

Synchro-waveforms: Application opportunities in electric power transmission systems

Chester Li, Hydro One Inc Chester.li@hydroone.com

- Introduction--Hydro One
- From waveforms to synchrowaveforms
 - When waveforms are not necessary in engineering judgment
 - When waveforms are necessary in troubleshooting
 - When synchro-waveforms are necessary
- Discussions

ONE OF THE LARGEST PURE PLAY ELECTRIC TRANSMISSION AND DISTRIBUTION COMPANIES IN NORTH AMERICA

Approximately 7,200MW wind/solar, 2022 peak demand around 23,000MW

Introduction – Hydro One

~1500 PQ meters

Engineering judgement when waveforms are unnecessary

- A 115kV shunt capacitor was switched off by opening CB1 @ Station A
- The line was tripped upon breaker switching and fault annunciated
- So what to check?

Voltage waveforms @ Station B, Nice to have but not necessary

Examples where waveforms are necessary

Total D-connected Solar MW trend under a 500kV fault

This may not tell the full story

A 230kV station MW flow through step-down transformer under the 500kV fault

Examples where waveforms are necessary

where waveforms are necessary

Voltage trend, waveforms and spectra under wind farm repetitive attempt to startup

where waveforms are necessary

where waveforms are necessary

Example when Synchro-Waveforms are necessary – Series Capacitor Bypass Control Validation

TRV----Fast bypassing is required

Telecom based transfer-bypassing---three terminal timing coordination

Racing: telecom delay + CapThor operation time → this must win vs.

terminal breaker interruption time,

Naturally Occurred Fault Result

Synchro-waveforms: 3-terminal line differential

Synchro-waveforms: Travel Wave based fault location

$$m = \frac{L}{2} \cdot \left(1 + \frac{t_L - t_R}{TWPT} \right)$$

L is the line length

tL is the TW arrival time at L side

tR is the TW arrival time at R side

TWPT is the travelling wave propagation time – the time it takes for the wave to run the entire line

Synchro-waveforms: SEL Travel Wave based fault location

Discussions

- 1. Hydro One's new standard designs use 1588 PTP for station relay or DFR. New switches support 1588.
- 2. Time stamping for offline analysis is still the major application, but we are exploring opportunities to exploit the potential from synchrowaveforms.
- 3. The travel wave based fault location can be used for online line condition monitoring (precursor)

Thank you