

Comparison of Synchro-Waveform Application Requirements with Utility Capabilities

Jim Follum, PNNL

Synchro-Waveforms: Principles, Data-Analytics, and Applications

PNNL-SA-185868

DOE's Objective

Use advanced measurements to mitigate risks of rapid IBR deployments

PROGRESS MATRIX

Overview

- Jointly funded by DOE's Office of Electricity (OE) and Solar Energy Technologies Office (SETO)
- Objectives:
 - Develop advanced measurement capabilities and analytics
 - Accelerate adoption of IBRs
 - Improve the reliability and resilience of the bulk power system

IEEE

PROGRESS MATRIX

Gap Analysis

- Survey of utility partners' measurement capabilities
 - Bonneville Power Administration (BPA) PNNL
 - Western Area Power Administration (WAPA) NREL
 - Kaua'i Island Utility Cooperative ORNL
- Literature review of measurement-based IBR application requirements
- Identify barriers preventing utilities from using advanced measurements (PMU and POW) to integrate IBRs

PNNI -3408

PROGRESS MATRIX Year-1 Report

K Mahapatra

A Riepnieks

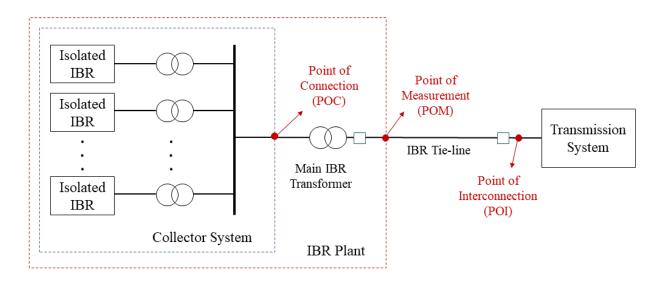
March 2023

JD Follum

R Hovsapia

Literature Review

Evaluated 26 proposed applications

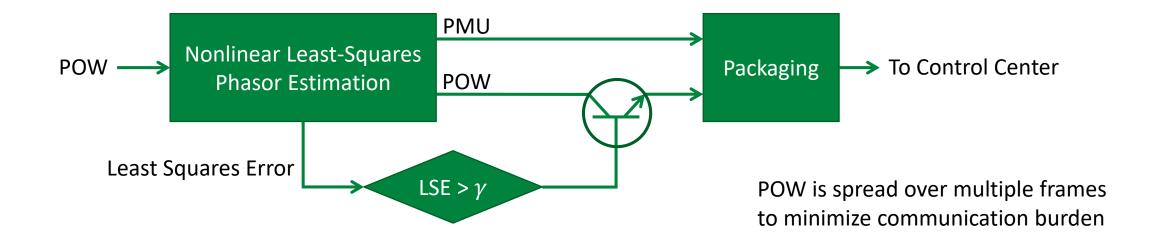

Application Family	Applications	IEEE Std 2800 Compliance	Measurement Type	Measurement Location or RPA	Meas. RRª	TRL		References							
	Inertia Estimation (Transient)	NR ^b	Synchrophasors	Multiple locations in TS	30Hz	8		shton et al., 2015 [Digital, 2022]]						
Monitoring	Inertia Estimation (Ambient)	NR	POW GridMetrix Meas.	Multiple locations in TS	kHz (for GridMetrix)	9	[Kimme	[Kimme [Tu	Applications	IEEE Std 2800 Compliance	Measurement	Measurement	Meas.	TRL	References
			Synchrophasors	Tie lines, SGs, and IBRs	30 Hz	2	[Tu				Туре	Location or RPA	RR		
	SSO Metering	NR	POW	POI	120 Hz	9	[Cheng et		Plant Level Control Design	R	POW, Synchrophasors	POI,POM	4 kHz	3-9	[Baker et al., 2021]
	SSO Source Localization	NR	POW	POI	120 Hz	2			Fast or Primary Frequency Response	R	POW, Synchrophasors	POM	20kHz	5	[NERC, 2020a]
	Impedance-based Stability Analysis Harmonic Stability	NR	POW	POI	20kHz	7	[Shah et al.		Virtual Inertia Based Control	NR	POW, Synchrophasors	POC	3-20kHz	2	[Yap et al., 2019]
	Analysis Electromagnetic Stability	R	POW	POM, POI	2.75kHz 1Hz-10kHz	5	[Wan] [ESIG, 20		Reactive Power Control	R	POW, Synchrophasors	POI, POM	3-20kHz	3-4	[Entergy, 2022] [Brown, 2020] [WECC, 2020]
	Analysis				1112-108112		[NERC,		Automatic Voltage Regulation	R	POW, Synchrophasors	POC and/ POM	3-20kHz	3-4	[Entergy, 2022, Guo et al., 2021]
	Synchronization Stability Analysis	R	Synchrophasors POW	POM, POC	60Hz, 10kHz	3	[Global		Ride-through		POW, Synchrophasors	POI	3-20kHz	1-3	[Baker et al., 2021] [ESIG, 2020]
	Disturbance Monitoring	NR	Synchrophasors, POW, Oscillography	POM,POI,POC	Many kHz	2-9	[NER(Controis						[Hart et al., 2022] [Kroposki, 2016],
	Power Quality Monitoring	R	POW	POM, POI	8 kHz	7	[i [Ente		Anti Islanding	R	Synchrophasors POW	POI, POM	3-20kHz	3-8	[Kroposki, 2016], [da Cunha Lima et al., 2021] [Solectria, 2016]
Modeling	Data-driven Modeling – Reduced Order Model	NR	Synchrophasors	POI, POM, POC	60 Hz	4	ſ								[Nassif et al., 2022] [Haddadi et al., 2021], [Mills-Price et al., 2011]
	Data-driven Modeling	NR	POW	POC	20kHz	2-9	[(Protection	Line Current Differential Protection with IBRs	R	POW	POC, POI	1kHz	2	[Haddadi et al., 2021] [Chowdhury et al., 2022]
	 Impedance Spectrum Model EMT Model 		FOW	FOC	20112	2-5		[AECOM,	Utility end distance Protection	R	POW	POC, POI	1MHz	2	[Paladhi and Pradhan, 2020] [Nagpal et al., 2020] [Bini, 2022]
	Calibration and Validation	NR	POW	POC	20kHz	9	[DOE, 2012		Sequence Current Limiting Protection	R	POW	POM, POI	3-20kHz	2	[Mahamedi et al., 2018]
	Admittance Model Identification for SSR Screening	NR	POW, Synchrophasors	РОМ	2kHz	1	[Planning	Weak Grid Studies	R	POW, Synchrophasors	POM, POI	Many kHz	2	[Nordgård et al., 2011] [Muljadi, 2016]
	dq Admittance Model Identification	NR	POW	POM, POI	2kHz	3-4	[Fa	n and may, 2020	۰۲ 						

Literature Review

Unwarranted assumptions about POW measurements

- Continuously streamed
- Available at inverter terminals or plant's Point of Connection (POC)
- Shared by plant owners
 - Hesitancy of plant owners to share detailed models is discussed often
 - This hesitancy extends to sharing POW measurements with transmission system operators
- Labeled to support AI/ML

Review with BPA

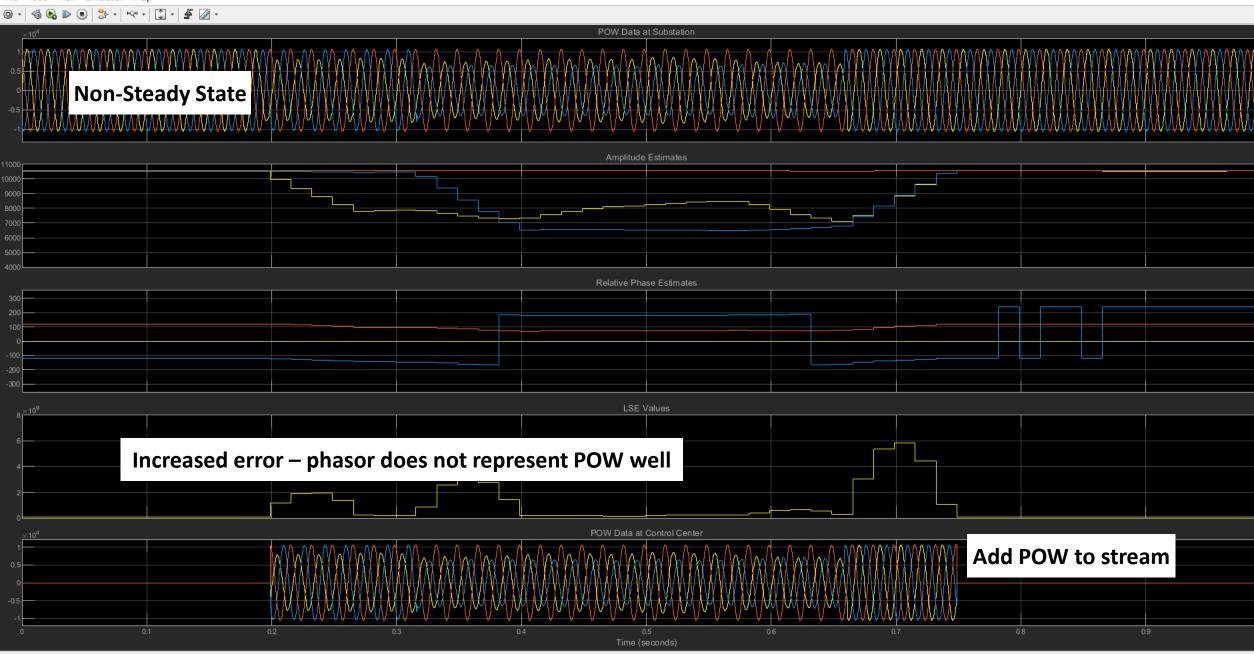


Seeking an application for demonstration

- Six POW applications considered most viable for demonstration:
 - Subsynchronous Oscillation (SSO) Source Localization
 - Disturbance Monitoring
 - Data-Driven Modeling for Stability and Control
 - Monitoring Support for Ride-Through Control Capability
 - Anti-Islanding Protection
 - Weak Grid Planning
- Reasons none moved forward to field demonstration:
 - PMU-based alternatives much easier to implement, though less performant
 - POW streaming not feasible
 - No practical way to automate collection of snapshots

Laboratory Demonstration

Power & Energy Society



—

Ø

×

Summary

- Despite an identified need, few new POW applications have been deployed
- Value proposition for streaming POW is not strong enough to justify expenses: bandwidth, network management, security, storage
- Conventional use (trigger-based recording) will continue to dominate if streaming remains the focus

IFFF

- Alternatives to streaming are needed
 - Automation to enable retrieval of gapless POW housed in substations
 - Synchrophasor-first architectures
 - Event capture with customizable triggering conditions
 - Distributed solutions