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Abstract—Synchronized waveform measurements, also known
as synchro-waveforms, are gaining increasing attention in ad-
vanced power systems monitoring in recent years. However,
there is a major gap in this field in practice. Although many
utilities do have an existing infrastructure to measure voltage and
current waveforms, such as by using conventional power quality
sensors, those existing waveform measurements are not time-
synchronized. In this paper, we propose novel methods to achieve
data-driven time-synchronization among the conventional power
quality sensors solely based on the analysis of the time-series
of waveform measurements using statistical and optimization
techniques. This will enable utilities to take advantage of the
emerging applications of synchro-waveforms without the need to
replace or retrofit their existing sensors. Experimental results
confirm the high performance of the proposed methods.
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method, time synchronization, statistical analysis, optimization.

I. INTRODUCTION

Synchro-waveforms, i.e., time-synchronized waveform mea-
surements, have emerged recently as a new measurement tech-
nology with diverse applications in power system monitoring
and situational awareness; e.g., see the overview in [1]. The
device to measure synchro-waveforms is often referred to as a
Waveform Measurement Unit (WMU). The common approach
to achieve precise time-synchronization among WMUs is to
use the Global Positioning System (GPS); see [2].

A. Motivation: A Practical Challenge
WMU installations are still very rare in practice. In fact,

although there is already a wide range of sensor technology
deployments by many utilities that do provide voltage and
current waveform measurements, such measurements are not
time synchronized. One of such technologies that is currently
widely used in practice is the power quality sensor. The
majority of the existing power quality sensors that have been
deployed by many utilities over the past two decades are not
equipped with precise time-synchronization capabilities such
as GPS; due to the high cost. In fact, it was observed in a
recent study in [3] that the time stamps from power quality
sensors can be off by a few milliseconds to a few seconds.

As a result, while many utilities do have various exist-
ing power quality sensors to measure voltage and current
waveforms, they are unable to use such existing measure-
ments as synchro-waveforms due to lack of proper time-
synchronization. Thus, most utilities are still currently unable
to support the emerging applications of synchro-waveforms.
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B. Our Approach
In this paper we seek to address the above open problem.

Specifically, we seek to answer the following question: is it
possible to take the waveform measurements from the existing
power quality installations that are not time-synchronized
and somehow convert them through an automated process
into synchro-waveforms with some reasonable time accuracy,
solely by analyzing the waveform measurements themselves?

To answer the above question, we will develop novel meth-
ods to estimate an unknown synchronization factor between
two power quality sensors. Our methods are data driven and
based on real-world measurements. They utilize the measure-
ment data itself, such as the shape of the captured waveforms.

C. Related Literature
Two recent overviews of the emerging field of synchronized

waveform measurements are available in [1], [2]. The link to
a related IEEE Task Force are available in [4]. Some recent
applications of synchro-waveforms include: event and fault
location identification [5]–[7], wildfire monitoring [3], power
system oscillation monitoring [8], and dynamic modeling of
the sub-cycle behavior of inverter-based resources [9].

The use of GPS to time-synchronize waveform measure-
ments is discussed in [2]. The use of time-synchronization pro-
tocols and their communications requirements are discussed
in [10]. Achieving time-synchronization when GPS signal is
momentarily lost by WMUs is discussed in [11] based on the
analysis of events and circuits models under some specific
network topologies on a power distribution system.

II. PROBLEM STATEMENT

Consider two power quality sensors on a power network.
They record voltage and current waveforms during power
quality events. Accordingly, the waveform measurements that
are captured by these two sensors are event-triggered [12,
Section 4.2]. In practice, a wide range of events can trigger
waveform measurements, such as voltage sags and swells,
faults, and changes in harmonics. The two power quality
sensors are not time synchronized. That means, although each
sensor has a local clock to time-stamp its own measurements,
the two local clocks are not synchronized with each other.

The objective in this paper is to examine the various wave-
form measurements that are recorded by the these two power
quality sensors to estimate the offset among their local clocks
and hence to time-synchronize their waveform measurements.

Next, we will break down the above problem into two
specific sub-problems. We will develop methods to solve these
two sub-problems in Sections III and IV, respectively.
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Fig. 1. Two time-series of voltage waveform measurements of the same
phase of the power system but from two different power quality sensors at
two different locations. The two sensors are not time synchronized.

A. Problem 1

Consider the following two time-series of waveform mea-
surements that are recorded by the two power quality sensors
during the same physical event in the power system:

x = x[1], . . . , x[n],

y = y[1], . . . , y[n],
(1)

where n is the number of measurement samples. An example
is shown in Fig. 1. Only one phase and only voltage wave-
forms are shown in this figure. Both measurements have the
same sampling rate at 128 samples per cycle. Six cycles of
waveform measurements are shown here; therefore, we have
n = 6 × 128 = 768 samples. The two measurements are
not time synchronized. In fact, there is δ = 2 milliseconds
offset between the two measurements. We refer to δ as the
synchronization factor between the two measurements.

If δ is known, then we can shift one of the two time-series
x and y by δ and turn the two time-series into synchro-
waveforms. However, the challenge is that δ is not known.

Accordingly, Problem 1 is concerned with estimating δ from
all the available pairs of waveform measurements x and y.

B. Problem 2

In Problem 1, we inherently assumed that we know which
pair of time-series of waveform measurements from the two
power quality sensors correspond to the same physical phe-
nomena/event. In other words, we assumed that x and y are
already known to be related to each other due to capturing the
waveform measurements during the same physical event.

However, in practice, such pair-wise correspondence be-
tween the waveform measurements from two power quality
sensors is not known. Such pair-wise relationship needs to be
established first, before we can attempt to solve Problem 1.

A power quality sensor records the waveforms only if it
detects an event. In this regard, the first power quality sensor
captures the waveform x only if it detects an event at its own
location. Similarly, the second power quality sensor captures
the waveform y only if it detects an event at its own location.

Importantly, not every physical event triggers waveform
capture by every power quality sensor. There are many physi-
cal events that are captured only by one power quality sensor.
Any such event that is captured by the first power quality
sensor would not be in correspondence to any event that is

δ δ

Time (Clock 2)

y1 y2 y3 y4 y5

Time (Clock 1)

x1 x2 x3 x4

Fig. 2. Top arrows indicate the timing of the events and the corresponding
time-series of the waveform captures at the first power quality sensor. Bottom
arrows indicate the timing of the events and the corresponding time-series of
the waveform captures at the second power quality sensor. The amount of the
time-synchronization factor between the two sensors is shown by δ.

captured by the second power quality sensor, and vice versa.
Furthermore, in practice, δ can be large. Therefore, one cannot
easily find the pairs of waveform time-series from the two
sensors that correspond to each other. Finally, even if the two
waveform time-series from the two sensors correspond to the
same physical event, the way that the event is manifested in
the two waveform time-series may not be similar.

An example is shown in Fig. 2. Four events are captured
by the first power quality sensor, and five events are captured
by the second power quality sensor. The two sensors are not
time synchronized, i.e., δ ̸= 0. Let X denote the set of all
time-series of waveform measurements from the first sensor.
Similarly, let Y denote the set of all time-series of waveform
measurements from the second sensor. We have:

X = {x1,x2,x3,x4},
Y = {y1,y2,y3,y4,y5}.

(2)

The second event at the first sensor and the first event at the
second sensor correspond to the same physical cause; which
has been major enough to affect the waveforms at the locations
of both sensors. The fourth event at the first sensor and the
fourth event at the second sensor also correspond to the same
physical cause. The rest of the events are captured only by
one of the two sensors. Accordingly, we shall solve Problem
1 based on pair x = x2,y = y1 and pair x = x4,y = y4.

The above alignments are not known in advance. Accord-
ingly, Problem 2 is concerned with identifying which pairs of
the waveform time-series from the two power quality sensors
should be used for the purpose of solving Problem 1.

III. METHOD TO SOLVE PROBLEM 1

Consider Problem 1 in Section II-A and the example in Fig.
1. Recall that the two waveform measurements in this figure
are not time synchronized. Synchronization factor δ, i.e., the
offset between the local clocks of the two sensors, is unknown.

A. Measuring Two Quantities in Waveforms

While we cannot directly measure δ from Fig. 1, we can
measure the following two quantities, as illustrated in Fig. 3:

1) The difference in time between the zero-crossing points
at the two waveforms as measured by the local clocks at
the two power quality sensors. This is denoted by ∆zero.
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Fig. 3. Calculating the values of ∆zero and ∆event for the two time-series of
voltage waveform measurements in Fig. 1.

2) The difference in time between the event-starting points
at the two waveforms as measured by the local clocks at
the two power quality sensors. This is denoted by ∆event.

These quantities are both related to the unknown synchro-
nization factor δ. With regards to the first quantity, we have:

∆zero = δ + Phase Difference
+ Error in Calculating Zero Crossing Time.

(3)

With regards to the second quantity, we have:

∆event = δ + Propagation Delay Difference
+ Error in Calculating Event Start Time.

(4)

Next we explain the terms that are mentioned in (3) and (4).
The phase difference in (3) commonly exists between any

two locations on a power network. In fact, it is related to the
concept of Relative Phase Angle Difference (RPAD) which is
often used in the analysis of power systems based on phasor
measurements, e.g., see [12, Section 3.4]. The amount of phase
difference depends on the characteristics of the circuits and the
operating conditions in the power system. Accordingly, it is
not a fixed amount and it can vary at different moments.

The propagation delay difference in (4) also commonly
exists between any two locations on a power network, relative
to the location of the event. That is, when an event, such as a
fault, occurs at a location on the circuit, its impact may not be
seen precisely at the same time if the electric distance is not
the same between the location of the event and the locations
of the two power quality sensors. Importantly, the propagation
delay difference is not fixed and it depends on the electrical
distance of each event relative to the two sensor locations.

The error terms in (3) and (4) are self-explanatory. The
challenges that may arise in calculating the zero crossing time
are discussed in [13, Appendix]. The challenges in calculating
the event start time are also discussed in [12, Section 4.2].
These challenges can affect calculating the values of ∆zero
and ∆event. Importantly, these errors are not fixed. They can
vary depending on the shape of the waveforms, such as the
presence of harmonics or the shape of the event signature.

B. Data-Driven Characteristics of ∆zero and ∆event

Next, let us define the following random variables:

γzero = ∆zero − δ and γevent = ∆event − δ. (5)

From (3), γzero is the random variable that results from phase
difference and error in calculating zero-crossing times. From
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Fig. 4. Experimental results to obtain the distribution of (a) γzero (n = 246)
and (b) γevent (n = 36). The x-axis is in milliseconds in both figures.

(4), γevent is the random variable that results from propagation
delay difference and error in calculating event start time.

Using WMUs in Riverside, California, the distributions of
γzero and γevent are derived based on the real-world data.
The results are shown in Figs. 4(a) and (b). Note that the
distribution is similar on each phase. The distribution in Fig.
4(a) is based on calculating the difference in zero-crossing
times among the waveform time-series that are simultaneously
measured by two time-synchronized WMUs at two different
locations on the same power network. And the distribution in
Fig. 4(b) is based on calculating the difference in event start
times among the waveform time-series from the same two
WMUs. The use of two time-synchronized WMUs was nec-
essary in this analysis to set δ = 0, such that we can measure
γzero and γevent by measuring ∆zero and ∆event, respectively.

Interestingly, both of the two distributions in Fig. 4 have
mean values close to zero. In particular, we have:

E{γzero} = 0.19 milliseconds (6)

and
E{γevent} = 0.10 milliseconds, (7)

which are very small compared to the range of γzero and γevent.
Note that, from Fig. 4, γzero can be as low as −2.43 millisec-
onds and as high as 3.10 milliseconds. Also, γevent can be as
low as −0.81 milliseconds and as high as 1.32 milliseconds.

Based on the above results, we can approximately cancel
out the impact of the added terms in (3) and (4) to estimate δ
by taking the expected value of ∆zero and the expected value
of ∆event. Accordingly, we can approximately derive that

δ ≈ E{∆zero + κT} (8)

and
δ ≈ E{∆event}, (9)

where T denotes the period of each AC cycle, such as 16.667
milliseconds in North America. The expected value E{∆zero}
is calculated based on all instances of measuring ∆zero, i.e.,
based on all pairs of waveform time-series x and y that are
available. Similarly, the expected value E{∆event} is calculated
based on all instances of measuring ∆event in Problem 1.

In (8), notation κ is an unknown that can be a distinct
integer number for every reading of ∆zero. This is due to the
ambiguity that inherently exists in calculating the difference
between zero-crossing points in x and y due to the repeating
nature of the waveform cycles. Importantly, the value of ∆zero
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would be the same if δ increases or decreases by multiples of
T . Notice that, the term κT is inside the expected value. Thus,
there can be a different κ for every ∆zero that we measure.

To resolve the above ambiguity, for a given ∆zero, we
introduce the following complex number to capture the angular
difference between the zero-crossing points in x and y:

zzero = exp
(︁√

−1 2π∆zero/T
)︁
. (10)

We can now replace (8) with the following expression, where
the expected value is in the domain of complex numbers:

δ ≈ (T/2π) ∠E{zzero}+ κT. (11)

Notice that the term κT is now outside the expected value.

C. Joint Optimization to Estimate δ and κ

We propose to estimate the synchronization factor δ, as well
as to estimate κ to resolve the above ambiguity, by solving the
following optimization problem over both unknown variables:

minimize
δ,κ

⃦⃦⃦⃦ [︃
δ
δ

]︃
−
[︃

E{∆event}
T
2π∠E{exp

(︁√
−1 ∆zero

2π
T

)︁
}+ κT

]︃⃦⃦⃦⃦
2

,

(12)
where κ is an integer variable. Here, we use ∆event as a
reference to identify k; because the repeating nature of the
waveform cycles does not affect calculating the difference
between the event starting points. It only affects calculating
the difference between the zero crossing points. Furthermore,
we select δ in (12) according to a trade-off between the two
approximations in (9) and (11) using the Euclidean norm.

IV. METHOD TO SOLVE PROBLEM 2
Next, consider Problem 2 in Section II-B. In this section, we

propose a method to solve this problem. Our method involves
pair-wise calculation of dissimilarities among the waveform
time-series in sets X and Y; followed by conducting an
optimization to identify the waveform time-series from the
two power quality sensors that correspond to the same event.

A. Pair-wise Dissimilarity Assessment

For any given waveform xi ∈ X and any given waveform
yj ∈ Y , let us define a dissimilarity index as follows:

σij = f(xi, yj), (13)

where f(·, ·) denotes a dissimilarity function which calculates
the similarity between two waveform time-series. For example,
we can define the similarity function as follows [3]:

f(x, y) = min
m1,m2

⃦⃦
∆x[m1 :m1+w]−∆y[m2 :m2+w]

⃦⃦
2
, (14)

where m1 and m2 are integer numbers between 1 and n−T−w
and w is the length of a sliding window. Furthermore, we
denote the differential waveforms corresponding to x and y
as follows, respectively [12, Section 4.2.5]:

∆x = x[CT + 1 : n]− x[1 : n− CT ],

∆y = y[CT + 1 : n]− y[1 : n− CT ].
(15)

The above differential waveforms are the difference between
the original waveform measurements and the delayed versions
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Fig. 5. The differential waveforms values of ∆x and ∆y corresponding to
the two time-series of voltage waveform measurements in Fig. 1.

of the same waveform measurements, where the delay is C
cycles. In this paper, we set C = 3 to assure separating the
duplicate event signatures in differential waveforms; see [12,
p. 168]. Defining dissimilarity based on differential waveforms
has multiple advantages, such as removing the impact of
background load to focus only on the waveform signature that
is caused by the event. An example for the extraction of ∆x
and ∆y from the raw waveform measurements x and y is
shown in Fig. 5. Note that, whenever needed, one can use the
per-unit representation of the waveforms before extracting ∆x
and ∆y to have comparable event signatures for the purpose
of checking dissimilarities in the minimization in (14).

The minimization in (14) calculates the difference between
any window of length w in ∆x and any window of length w in
∆y to identify the smallest dissimilarity (i.e., the highest sim-
ilarity) between the two differential waveforms. The window
size w can be set to T/4, T/2, or T ; see [3].

B. Binary Optimization for Pair-wise Waveform Matching

Let bij denote a binary decision variable to indicate whether
waveform xi and waveform yj correspond to the same phys-
ical event. This variable can be defined as follows:

bij =

{︃
1, if xi and yj correspond to the same event,
0, otherwise.

(16)
In general, we must have:∑︂

j

bij ≤ 1, ∀ xi ∈ X ,∑︂
i

bij ≤ 1, ∀ yj ∈ Y.
(17)

From (17), each waveform capture at the first power quality
sensor can correspond to at most one waveform capture at the
second power quality sensor. Similarly, each waveform capture
at the second power quality sensor can correspond to at most
one waveform capture at the first power quality sensor. Of
course, it is possible that a waveform capture on one power
quality sensor is not corresponding to any waveform capture at
the other power quality sensor. This would be the case where
the waveform capture was due to a local phenomena that did
not trigger waveform capture at the other power quality sensor.

Next, we note that, although the two power quality sensors
are not time-synchronized, the local clock at each power
quality sensor can help us determine the order of the waveform
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captures at each power quality sensor. For example, from (2),
we know that x1 was captured before x2; x2 was captured
before x3; and x3 was captured before x4. We must maintain
the orders of the events when we identify which waveform
from set X corresponds to which waveform (if any) from set
Y . For example, it does not make sense to pair x1 and y4 while
we also pair x3 and y2; because this would violate the order
of the waveforms in sets X and Y . To address this issue, for
each i and each j, we propose to use the following constraints:

blk ≤ 1− bij , ∀l, k : l < i, k > j. (18)

If bij = 1, i.e., if xi and yj are deemed to correspond to
the same event, then (18) becomes blk ≤ 0; which means we
would have blk = 0 for any pair of xl and yk for which l < i
and k > j. This would assure maintaining the order of the
events that are captured by the two power quality sensors. If
bij = 0, i.e., if xi and yj are not deemed to correspond to
the same event, then (18) becomes blk ≤ 1; which would not
impose any constraint on binary variable blk for any l or k.

If we seek to pair exactly M waveform captures across the
two power quality sensors, then we must have:∑︂

i

∑︂
j

bij = M, (19)

where M is an integer number that is upper bounded by the
number of members in set X and the number of members
in set Y . That is, M is upper bounded by min{|X |, |Y|}. For
example, if we set M = 3, then we require identifying exactly
three pairs of the time-series of waveform measurements
across the two power quality sensors. The remaining |X |−M
waveform captures from the first power quality sensor and the
remaining |Y|−M waveform captures from the second power
quality sensor are accordingly assumed to correspond to some
local events that are not captured by both sensors.

In order to address Problem 2, we need to obtain the value
of bij for any xi ∈ X and any yj ∈ Y . For notional simplicity,
we stack up all such decision variables into vector b. In this
regard, we propose the following optimization problem:

minimize
b

∑︂
i

∑︂
j

bijσij

subject to Eqs. (17) and (18) and (19).
(20)

The above optimization problem is an integer linear program
(ILP). It can be solved using solvers such as CPLEX [14].

For a given M , let us denote the optimal objective value of
the optimization problem in (20) by g(M). We can show that
function g(M) is non-decreasing over M . That is, we have:

g(M) ≤ g(M + 1), ∀M = 1, . . .min{|X |, |Y|} − 1. (21)

The proof of the above inequality is evident, given the fact that
increasing M results in adding more non-negative dissimilarity
terms to the optimal objective value in (20); which directly
results in a non-decreasing behavior in function f(M).

Based on (21), we propose to repeatedly solve (20) by
starting from M = 1 and incrementing M until we either reach
M ’s upper bound at min{|X |, |Y|} or we exceed a threshold

ϵ on the optimal objective value of the optimization problem
in (20), i.e., until the following stopping criteria is reached:

g(M) ≥ ϵ. (22)

The above condition stops increasing M when the total dissim-
ilarities in the selected pairs of the waveform measurements
exceeds the threshold, suggesting that the captured waveform
measurements from the two sensors that are being paired are
not captured during the same event in the power system. Based
on the experimental results, we propose to set ϵ = 1.5.

V. EXPERIMENTAL CASE STUDY

An experiment is done based on the measurements from
two power quality sensors in California to evaluate the perfor-
mance of the proposed methods. Twenty waveform captures
are considered from the two sensors on one day, where:

|X | = |Y| = 10. (23)

Only five events at each power quality sensor are also captured
by the other power quality sensor. The rest of the events are
local events. Specifically, events x1, x2, x3, x8, x10 at the first
power quality sensor correspond to events y1, y2, y3, y4, y5

at the second power quality sensor. The rest of the events are
local events: x4, x5, x6, x7, x9, y6, y7, y8, y9, y10.

The above information is available to us; because both
sensors are equipped with a GPS synchronization module. This
provides us with the ground truth about the available waveform
measurements. However, for the purpose of our case study, we
assume that not only the above knowledge is not available to
us, but also there is an unknown offset between the local clocks
at the two sensors, i.e., δ ̸= 0 and δ is unknown.

First we solve the optimization in (14) for each pair of
the available waveform measurements from the two sensors.
The results are shown in Table I. Notice that if we solely
consider the values of σij in each row or each column then
we cannot correctly identify which events at the two sensors
correspond to each other. For example, from the first row in
Table I, the waveform measurements in x1 are most similar
to the waveform measurements in y4; however, x1 and y4 do
not correspond to the same physical event. Similarly, from the
first column in Table I, the waveform measurements in y1 are
most similar to the waveform measurements in x8; however,
y1 and x8 do not correspond to the same physical event.

The remedy is to rather solve the systematic optimization
problem in (20). The optimal results are obtained as follows:

M = 1 : b84 = 1

M = 2 : b84 = b22 = 1

M = 3 : b84 = b22 = b11 = 1

M = 4 : b84 = b22 = b11 = b33 = 1

M = 5 : b84 = b22 = b11 = b33 = b105 = 1,

(24)

where b105 is the binary decision variable between x10 and
y5. The values of g(M) for M = 1, . . . , 10 are as fol-
lows: 0.1769, 0.3848, 0.6089 0.8678, 1.3102, 1.9196, 2.5293,
3.1574, 3.8387, 4.6571. These numbers confirm the non-
decreasing property of g(M) in (21). Importantly, all the
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TABLE I
RESULTS ON ESTIMATING σij FOR ANY PAIR OF EVENTS BETWEEN TWO POWER QUALITY SENSORS THAT ARE NOT TIME SYNCHRONIZED

σij
Event Number at Power Quality Sensor 2

1 2 3 4 5 6 7 8 9 10

Event Number at Power Quality Sensor 1

1 0.2241 0.2133 0.4132 0.1900 0.4863 0.6680 0.4153 0.5663 0.4397 0.3772
2 0.2178 0.2079 0.3588 0.1830 0.4523 0.6577 0.3658 0.5796 0.4258 0.3898
3 0.4518 0.3947 0.2589 0.3885 0.3696 0.7340 0.5508 0.5729 0.5649 0.5285
4 0.5325 0.5073 0.5724 0.5559 0.6114 0.6527 0.5706 0.6454 0.5515 0.5419
5 0.4734 0.4206 0.3659 0.4105 0.4827 0.6997 0.4754 0.6667 0.4978 0.4809
6 0.5603 0.5151 0.5249 0.5228 0.6193 0.7174 0.4886 0.6056 0.5337 0.5201
7 0.4700 0.4349 0.4890 0.4422 0.5086 0.6630 0.4626 0.5787 0.4896 0.4382
8 0.2107 0.1962 0.4198 0.1769 0.5087 0.6955 0.6955 0.6349 0.4913 0.4497
9 0.3710 0.3430 0.4129 0.3288 0.4739 0.7283 0.5517 0.6362 0.5348 0.5506

10 0.5060 0.4896 0.2821 0.4856 0.4424 0.7319 0.6013 0.7605 0.5952 0.5779

TABLE II
TEST RESULTS TO ESTIMATE δ AND κ IN PROBLEM 1

Ground
Truth

Data-Driven Optimization

δ (ms) δ (ms) κ

3.5 3.1 0
8.7 8.3 1

-13.1 -13.5 -1
46.9 46.5 3

results in (24) are correct. Furthermore, when M = 6, we have
g(M) > ϵ = 1.5, which stops the process of incrementing M ,
leaving us to choose M = 5; which is indeed the correct
number of pairs of waveform measurements that correspond
to the same physical event. Therefore, our solution approach
to solve Problem 2 (see Section IV-B) is successful.

Next, we use the results in the last row in (24) to calculate
∆zero and ∆event for the following pairs of waveforms between
the two power quality sensors: for x8 and y4, for x2 and
y2, for x1 and y1, for x3 and y3, and for x10 and y5. Of
course, the values of ∆zero and ∆event will depend on the value
of the synchronization factor δ, i.e., the offset between the
clocks of the two power quality sensors. For the purpose of
our experiment, we assume the following values:

δ = 3.5 ms, δ = 8.7 ms, δ = −13.1 ms, δ = 46.9 ms. (25)

In each case, we impose an offset equal to one of the above
values to the waveform measurements. Accordingly, we obtain
the values of ∆zero and ∆event in each case. Importantly, we
obtain ∆zero and ∆event for each phase; thus extracting a total
of 15 = 5×3 values for ∆zero and 15 = 5×3 values for ∆event.
The results are then used to optimally identify the unknown
values of δ and κ by solving the optimization problem in (12).

The results of the optimization are shown in Table II. Both
δ and κ are estimated very reasonably in all cases. Therefore,
we can conclude that our solution approach to solve Problem
1 (see Section II-A) is successful. It is worth pointing out that
the results in Table II are based on the measurements on one
day only. If we utilize more measurements, we anticipate to
further improve the accuracy of the results.

VI. CONCLUSIONS AND FUTURE WORK

The practical results in this paper can greatly help utilities
to directly turn the measurements from their existing power
quality sensors to synchro-waveforms. Accordingly, they can
take advantage of the growing use cases of synchro-waveforms
without the need to replace or retrofit their existing sensors.

Experimental case studies confirmed the high performance
of the proposed methods in achieving data-driven time-
synchronization among conventional power quality sensors
solely based on investigating their waveform measurements
using statistical analysis and novel optimization techniques.

The study in this paper can be extended in various direc-
tions. First, other choices of the dissimilarity (or similarity)
functions between the two time-series of waveform measure-
ments can be used, such as based on correlation or convo-
lution. Second, the methods can be extended to incorporate
unsynchronized waveform measurements from more than two
power quality sensors to enhance performance due to the
redundancy in measurements. Third, additional case studies
can be conducted based on weeks or months of test data.
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