Impact of Data Quality on Synchro-Waveform Data Analytics

July 19, 2023

Farnoosh Rahmatian, NuGrid Power Corp
Outline

• Start with the end in mind
• Synchro waveforms application analytics types
• Data quality issues
• Examples
Synchro waveforms application analytics

Still very young

- **Edge Applications**
 - Operating on data locally at the grid edge
 - Can be the same as regular (non-synchro) waveform applications
 - Focus on measurement quality as opposed to data communications issues

- **Distributed and Central Applications**
 - Realtime and non-real-time applications
 - Relies on data communications infrastructure
 - Waveform resolution categories
 - 1-100/s Slow: synchrophasors (e.g., 25-120 per second)
 - 1k-10k/s Medium: harmonics power flow, high-impedance fault detection (1k to 20k per second)
 - 100k-1M+/s Fast: transients and travelling wave (100k – 1M per second)
Data quality issues

Different Types

- Measurement errors (inaccuracies)
 - Measurand errors (voltage, current, ...)
 - Time errors (timestamp errors)
 - Quality information (e.g., status info)
 - Trust level
- Data loss
 - Measurement instrument/sensor issues
 - Data transport issues
 - Data latency issues
 - Data storage issues
Data quality issues

Different Types

- Measurement errors (inaccuracies)
 - Measurand errors (voltage, current, ...)
 - Time errors (timestamp errors)
 - Quality information (e.g., status info)
 - Trust level
- Data loss
 - Measurement instrument/sensor issues
 - Data transport issues
 - Data storage issues
Examples
Example: Comparative Verification of Accuracy

12 kV Digitized Resistive-Divider Voltage System
Example of Verification of Accuracy

12kV – 60 Hz and Harmonics

4.8 kHz sampling rate
Example of Verification of Data Quality

12 kV Digitized Resistive-Divider Voltage System

Capacitor Switching & Slow Transients

4.8 kHz sampling rate
High-Frequency Example

Impact of Data Rate

~ 6 ms window at the beginning of the event
Anti-alias filtered and sampled at 14.4 kHz

~ 6 ms window at the beginning of the event
Anti-alias filtered and sampled at 1 MHz

Zooming into the first 200 µs window of the event (sampled at 1 MHz)
High-Frequency Example

Event Comparison across the grid

121 µs time difference (Event propagation time)
High-Frequency Example

Event Travel Comparison and Data Rate

~72 µs time difference for arrival of wave front
Questions?

frahmatian@nugridpower.com