS
ON SMART GRID and the IEEE POWER ENGINEERING LETTERS.


