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Abstract—There has been a growing interest recently towards
integrating more renewable energy resources, in particular wind
power, in form of distributed generation (DG) units. However, one
important challenge with wind DG units is to provide low-cost
and fast-responding reactive power compensation of the wind
turbine’s inductive load to ensure a stable voltage profile in the
system. Since reactive power can only be compensated locally,
we consider a scenario where a wind DG unit is co-located with
a plug-in electric vehicle (PEV) charging station or a parking
lot, and we investigate how to align incentives to encourage PEV
owners to participate in reactive power compensation for wind
DG units. For this purpose, in this paper, we introduce a two-
stage Stackelberg game between the wind DG unit and the PEV
owners. We use backward induction to analyze the formulated
game and derive the optimal pricing scheme. We assess the
performance of our proposed scheme using field data and make
suggestions for the size of the charging stations.
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plug-in electric vehicles, reactive power compensation, real time
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I. INTRODUCTION

To achieve a larger penetration of renewable power, renew-

able distributed generation (DG) units are becoming increas-

ingly popular [1]. In contrast to the conventional approach of

a few large-scale generators located far from the load centers,

DG units will speed up the revolution of providing power on

site with little reliance on the distribution and transmission

network. The most popular renewable DG scheme is wind

turbines. Therefore, in this paper, we focus on the analysis

of wind power integration. There are several challenges to

integrate these DG units. Above all, there exists no accurate

long term wind power prediction method, which makes it

very difficult for independent system operators to perform

capacity planning. To address this challenge, in [2], Neely

et al. used Lyapunov theory to obtain a centralized optimal

queueing system for allocating renewable energy to delay-

tolerant consumers. In [3], He et al. proposed a multiple

timescale dispatch for smart grid with integrated wind power.

Wu et al. investigated how to utilize wind power integration

into the power grid when aggregators use a linear pricing

scheme in [4]. The same authors also and proposed a cost
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sharing game among end users to utilize available wind power

in [5]. In [6], Li et al. used stochastic programming to obtain

the optimal plug-in electric vehicle (PEV) power management

solutions for renewable wind and solar energy integration.
In addition to the need for constantly balancing supply and

demand for active power, we also need to compensate reactive

power for each wind DG unit. Reactive power compensa-

tion is needed since the load is not pure resistive and may

include inductors and capacitors that can may cause power

oscillations. In particular, given the inductive load of wind

turbines, we need reactive power compensation in order to

stabilize the voltage profile. The common solution to tackle

this problem is to install a combination of shunt capacitors,

switchable capacitors, and static var compensators (SVCs)

to be constantly adjusted according to the reactive power

compensation needs of the wind DG unit [7]. However, with

the increasing penetration rate of wind power generation, the

amount of reactive power to be compensated is growing. In

most cases, such amount is a fluctuating stochastic variable.

Since the response time for SVCs is relatively slow, engineers

are investigating the use of static synchronous compensators

(STATCOMs), which have faster response time [8]. However,

STATCOM devices are usually expensive and may not be a

feasible solution for large-scale deployment of wind DG units.
An alternative approach to compensate reactive power of

wind DG units is to utilize certain types of load that participate

in demand response. In particular, some recent studies have

shown that the power electronics AC-DC inverter circuits used

for charging PEVs can potentially contribute in to reactive

power compensation using appropriate P-Q control [9]. In [10],

Cvetkovic et al. presented the structure and capabilities of

a small, grid-interactive, distributed energy resource system

using PEVs to perform frequency and voltage regulation. In

[11], Turitsyn et al. considered the possibility of reactive

power control by distributed photovoltaic generators. In [12],

Wu et al. addressed a joint PEV-based optimization of fre-

quency and voltage regulation for smart grid. In [13], Farag

et al. proposed a two-way communication distributed control

scheme for voltage regulation in distribution feeders.
Following the results in [9]–[13], in this paper, we consider

a scenario where a wind DG unit is co-located with a PEV

charging station. We aim in answering the following question:

How can we provide incentives for PEV owners to partic-

ipate in reactive power compensation in order to optimally

utilize the reactive power compensatio potential of PEV AC-

DC inverters in vehicle-to-grid systems? We use tools and

techniques from game theory [14] to answer this question.

Our contributions in this paper can be summarized as follows.

• PEV-based Reactive Power Compensation: Instead of



installing SVCs or STATCOM, we consider an alternative

distributed approach to utilize PEV-based reactive power

compensation for wind DG units, which has lower cost

than installing STATCOM and is more flexible and con-

trollable than only using shunt and switchable capacitors.

• Stackelberg Game Formulation: We formulate the inter-

actions between the wind DG unit and the PEV owners as

a two-stage Stackelberg game, where the wind DG unit

is the leader and the PEV owners are the followers. Our

proposed model captures each player’s selfish behavior

and views each player as independent decision maker.

• Equilibrium Analysis: We use backward induction to

analyze the formulated game, and to obtain the optimal

pricing scheme. Subgame perfect equilibrium is investi-

gated as the solution concept of the proposed game.

• Simulation Assessment: We use field data to assess our

proposed approach in a two hours simulation. We inves-

tigate the desirable scale of the charging station for wind

DG units when using different charging methods.

The rest of this paper is organized as follows. The system

model is introduced in Section II. A centralized control ap-

proach for reactive power compensation is discussed in Section

III. Our proposed distributed interactive approach based on

the Stackelberg game model is presented in Section IV. We

use backward induction to analyze the formulated Stackelberg

game and to obtain the optimal pricing scheme in Section V.

Simulation results are presented in Section VI. Concluding

remarks and future work are discussed in Section VII.

II. SYSTEM MODEL

As shown in Fig. 1, in our system, there is a wind DG

unit equipped with several shunt and switchable capacitors.

The wind DG unit is co-located with a PEV charging station

or a parking lot, where several PEVs are parked and plugged

in. Some of these PEVs choose to charge their batteries as

quickly as possible, and thus, they are not willing to provide

any service to the wind DG unit. On the other hand, some

PEVs are available for a relatively longer periods of time

and are willing to participate in reactive demand response

programs, as long as they receive proper payments for the

service they offer. Let N , with cardinality N , denote the latter

group of PEVs. We assume that the wind DG unit tries to

use the shunt and switchable capacitors to compensate the

reactive power due to the dominantly inductive impact of

wind turbines. However, since such capacitors cannot achieve

arbitrary values, the wind DG unit may choose to also utilize

the reactive power compensation potential of the N available

PEVs. Without loss of generality, we assume that time is

divided into several equal-length time slots, e.g., one minute

per slot, and we focus on the analysis within one particular

time slot. A multi-slot analysis will address the long term

management of switchable capacitors to further reduce the

operating costs for these capacitors while maintaining a stable

voltage profile, and will be left to be studied as a future work.
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Fig. 1. The vehicle-to-grid system model considered in this paper.

III. CENTRALIZED CONTROL DESIGN

If the wind DG unit has full control over the PEVs, it can

design a centralized algorithm to coordinate the operation of

their chargers and inverters in order to achieve the desirable

amount of reactive power compensation. This would be needed

to stabilize voltage magnitude around its nominal value. At

each time slot, the wind DG unit predicts the amount of

reactive power compensation that it needs. We denote this

amount as Qd. As already mentioned in Section II, the wind

DG unit prefers to maximally utilize its shunt and switchable

capacitors. We denote Qc ∈ C as the amount of reactive power

injection provided by the shunt and switchable capacitors, with

feasible set C. Thus, the wind DG unit will select Qc according

to the solution of the following optimization problem:

minimize
Qc

|Qd −Qc|
subject to Qc ∈ C.

(1)

We note that, in general, problem (1) is NP-complete due to the

fact that the feasible set C is discrete. However, in practice, the

size of C is very small and most capacitors are almost identical.

Therefore, we can efficiently enumerate all the elements in C,

and thus determine a suitable Qc efficiently.

Let q = {qn, ∀n ∈ N}, where for each PEV n ∈ N ,

qn denotes the amount of reactive power provided by PEV

n to the wind DG unit in the current time slot. We assume

that the PEVs use trickle chargers [15]. Therefore, we can

assume that the maximal reactive power that they can provide

is qmax = Smax, where Smax is the maximal apparent power

supported. As such, we impose the following constraint on qn:

−qmax ≤ qn ≤ qmax, ∀n ∈ N . (2)

When using level 1 charging, qmax is 1.44 kVar and when

using level 2 charging, qmax is 7.68 kVar in US [16].

With a selected Qc, the wind DG unit would like to select

q to achieve the desirable Qd, i.e.,

minimize
q

(∑
n∈N

qn +Qc −Qd

)2

subject to − qmax ≤ qn ≤ qmax, ∀n ∈ N .

(3)

Problem (3) is a quadratic convex program and can be solved

efficiently in a centralized fashion. However, in most practical

cases, the wind DG unit does not have full control over



PEVs. Therefore, it cannot directly select the reactive power

compensation profiles q for the PEVs. Given the fact that PEV

owners are independent decision makers, next we use game

theory to analyze their interactions with the DG unit.

IV. STACKELBERG GAME DESIGN

We would like to design a proper pricing scheme to align

incentives to the PEVs in N . We denote Qmin as the minimal

reactive power injection the wind DG unit needs, and Qmax

as the maximal reactive power injection the wind DG unit can

handle. The overall idea of designing the pricing scheme is

that higher payments correspond to higher incentives. That is,

if the total reactive power injection,

Qc +
∑

n∈N qn, (4)

keeps the voltage profile in an acceptable range (i.e., between

Qmin and Qmax), then each PEV will receive a higher payment

than some base price pb. However, if the total reactive power

injection falls beyond the expected range, then each PEV will

face a lower payment than the base price pb.

If Qd < Qc, i.e., the wind DG unit needs reactive power

consumption from the PEVs in N , then it expects a negative

qn, for all n ∈ N . On the other hand, if Qd ≥ Qc, i.e., the

wind DG unit needs reactive power injection, then it expects

a positive qn from all PEVs in N . Therefore, we set up two

different pricing schemes based on these observations. When

Qd < Qc, we set the price as:

pc(q)=−pb−α

(
Qc +

∑
n∈N

qn −Qmin

)
. (5)

Here, α > 0 is the incentive control parameter which is ad-

justed to control PEVs reactive power compensation behavior.

We note that, the price is negative because the wind DG unit

expects a negative qn, for all n ∈ N in this case. Furthermore,

the price only relates to Qmin because the wind DG unit wants

the PEVs to consume the extra reactive power provided by the

shunt and switchable capacitors. Although, the DG unit does

not expect the total reactive power injection to be less than

Qmin, i.e., not adequate to ensure a stable voltage profile. As

we will show later, by applying the pricing scheme in (5), the

rational behaviors of all the PEVs will lead to a total reactive

power injection within the desirable range.

On the other hand, when Qd ≥ Qc, we set the price as:

pi(q)=pb+β

(
Qmax −Qc −

∑
n∈N

qn

)
, (6)

where β > 0 is another the incentive control parameter
which is again adjusted by the wind DG unit. The design

idea is similar to the idea for (5). We care about Qmax

in (6) since though the wind DG unit expects the PEVs to

inject reactive power, it doesn’t want the total reactive power

injection exceeds Qmax.

Above all, the pricing scheme is:

p(q) =

{
pc(q), if Qd < Qc,

pi(q), otherwise.
(7)

As we will show next, we aim to set incentive control

parameters α and β to achieve the optimal overall system

performance. We note that in our proposed pricing scheme,

q is set by the PEV owners, while α, β, Qc, Qmax, and Qmin

are set by the wind DG unit.
For the reactive power compensation that each PEV n

provides, it receives the following payment from the wind DG

unit:

fn(q) = p(q)qn. (8)

Due to space limitation, here we only analyze the more

common scenario when the wind DG unit needs reactive power

injection. The analysis for the case when the wind DG unit

needs reactive power consumption is very similar. As such,

when Qd < Qc, we can simplify the pricing scheme in (7) as

p(q) = pb + β
(
Qmax −Qc −

∑
n∈N qn

)
. (9)

Based on (9), we next introduce our game-theoretic model.

A. Wind DG Unit’s Payoff
As explained in Section III, the wind DG unit is inter-

ested in constantly performing reactive power compensation

to maintain a stable voltage profile. Therefore, we can model

the DG unit’s payoff function based on the mismatch between

the needed and achieved reactive power compensation:

g(β,Qmax, Qc)=−
(∑

n∈N
qn(β,Qmax, Qc)+Qc−Qd

)2

.

(10)

Here, we denote qn in the function form of qn(β,Qmax, Qc)
to emphasize that each PEV n will make its own decision

given parameters β, Qmax, and Qc in the pricing scheme in

(9).

B. PEVs’ Payoff
For each individual PEV owner, we formulate the payoff

functions as the payment that the user would obtain in (8).

That is, for each PEV n ∈ N , the payoff function becomes

fn(qn; q−n) = p(q) · qn

=

(
pb + β

(
Qmax−Qc−

∑
n∈N

qn

))
qn,

(11)

where q−n is the set of all PEVs’ reactive power compensation

profiles other than the reactive power compensation profile

of PEV n, i.e., q−n = {qs|s ∈ N \ {n}}. Therefore, for

each PEV, the payoff function depends on not only that PEV’s

operation, but also all other PEVs’ operations. This leads to

the formulation of our proposed two-stage Stackelberg game.

C. Stackelberg Game Formulation
As shown in Fig. 2, in the proposed two-stage Stackelberg

game, the wind DG unit is the Stackelberg leader. It first

decides the pricing parameters β and Qmax in Stage I. Then,

the PEVs act as Stackelberg followers and choose their reactive

power compensation profiles to maximize their own payoffs

in Stage II. For the case Qd ≥ Qc, we can formulate a similar

two-stage Stackelberg game, where the leader chooses the

pricing parameters α and Qmin.
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Fig. 2. A Stackelberg game formulation for reactive power compensation.

V. BACKWARD INDUCTION OF THE TWO-STAGE GAME

The Stackelberg game falls into the general class of dynamic

games. Its common solution concept is the subgame perfect

equilibrium (SPE). A powerful technique to obtain SPE is

backward induction [17]. To derive the SPE, our analysis starts

in Stage II and captures the PEVs’ behaviors given the wind

DG unit’s pricing scheme. Then, it moves backward in time

to Stage I to analyze how the wind DG unit may choose the

pricing parameters β and Qmax, given the expected response

of followers in Stage I. That is, backward induction captures

the sequential dependence of the decisions in the two stages.

A. Reactive Power Compensation Subgame in Stage II

The subgame in Stage II is the reactive power compensation

game among PEVs. We can formally define it as follows:

Reactive Power Compensation Subgame (RPC Game):
• Players: The set N of all the PEVs;

• Strategies: For each PEV n ∈ N , based on the given

pricing scheme set by the DG unit, it chooses its own

reactive power compensation profile qn ∈ [−qmax, qmax].

• Payoffs: For each PEV n ∈ N , its payoff function is

defined as its payment from the DG unit as in (11).

To analyze the equilibrium of the above game, first, we

obtain the model for best response, which is a PEV’s best

choice to maximize its own payoff assuming that all other

PEVs’ strategies are fixed.

Definition 1: For a PEV n ∈ N , its best response is:

qbestn (q−n) = argmax
qn∈[−qmax,qmax]

fn(qn; q−n). (12)

Since the payoff for each PEV is a quadratic function, we

can further represent the PEV n’s best response as follows:

qbestn (q−n) = argmin
qn∈[−qmax,qmax]

|qn − pb/2β−

(Qmax−Qc−
∑

s∈N\{n} qs)/2|.
(13)

Next, we investigate the solution concept of SPE.

Definition 2: A strategy profile {q∗n, ∀n ∈ N} is a subgame

perfect equilibrium of the Stackelberg game if given any β >
0, Qmax ≥ Qc ≥ 0, the restricted strategy profile {qn, ∀n ∈
N|β,Qmax, Qc} is a Nash equilibrium for the RPC subgame.

That is, for any pricing parameter β > 0, Qmax ≥ Qc ≥ 0,

no PEV n ∈ N can increase its payoff fn(·) by unilaterally
changing its own reactive power compensation profile q∗n.

Based on the definition of SPE, we can obtain each PEV’s

strategy by computing the Nash equilibrium of the RPC

subgame. Note that the Nash equilibrium is a fixed point of

all PEVs’ best responses, i.e., qbestn (q∗−n) = q∗n for all n ∈ N .

Next, we prove the existence and the uniqueness of Nash

equilibrium of the RPC subgame.

Theorem 1: Given β > 0, Qmax ≥ Qc ≥ 0, there always

exists a unique Nash equilibrium for the RPC game.

Proof: For any β > 0, each PEV player’s payoff function is

concave, and the strategy space is composed by a set of linear

constraints (i.e., qn ≤ qmax, ∀n ∈ N ), forming a convex set.

Thus, we can conclude Theorem 1 directly from [18]. �
Based on the PEVs’ best responses given in (13), we can

next move to Stage I of the Stackelberg game, where we will

investigate how to design the optimal pricing parameter β.

B. Determining β and Qmax in Stage I when Qd ≥ Qc

The wind DG unit should choose β such that at Nash equi-

librium (q∗n, n ∈ N ) of the RPC game, it can maximize its own

payoff (10). To achieve this goal, if 0 ≤ Qd −Qc ≤ Nqmax,

then the wind DG unit wants each PEV n’s strategy at Nash

equilibrium to be (Qd −Qc)/N . From (13), In order to have

q∗n =
Qd −Qc

N
, ∀n ∈ N , (14)

It is required that we actually have

q∗n =
pb+β(Qmax−Qc−

∑
s∈N\{n}qs)

2β
. (15)

This is achieved if we choose parameter β as

β =
Npb

(N + 1)Qd −NQmax −Qc
. (16)

Since parameter β has to be positive, it is required that

(N + 1)Qd −NQmax −Qc > 0. (17)

That is,

Qmax < Qd +
1

N
(Qd −Qc). (18)

Note that, parameter Qmax is naturally upper-bounded by the

reactive power injection that causes the voltage profile higher

than the upper bound of an accepted stable voltage profile. Let

QV
max denote such upper bound. We have

Qmax < min{Qd +
1

N
(Qd −Qc), Q

V
max}. (19)

We will show in Section V-D that this pricing parameter setup

can achieve the desirable SPE in all cases when Qd ≥ Qc.

C. Selecting α and Qmin when Qd < Qc

Following a similar analysis, we can obtain the optimal

choice for parameter α, for the reactive power consumption

case, as

α =
Npb

NQmin +Qc − (N + 1)Qd
. (20)

To maintain α > 0, we need

Qmin > Qd +
1

N
(Qd −Qc). (21)

Again, we note that parameter Qmin is naturally lower-

bounded by the reactive power injection that causes the voltage



profile lower than the lower bound of an accepted stable

voltage profile. Let QV
min denote such lower bound. We have

Qmin > max{Qd +
1

N
(Qd −Qc), Q

V
min}. (22)

We will show in Section V-D that this pricing parameter setup

can achieve the desirable SPE in all cases when Qd < Qc.

D. Optimality of the Pricing Scheme

With β as in (16), and α as in (20), we can obtain that

qbestn (q−n) = argmin
qn∈[−qmax,qmax]

|qn −(Qd−Qc)/2N−

(Qd−Qc−
∑

s∈N\{n}qs)/2|.
(23)

From (23) and Theorem 1, the following theorem is resulted.

Theorem 2: We can show that:

• If (Qd − Qc)/N < −qmax, then at Nash equilibrium of

the RPC game, we have

qn = −qmax, ∀n ∈ N . (24)

• If −qmax ≤ (Qd − Qc)/N ≤ qmax, then at Nash

equilibrium of the RPC game, we have

qn = (Qd −Qc)/N, ∀n ∈ N . (25)

• If (Qd−Qc)/N > qmax, then at Nash equilibrium of the

RPC game, we have

qn = qmax, ∀n ∈ N . (26)

From Theorem 2, the Nash equilibrium in all cases is the

solution to the centralized optimization problem (3).

VI. SIMULATION RESULTS

As shown in Section V, the proposed pricing model in (7)

can achieve optimal performance for the explained distributed

PEV-based reactive power compensation system. In this sec-

tion, we investigate the required size of the PEV charging

station to support reactive power compensation for wind DG

units of different sizes. First, we consider a wind DG unit

with 15 MW peak generation capacity. We assume the wind

DG unit predicts the upcoming wind power P and use the

P-Q characteristic curve to obtain Qd. For one minute time

slot, the prediction error is usually less than 2% [19]. To

better characterize the interaction between the wind DG unit

and the PEVs in N , we assume that the one-time slot ahead

predictions are perfect with no error. Its P-Q characteristic

curve is as in Fig. 3. Note that the maximal reactive power

required is around 6 MVAR. We assume that the DG unit is

equipped with one 1 MVAR, one 2 MVAR, and one 3 MVAR

switchable capacitors. Thus, C is {1, 2, 3, 4, 5, 6}. We use the

scaled NOAA ASOS wind data with one minute resolution

[20]. The wind DG unit will first try to use the switchable

capacitors to perform reactive power compensation by solving

optimization problem (1). During the two hours simulation,

the reactive power requests and corresponding Qc are set as

in Fig. 4. The difference between the reactive power request

and Qc is supplemented by the set of PEVs that participate in

reactive power compensation, which is shown in Fig. 5(a).
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Fig. 3. P-Q characteristic of a typical wind farm from [7].
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Fig. 4. The reactive power request and corresponding Qc.

Fig. 5(b)-(f) show the reactive power mismatch reduction

for various numbers of PEVs’ participation when using level

2 charging. The simulation results are quite intuitive. More

PEVs correspond to less fluctuations. The statistical features

of the reactive power compensation mismatch are shown in

Fig. 6. Fig. 6(a) shows that when using level 1 charging, to

compensate all the reactive power mismatch, we need at least

326 PEVs’ participation. On the other hand, when using level

2 charging, to compensate all the reactive power mismatch, we

only need 62 PEVs’ participation. We are also interested in

the mismatch variance reduction. As shown in Fig. 6(b), when

using level 1 charging, to reduce the mismatch variance by

80%, we need 172 PEVs’ participation. To reduce the variance

by 90%, we need 204 PEVs’ participation. On the other hand,

when using level 2 charging, to reduce the mismatch variance

by 80%, we only need 33 PEVs’ participation. To reduce the

variance by 90%, we need 39 PEVs’ participation.

By using level 2 charging, as shown in Fig. 5(f) and Fig. 6,

the wind DG unit will need roughly 50 PEVs for a maximal

500 kVAR reactive power mismatch. We note that there is

also a huge potential to electrify all the public transportation

systems (e.g., school buses), to have 50 PEVs’ participation

in the PEV charging station or a parking lot at each moment

could be quite possible. Hence, the simulation results here

suggest that our proposed framework could effectively reduce

the reactive power mismatch when the wind DG unit is not

equipped with SVCs or STATCOM. Furthermore, the scale

of charging station it needs is reasonably small when we use

level 2 charging given proper incentives to the PEV owners.

Nevertheless, in big cities such as New York, a charging

station of scale 300 PEVs is quite possible and using level

1 charging could be a desirable choice in such cases since the

infrastructure cost for level 1 charging is lower than level 2

charging. As such, our proposed framework is promising.

VII. CONCLUSIONS

In this paper, we proposed a Stackelberg game-theoretic

model to encourage PEV participation in reactive power com-
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Fig. 5. Reactive power mismatch reduction when using level 2 charging based on different participation levels: (a) without PEVs’ participation; (b) with 10
PEVs’ participation; (c) with 20 PEVs’ participation; (d) with 30 PEVs’ participation; (e) with 40 PEVs’ participation; (f) with 50 PEVs’ participation.
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Fig. 6. Reactive power compensation mismatch versus the number of PEVs
participating: (a) maximal mismatch; (b) mismatch variance.

pensation for wind DG units. Using backward induction, we

first analyzed the proposed pricing scheme to set the pricing

parameters such that an optimal reactive power compensation

performance is achieved. Then, we used field data to assess our

approach in a two hours simulation setting. Simulation results

confirm that our approach can effectively perform reactive

power compensation for wind DG units. The results also

suggest that when using level 2 charging, the desirable scale

of the charging station, co-located with the wind DG unit, can

be as small as only 50 PEVs.

This work can be extended in several directions. First, we

can consider the simultaneous active and reactive power com-

pensation for the wind DG units to also tackle the fluctuations

in real power generation. This will introduce new design trade-

offs as the active and reactive power are restricted and coupled

by the maximal apparent power constraint. We can also take

into account the stochastic availability of the PEVs when it

comes to decide on optimal operation of the charging stations

to offer reactive and active power compensation. In addition,

we may want to assess the impact of PEVs on the network

stresses in our future work.
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