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ABSTRACT
The operation of a data center consumes a tremendous

amount of electricity, and the energy cost accounts for a
large portion of the data center’s operation cost. This leads
to a growing interest towards reducing the energy cost of
data centers. One approach advocated in recent studies is
to distribute the computation workload among multiple geo-
graphically dispersed data centers by exploiting the electric-
ity price differences. However, the impact of load redistribu-
tions on the power grid is not well understood yet. This pa-
per takes the first step towards tackling this important issue,
by studying how the power grid can take advantage of the
data center’s load distribution proactively for the purpose of
power load balancing. We model the interactions between
power grid and data centers as a two-stage problem, where
the power grid operator aims to balance the electric power
load in the first stage, and the data centers seek to minimize
their total energy cost in the second stage. We show that
this two-stage problem is a bilevel program with an indef-
inite quadratic objective function, which cannot be solved
efficiently using standard convex optimization algorithms.
Therefore, we reformulate this bilevel optimization problem
as a linear program with additional finite complementar-
ity slackness conditions, and propose a branch and bound
algorithm to attain the globally optimal solution. The sim-
ulation results demonstrate that our proposed scheme can
improve the load balancing performance by around 12% in
terms of the electric load index and reduce the energy cost
of data centers by 46% on average.

1. INTRODUCTION
With the fast development of cloud computing services,

it is common for a cloud service provider (e.g., Google, Mi-
crosoft, or Amazon) to build multiple geographically dis-
persed large data centers across the country. Each data cen-
ter may include hundreds of thousands of servers, storage
equipment, cooling facilities, and power transformers. The
energy consumption and cost of a single data center hence
can be very significant [1]. For example, Google revealed
that its data centers continuously draw almost 260 MW of
power, which is more than what the Salt Lake City consumes
[2]. This has motivated a lot of research toward optimizing
the data center operations to reduce the total energy cost.
For example, Qureshi et al. in [1] proposed a cost minimiz-
ing method to coordinate cloud computing workload with
electricity price differences for minimizing the total energy
cost of distributed data centers. Some recent results further
studied the energy cost minimization problem with green
renewable energy [3, 4], data center demand response [5],
temperature aware management [6], multi-electricity-market
environment [7], and deregulated electricity price [8].
Due to the enormous energy consumption, data centers

are expected to have a great influence on the operation of
power grid [9]. However, most existing results focused on the
study of data centers’ energy minimization and cost mini-

mization, without detailed analysis of the impact on the
power grid. For example, when large data centers suddenly
increase their energy consumption in low price regions, they
may overload the grid, which can cause various problems,
such as a regional or major blackout.

To make the power grid more reliable and intelligent, there
has been an industry wide effort to build the new power
infrastructure often known as the smart grid [10]. Smart
grid is equipped with advanced communication technologies,
and is able to integrate energy suppliers and users more
effectively through two-way communications. For example,
an energy supplier can send real-time price information to
the smart meters of users, and the users can change energy
consumption in response to the price changes. This can
effectively coordinate demand with supply, and hence avoid
the danger of power overload.

The above approach of dynamic electricity pricing for ef-
fective demand side management has been discussed exten-
sively in the recent literature [11–15]. For example, in [11],
Mohsenian-Rad et al. suggested scheduling household de-
vices based on the predicted price to minimize the electric-
ity cost. Mohsenian-Rad and Leon-Garcia in [12] considered
the electricity cost sharing problem in a distributed man-
ner. Nguyen et al. [13] proposed a game theoretic model in
which an electricity provider dynamically updates the en-
ergy prices by considering the load profiles of the users to
reduce the peak load. Chen et al. [14] also studied the resi-
dential electricity scheduling problem based on a Stackelberg
game. Wong et al. in [15] designed a time-dependent price
to incentivize users to shift power load so as to relieve stress
during peak time. However, most of the existing results fo-
cused on the residential demand shifting over time without
considering the demand management over space.

Motivated by the fact that data centers are often geo-
graphically distributed and have large energy demands, we
investigate the geographical power load balancing problem
via managing the energy consumption of data centers across
both space and time. Figure 1 illustrates the system under
consideration. The smart grid tries to achieve the power
load balancing by altering the electricity consumption of
data centers through dynamic pricing, and the data centers
respond to the electricity prices and manage the computing
workload assignments to minimize their total energy cost.
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Figure 1: Smart Grid and Data Center Interactions

The main contributions of this paper are listed as follows.

∙ To the best of our knowledge, this is the first pa-
per that studies the interactions between smart grid
and data centers by considering the active decisions
on both sides.



∙ We show that the two-stage problem is a bilevel pro-
gram with an indefinite quadratic objective function,
and cannot be solved by standard convex programming
algorithms. We reformulate the two-stage problem as
a linear program with complementarity slackness con-
ditions, and design a branch and bound algorithm to
attain the globally optimal solution.

∙ We also solve an integrated problem, and the solution
provides a performance lowerbound to the two-stage
problem. Simulation results show that the optimal so-
lution of the two-stage problem is very close to the
centralized optimal solution.

∙ Compared with the performance of LMP based pric-
ing, our proposed method can both balance the power
load for smart grid and reduce total energy cost for
data centers, hence achieving a win-win result. Sim-
ulation results show that the load balancing perfor-
mance of smart grid is improved by around 12% and
the total energy cost of data centers is reduced by 46%
on average.

The reminder of this paper is organized as follows. Next
we formulate the system model in Section 2. In Section 3,
we analyze the two-stage optimization problem and design a
branch and bound algorithm to attain the global optimum.
Performance of the proposed scheme is evaluated in Section
4. Finally, we conclude in Section 5.

2. SYSTEM MODEL
We consider a discrete time model 𝑡 ∈ 𝒯 = {1, ..., 𝑇},

where the length of a time slot matches the time-scale at
which the workload allocation decisions and dynamic pricing
decisions can be updated (such as one hour [7,16]). Let 𝒩 =
{1, ..., 𝑁} denote the set of geographically dispersed data
centers, where each data center 𝑖 ∈ 𝒩 has 𝑀𝑖 homogeneous
servers. As we explain later, not all the servers will be turned
on during each time slot. Each data center is powered by
a separate power substation in the power grid. We assume
that there is a traffic aggregator responsible for distributing
the total incoming computing workload 𝐿𝑡 within time slot 𝑡
to data centers in different regions [7]. We assume that there
is no cost for distributing workload among data centers, but
the QoS constraints of the workload assignment should be
satisfied. Figure 2 illustrates the interactions between smart
grid and data centers.
We assume that data centers cannot influence the electric-

ity market price. Therefore, they are assumed to be price
takers. We model the interactions between smart grid and
data centers in two stages. Consider a time slot 𝑡 ∈ 𝒯 .
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Figure 2: Architecture of data centers and smart
grid

In Stage 1, the smart grid sets the charging threshold 𝑠𝑡𝑖
(which determines the electricity tariff) for each data center
𝑖 to balance the power load. In Stage 2, data centers co-
operate with each other (as they belong to the same cloud
computing provider) to minimize the total energy cost by
determining the computing workload allocation 𝜆𝑡

𝑖 and the
number of active servers 𝑥𝑡

𝑖 in each data center 𝑖. Next we
discuss these decisions in details.

2.1 Stage 2: Data Center’s Energy Cost Min-
imization

First, we consider the Stage-2 problem, where a cloud
computing provider (such as Google) wants to minimize the
total energy cost of multiple data centers. At time 𝑡, the
smart grid charges the data center 𝑖 with the following re-
gional electricity price 𝜋𝑡

𝑖 (per unit of energy),

𝜋𝑡
𝑖 = 𝛼𝑡

𝑖 + 𝛽𝑖(𝐸
𝑡
𝑖 − 𝑠𝑡𝑖), (1)

where 𝐸𝑡
𝑖 is data center’s the electricity consumption, 𝑠𝑡𝑖 is

the charging threshold, 𝛽𝑖 > 0 is the sensitivity parameter,
and 𝛼𝑡

𝑖 > 0 denotes the locational marginal price (LMP), all
in the location 𝑖 at time 𝑡. Here 𝐸𝑡

𝑖 is the decision variable
by data center 𝑖 in Stage 2. The dynamic pricing scheme
(1) is motivated by the tiered pricing which has been widely
implemented in the power markets such as US, Japan, and
China. The key idea is to set several tiers of energy con-
sumption, and the unit price per unit of energy increases
with the tiers progressively [17]. In (1), 𝑠𝑡𝑖 is the decision
variable that is determined by the smart grid in Stage 1.
The value of 𝑠𝑡𝑖 is assumed to be fixed and known in Stage
2. The unit price 𝜋𝑡

𝑖 will be lower than the LMP bench-
mark if the threshold 𝑠𝑡𝑖 is set to be larger than the energy
consumption 𝐸𝑡

𝑖 .
In the following, we discuss the data centers’ optimization

constraints.

2.1.1 Workload constraint
In each time slot, the 𝑁 data centers should work together

to complete the total workload of 𝐿𝑡 with the allocation to
data center 𝑖 as 𝜆𝑡

𝑖.
𝑁∑
𝑖=1

𝜆𝑡
𝑖 = 𝐿𝑡, 𝜆𝑡

𝑖 ≥ 0, ∀𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 . (2)

2.1.2 QoS (delay) constraint
It is important for data centers to provide QoS guaran-

tees to the users, and one important QoS metric is delay.
We consider both the transmission delay (incured before the
request arriving at the data centers) and the queuing delay
(caused by the processing in the data centers). To model the
transmission delay, we let 𝑑𝑡𝑖 denote the transmission delay
experienced by a computing request from the aggregator to
the data center 𝑖 during time slot 𝑡. Notice that 𝑑𝑡𝑖 is usually
much less than the length of a time slot. To model the queu-
ing delay, we use queuing theory to analyze the average pro-
cessing time in data center 𝑖 when there are 𝑥𝑡

𝑖 active servers
processing workload 𝜆𝑡

𝑖 with a service rate 𝜇 per server, and
the average waiting time is 1

𝜇𝑥𝑡
𝑖−𝜆𝑡

𝑖
[3, 7]. To meet the QoS

requirement, the total time delay experienced by a comput-
ing request should satisfy some delay bound 𝐷, which is the
maximum waiting time that a request can tolerate. For sim-
plicity, in this paper we will assume homogeneous requests
that have the same delay bound 𝐷. Therefore, we have the
following QoS constraint

𝑑𝑡𝑖 +
1

𝜇𝑥𝑡
𝑖 − 𝜆𝑡

𝑖

≤ 𝐷, ∀𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 , (3)

where 𝜇𝑥𝑡
𝑖 ≥ 𝜆𝑡

𝑖.



2.1.3 Server constraint
At each data center 𝑖, there are tens of thousands of

servers providing cloud computing services to meet users’
requests. Let 𝑀𝑖 denote the maximum number of available
servers. Since the number of servers is usually large, we can
relax the integer constraint of number of active servers with-
out significantly affecting the optimal result. Therefore, we
have the following server constraint

0 ≤ 𝑥𝑡
𝑖 ≤ 𝑀𝑖, ∀𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 . (4)

2.1.4 Energy consumption constraint
The energy consumption of a data center mainly depends

on its computing workload and the number of active servers.
More precisely, the energy consumption of data center 𝑖 at
time slot 𝑡 [1, 9] is

𝐸𝑡
𝑖 = 𝑥𝑡

𝑖

(
𝑃𝑖𝑑𝑙𝑒+(𝐸𝑢𝑠𝑎𝑔𝑒−1)𝑃𝑝𝑒𝑎𝑘

)
+𝑥𝑡

𝑖(𝑃𝑝𝑒𝑎𝑘−𝑃𝑖𝑑𝑙𝑒)𝛾
𝑡
𝑖+𝜉,

where 𝑃𝑖𝑑𝑙𝑒 and 𝑃𝑝𝑒𝑎𝑘 represent the average idle power and
average peak power of a single server, respectively. Power
usage effectiveness (PUE), denoted by 𝐸𝑢𝑠𝑎𝑔𝑒, measures the
energy efficiency of the data center, and is defined as the
ratio of the data center’s total energy consumption to the
energy consumption of servers. Average server utilization
of data center 𝑖 at time 𝑡, denoted by 𝛾𝑡

𝑖 , is represented as
𝛾𝑡
𝑖 = 𝜆𝑡

𝑖/(𝜇𝑥
𝑡
𝑖). The parameter 𝜉 is an empirical constant

[9]. We observe that the term 𝑥𝑡
𝑖(𝑃𝑖𝑑𝑙𝑒 + (𝐸𝑢𝑠𝑎𝑔𝑒 − 1)𝑃𝑝𝑒𝑎𝑘)

represents the base energy consumption, which only depends
on the number of active servers. The term 𝑥𝑡

𝑖(𝑃𝑝𝑒𝑎𝑘−𝑃𝑖𝑑𝑙𝑒)𝛾
𝑡
𝑖

represents the incremental consumption, which depends on
the workload. We can rewrite 𝐸𝑡

𝑖 in the equivalent form as

𝐸𝑡
𝑖 = 𝑎𝜆𝑡

𝑖 + 𝑏𝑥𝑡
𝑖 + 𝑐, ∀𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 , (5)

which is an affine function in terms of the number of active
servers 𝑥𝑡

𝑖 and the computing workload 𝜆𝑡
𝑖. The coefficients

are 𝑎 = (𝑃𝑝𝑒𝑎𝑘 − 𝑃𝑖𝑑𝑙𝑒)/𝜇, 𝑏 = 𝑃𝑖𝑑𝑙𝑒 + (𝐸𝑢𝑠𝑎𝑔𝑒 − 1)× 𝑃𝑝𝑒𝑎𝑘,
and 𝑐 = 𝜉.
Note that a data center 𝑖 needs to share the power supply

with the background consumption, i.e., electricity usage by
other industrial and residential users, in the same location.
Since the total power supply capacity is limited at this sta-
tion and the background load is time varying, then we limit
the maximum power that can be consumed by data center 𝑖
at time 𝑡 as

𝐸𝑡
𝑖 ≤ 𝑞𝑡𝑖 , ∀𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 . (6)

where 𝑞𝑡𝑖 denotes the available power supply to data center
𝑖 at time 𝑡.
With the above constraints, we can formulate the cloud

computing provider’s energy cost minimization problem in
Stage 2. The objective is to minimize the data centers’ total
energy cost over all locations and all time slots by choosing
the workload allocation 𝜆𝑡

𝑖 and the number of active servers
𝑥𝑡
𝑖 for each data center 𝑖 ∈ 𝒩 and each time 𝑡 ∈ 𝒯 . The

Stage 2 problem is as follows.

Stage 2: Total energy cost minimization

min
𝝀, 𝒙

𝐸𝐶𝑜𝑠𝑡 =
∑
𝑡∈𝒯

∑
𝑖∈𝒩

(
𝛼𝑡
𝑖 + 𝛽𝑖(𝐸

𝑡
𝑖 − 𝑠𝑡𝑖)

)
𝐸𝑡

𝑖

subject to 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (2)− (6). (PS2)

Here the workload allocation vector 𝝀 = (𝝀𝑖, ∀𝑖 ∈ 𝒩 ), where
𝝀𝑖 = (𝜆𝑡

𝑖, ∀𝑡 ∈ 𝒯 ). The active server number vector 𝒙 =
(𝒙𝑖,∀𝑖 ∈ 𝒩 ), where 𝒙𝑖 = (𝑥𝑡

𝑖,∀𝑡 ∈ 𝒯 ).
Notice that the optimal values of 𝝀 and 𝒙 of Problem

(PS2) are functions of the charging thresholds 𝒔 = (𝑠𝑡𝑖,∀𝑖 ∈
𝒩 ,∀𝑡 ∈ 𝒯 ).

2.2 Stage 1: Smart Grid’s Power Load Bal-
ancing

Now we consider the Stage-1 power load balancing prob-
lem for the smart grid. Overload has been a major problem
in traditional power grid, as it is often difficult to prevent
users in a specific region to generate an excessive power de-
mand. With the emergence of smart grid, it is possible for
the grid operator to communicate with the users and try
to incentivize the users to shift load from heavy load re-
gions to light load regions. In our proposed framework, the
smart grid optimizes dynamic prices by setting the charging
thresholds 𝒔 to achieve the power load balancing. To mea-
sure the power load levels in different locations, we define
the electric load ratio in location 𝑖 at time 𝑡 as

𝑟𝑡𝑖(𝒔) =
𝐸𝑡

𝑖 (s) +𝐵𝑡
𝑖

𝐶𝑖
, (7)

where 𝐸𝑡
𝑖 is the energy consumption of data center 𝑖 and in

general depends on the energy threshold 𝒔 for all locations
and all time slots,1 𝐵𝑡

𝑖 is the background power load, and
𝐶𝑖 is the capacity of power substation 𝑖. In general, if the
load ratio is high, then the grid operator can better utilize
the installed capacity. However, high load ratio may also
increase the risk of overloading the power system.

Let 𝑞𝑡𝑖 = 𝐶𝑖 −𝐵𝑡
𝑖 be the maximum available power supply

to the data center 𝑖 at time 𝑡. Usually, conventional electric-
ity users have inflexible usage patterns and their demands
can be inelastic. However, data centers have a very good
flexibility in energy consumption because of the ability of
routing workload among different locations. Therefore, we
denote the total energy usage of conventional users other
than data centers as the background energy load 𝐵𝑡

𝑖 . Since
our study focuses on the impact of data center energy con-
sumption, we assume the background energy load can be
predicted accurately [18].

Based on the load ratio 𝑟𝑡𝑖 , we define the electric load index
(ELI) across all locations and time slots as

𝐸𝐿𝐼 ≜
∑
𝑡∈𝒯

∑
𝑖∈𝒩

(
𝑟𝑡𝑖(𝒔)

)2

𝐶𝑖, (8)

where ELI is motivated by the index measurement tech-
niques [19,20] used for feeder load balancing in distribution
system. ELI not only measures the overall load ratio but
also gives different weights based on the capacities in dif-
ferent locations. The smart grid aims at balancing the load
ratio 𝑟𝑡𝑖(𝒔) at all locations and all time slots by minimizing
the ELI. We will show later that minimizing ELI results in
balancing the electric load across all the locations.

To balance the electric power load, the grid operator pro-
vides rewards (price discounts) to incentivize users to shift
their electricity usage. As power grid is usually a regulated
industry, we assume that the regulator sets the upper bound
and lower bound of the charging threshold 𝒔 as follows.

First, the unit price 𝜋𝑡
𝑖 defined in (1) should be non-

negative, hence

𝛼𝑡
𝑖 + 𝛽𝑖(𝐸

𝑡
𝑖 − 𝑠𝑡𝑖) ≥ 0. (9)

Second, the unit price should be lower than the LMP 𝛼𝑡
𝑖,

since we assume that smart grid only provides price discount
(instead of charging extra) to data centers. This means

𝛼𝑡
𝑖 + 𝛽𝑖(𝐸

𝑡
𝑖 − 𝑠𝑡𝑖) ≤ 𝛼𝑡

𝑖. (10)

1In Section 3, we will show that our two-stage problem can
be decomposed across time, and hence 𝐸𝑡

𝑖 only depends on
the thresholds in time slot 𝑡.



Combining (9) and (10), we get the constraints for 𝒔:

𝐸𝑡
𝑖 ≤ 𝑠𝑡𝑖 ≤ 𝛼𝑡

𝑖

𝛽𝑖
+ 𝐸𝑡

𝑖 , ∀𝑖 ∈ 𝒩 , 𝑡 ∈ 𝒯 , (11)

where the upper bound
𝛼𝑡
𝑖

𝛽𝑖
+ 𝐸𝑡

𝑖 and lower bound 𝐸𝑡
𝑖 are

not constant, but functions of 𝒔. We will solve 𝐸𝑡
𝑖 explicitly

in Section 3. Hence, (11) are not box constraints but are
general inequalities.
The ELI is not only a technical measure, but also an

economic indicator. The higher ELI is, the more costly to
maintain the stability of the power system. Furthermore, if
load ratio 𝑟𝑡𝑖 is close to 100%, then the grid operator must in-
vest more in electricity facilities to prevent the demand from
exceeding the capacity, and such capacity investment is ex-
tremely costly. Meanwhile, we also note that the smart grid
needs to give discounts to the users (through a proper choice
of 𝒔) to achieve load balancing, and such discounts lead to
the grid operator’s revenue loss. Therefore, the smart grid
will aim at minimizing the weighted sum of the cost repre-
sented by ELI and revenue loss caused by offering discounts
to the data centers.2

Stage 1: Electric power load balancing

min
𝒔

∑
𝑡∈𝒯

∑
𝑖∈𝒩

𝜃𝐶𝑖

(
𝑟𝑡𝑖(𝒔)

)2

+ (1− 𝜃)𝛽𝑖(𝑠
𝑡
𝑖 − 𝐸𝑡

𝑖 (𝒔))𝐸
𝑡
𝑖 (𝒔)

subject to 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (11), (PS1)

where 𝜃 ∈ [0, 1] is a tradeoff coefficient.

3. TWO-STAGE PROBLEM
We will solve the problem through backward induction.

We first solve the Stage-2 problem, where data centers min-
imize the total energy cost. Then we design a branch and
bound algorithm for the Stage-1 problem to attain the glob-
ally optimal solution.

3.1 Solving the Stage-2 problem
In the Stage-2 problem, data centers decide the workload

allocation 𝜆𝑡
𝑖 and number of active servers 𝑥𝑡

𝑖 at all locations
and all time slots to minimize the total energy cost. We
will first decompose the workload allocation problem to 𝑇
equivalent problems shown in Lemma 1, and solve the op-
timal energy consumption 𝐸𝑡

𝑖 of each data center 𝑖 at each
time slot 𝑡.

Lemma 1. Solving the Stage-2 problem (PS2) is equiva-
lent of solving 𝑇 subproblems separately, where each subpro-
gram involves the energy consumption distribution in a time
slot 𝑡 ∈ 𝒯 as follows.

min
𝐸𝑡

𝑖 ,∀𝑖∈𝒩

∑
𝑖∈𝒩

(
𝛼𝑡
𝑖 + 𝛽𝑖(𝐸

𝑡
𝑖 − 𝑠𝑡𝑖)

)
𝐸𝑡

𝑖 (PE2-t)

subject to
∑
𝑖∈𝒩

𝐸𝑡
𝑖 = 𝐸𝑡,

𝜙𝑡
𝑖 ≤ 𝐸𝑡

𝑖 ≤ 𝜙𝑡
𝑖, ∀𝑖 ∈ 𝒩 .

where 𝐸𝑡 is the total energy consumption needed in time slot
𝑡 to process the total workload 𝐿𝑡, and 𝜙𝑡

𝑖 and 𝜙𝑡
𝑖 are the

minimum and maximum energy consumptions, respectively.
Here 𝐸𝑡 = (𝑎+ 𝑏

𝜇
)𝐿𝑡+

∑
𝑖∈𝒩 ( 𝑏

𝜇(𝐷−𝑑𝑡𝑖)
+𝑐), 𝜙𝑡

𝑖 =
𝑏

𝜇(𝐷−𝑑𝑡𝑖)
+𝑐,

and 𝜙𝑡
𝑖 = 𝑚𝑖𝑛{𝑞𝑡𝑖 , 𝑎(𝜇𝑀𝑖 − 1

𝐷−𝑑𝑡𝑖
) + 𝑏𝑀𝑖 + 𝑐}. The readers

can find the proof of Lemma 1 in [28].
2If we allow the grid operator to freely choose the prices (i.e.,
higher or lower than LMP), then the ELI maybe further
reduced comparing with the case of providing price discounts
only. Hence our proposed scheme provides a performance
lower-bound for the grid operator in practice.

As Problem (PE2-t) is strictly convex, we can compute the
optimal solution 𝐸𝑡∗

𝑖 through the Lagrangian dual method.
This leads to the following result.

Theorem 1. The unique optimal solution of Problem (PE2-
t) is

𝐸𝑡∗
𝑖 = 𝑚𝑖𝑑

(
𝜙𝑡
𝑖,
𝑠𝑡𝑖
2

− 𝛼𝑡
𝑖 + 𝜎𝑡

2𝛽𝑖
, 𝜙𝑡

𝑖

)
, ∀𝑖 ∈ 𝒩 . (12)

where 𝜎𝑡 is the Lagrangian multiplier corresponding to the
equality constraint

∑
𝑖∈𝒩 𝐸𝑡

𝑖 = 𝐸𝑡, and the operator 𝑚𝑖𝑑
means the median of its three arguments.

Problem (PE2-t) can be solved by the standard subgradi-
ent method with constant stepsize [21], shown in [28].

3.2 Solving the Stage-1 problem
After solving the Stage-2 problem, we obtain the optimal

energy consumption of data centers as functions (12) of the
given charging thresholds 𝒔. As a quadratic bilevel program,
solving the Stage-1 problem (PS1) is NP-hard [22]. How-
ever, we notice that solving (PS1) is equivalent to solving 𝑇
subproblems in each time slot 𝑡 separately. We denote the
subproblem in time slot 𝑡 as (PS1-t) and write (PS1-t) as

min
{𝑠𝑡𝑖,𝐸𝑡

𝑖 ,𝜎
𝑡,𝜔𝑡

𝑖 ,𝜔
𝑡
𝑖}∀𝑖∈𝒩

∑
𝑖∈𝒩

𝜃𝐶𝑖(𝑟
𝑡
𝑖)

2 + (1− 𝜃)𝛽𝑖(𝑠
𝑡
𝑖 − 𝐸𝑡

𝑖 )𝐸
𝑡
𝑖

subject to 𝐸𝑡
𝑖 ≤ 𝑠𝑡𝑖 ≤ 𝛼𝑡

𝑖

𝛽𝑖
+ 𝐸𝑡

𝑖 , ∀𝑖 ∈ 𝒩 , (13)

𝛼𝑡
𝑖 + 2𝛽𝑖𝐸

𝑡
𝑖 − 𝛽𝑖𝑠

𝑡
𝑖 + 𝜎𝑡 − 𝜔𝑡

𝑖 + 𝜔𝑡
𝑖 = 0, ∀𝑖 ∈ 𝒩 , (14)

𝜔𝑡
𝑖(𝜙

𝑡
𝑖 − 𝐸𝑡

𝑖 ) = 0, ∀𝑖 ∈ 𝒩 , (15)

𝜔𝑡
𝑖(𝐸

𝑡
𝑖 − 𝜙𝑡

𝑖) = 0, ∀𝑖 ∈ 𝒩 , (16)∑
𝑖∈𝒩

𝐸𝑡
𝑖 = 𝐸𝑡, (17)

𝜙𝑡
𝑖 ≤ 𝐸𝑡

𝑖 ≤ 𝜙𝑡
𝑖, ∀𝑖 ∈ 𝒩 , (18)

𝜔𝑡
𝑖 ≥ 0, 𝜔𝑡

𝑖 ≥ 0, ∀𝑖 ∈ 𝒩 , (19)

where (14)-(19) are the KKT conditions of the Stage-2 prob-

lem, and 𝜎𝑡, 𝜔𝑡
𝑖 , and 𝜔𝑡

𝑖 are the Lagrange multipliers associ-
ated with the equality and box constraints of Problem (PE2-
t). The equivalence of the KKT formulation is guaranteed
because Problem (PE2-t) is strictly convex and hence the
KKT conditions are necessary and sufficient for the globally
optimal solution of Problem (PE2-t).

To linearize the complementarity slackness conditions (15)
and (16), we introduce binary variables 𝑧𝑡𝑖 and 𝑧𝑡𝑖, and re-
place (15) and (16) by the following constraints.

𝐸𝑡
𝑖 − 𝜙𝑡

𝑖 ≤ 𝑧𝑡𝑖𝑀, ∀𝑖 ∈ 𝒩 , (20)

𝜔𝑡
𝑖 ≤ (1− 𝑧𝑡𝑖)𝑀, ∀𝑖 ∈ 𝒩 , (21)

𝜙𝑡
𝑖 − 𝐸𝑡

𝑖 ≤ 𝑧𝑡𝑖𝑀, ∀𝑖 ∈ 𝒩 , (22)

𝜔𝑡
𝑖 ≤ (1− 𝑧𝑡𝑖)𝑀, ∀𝑖 ∈ 𝒩 , (23)

where 𝑀 is a sufficiently large constant.
We observe that the objective of Problem (PS1-t) is an in-

definite quadratic function, hence it is NP-hard [23]. Since
the nonconvexity only comes from the indefinite quadratic
objective, we can reformulate the problem and design a
branch and bound algorithm to solve (PS1-t) and attain
the globally optimal solution [23]. There are two advan-
tages of using the branch and bound algorithm to solve our
problem. The first one is that the branch and bound al-
gorithm incorporates the KKT conditions in our problem,
where the branching rule is designed based on the com-
plementarity slackness conditions. The second one is that
the branch and bound tree of our problem is finite, which
guarantees the convergence of the algorithm [24]. Denote



𝑬𝑡 = {𝐸𝑡
𝑖 ,∀𝑖 ∈ 𝒩}, 𝒔𝑡 = {𝑠𝑡𝑖, ∀𝑖 ∈ 𝒩}, 𝝎𝑡 = {𝜔𝑡

𝑖 ,∀𝑖 ∈ 𝒩},
and 𝝎𝑡 = {𝜔𝑡

𝑖 , ∀𝑖 ∈ 𝒩}, we can rewrite Problem (PS1-t) as
the general form noted as (PE1-t).

min
𝑬𝑡,𝒔𝑡,𝜎𝑡,𝝎𝑡,𝝎𝑡

1

2
𝑬𝑡𝑇𝑯1𝑬

𝑡 + 𝒔𝑡𝑇𝑯2𝑬
𝑡 + 𝒇 𝑡𝑇𝑬𝑡 +𝑩𝑡𝑇𝑯3𝑩

𝑡

subject to 𝑬𝑡 − 𝒔𝑡 ≤ 0, 𝒔𝑡 −𝑬𝑡 ≤ 𝒃𝑡1, (24)

2𝑯4𝑬
𝑡 −𝑯4𝒔

𝑡 + 𝜎𝑡1− 𝝎𝑡 + 𝝎𝑡 = 𝒃𝑡2, (25)

1𝑇𝑬𝑡 = 𝐸𝑡, (26)

𝒃𝑡3 −𝑬𝑡 ≤ 0, 𝑬𝑡 − 𝒃𝑡4 ≤ 0, (27)

𝝎𝑡 ≥ 0, 𝝎𝑡 ≤ 𝒃𝑡5, (28)

𝝎𝑡 ≥ 0, 𝝎𝑡 ≤ 𝒃𝑡6, (29)

where the detailed formulation including the parameter ma-
trices and vectors are presented in [28] due to space limit.
Then we reformulate the general quadratic programming

problem (PE1-t) as a linear programming problem with com-
plementarity constraints [23]. Let us introduce multipliers
𝒗𝑡
1 ≥ 0, 𝒗𝑡

2 ≥ 0, 𝒗𝑡
3, 𝑣

𝑡
4, 𝒗

𝑡
5 ≥ 0, 𝒗𝑡

6 ≥ 0, 𝒗𝑡
7 ≥ 0, 𝒗𝑡

8 ≥ 0,
𝒗𝑡
9 ≥ 0, and 𝒗𝑡

10 ≥ 0, associated with the inequality, equality
and box constraints of Problem (PE1-t), where 𝑣𝑡4 ∈ ℝ, and
𝒗𝑡
𝑗 ∈ ℝ𝑁×1, 𝑗 ∈ {1, ..., 10}∖{4}. Given any locally optimal

solution of Problem (PE1-t), we can define the following two
sets for the multipliers

𝒢 = {𝑯2𝑬
𝑡 − 𝒗𝑡

1 + 𝒗𝑡
2 −𝑯4𝒗

𝑡
3 = 0,

𝑯1𝑬
𝑡 +𝑯2𝒔

𝑡 + 𝒇 𝑡 + 𝒗𝑡
1 − 𝒗𝑡

2 + 2𝑯4𝒗
𝑡
3 + 𝑣𝑡41− 𝒗𝑡

5 + 𝒗𝑡
6 = 0,

1𝑇𝒗𝑡
3 = 0, − 𝒗𝑡

3 − 𝒗𝑡
7 + 𝒗𝑡

8 = 0, 𝒗𝑡
3 − 𝒗𝑡

9 + 𝒗𝑡
10 = 0},

𝒞 = {(𝑬𝑡 − 𝒔𝑡) ∘ 𝒗𝑡
1 = 0, (𝒔𝑡 −𝑬𝑡 − 𝒃𝑡1) ∘ 𝒗𝑡

2 = 0,

(𝒃𝑡3 −𝑬𝑡) ∘ 𝒗𝑡
5 = 0, (𝑬𝑡 − 𝒃𝑡4) ∘ 𝒗𝑡

6 = 0, 𝝎𝑡 ∘ 𝒗𝑡
7 = 0,

(𝝎𝑡 − 𝒃𝑡5) ∘ 𝒗𝑡
8 = 0, 𝝎𝑡 ∘ 𝒗𝑡

9 = 0, (𝝎𝑡 − 𝒃𝑡6) ∘ 𝒗𝑡
10 = 0},

where 𝒢 is the set of Lagrange stationarity conditions, 𝒞 con-
sists of those multipliers satisfying complementarity slack-
ness conditions, and “∘” denotes the component-wise prod-
uct of two vectors. According to [23], if 𝒢 ∩ 𝒞 ∕= ∅, then the
KKT conditions are necessary for a local (and also a global)
optimal solution.

Theorem 2. (Reformulation) The Stage-1 problem (PE1-
t) can be written in the following equivalent linear program-
ming with complementarity constraints, denoted as (PR1-t).

min
1

2
𝒇 𝑡𝑇𝑬𝑡 − 1

2
𝒃𝑡𝑇1 𝒗𝑡

2 +
1

2
(−𝒃𝑡2 + 𝜎𝑡1− 𝝎𝑡 + 𝝎𝑡)𝑇𝒗𝑡

3

− 1

2
𝐸𝑡𝑣𝑡4 +

1

2
𝒃𝑡𝑇3 𝒗𝑡

5 − 1

2
𝒃𝑡𝑇4 𝒗𝑡

6 +𝑩𝑡𝑇𝑯3𝑩
𝑡 (𝑃𝑅1− 𝑡)

subject to (24)− (29), 𝒗𝑡
𝑗 , 𝑣𝑡4 ∈ 𝒢 ∩ 𝒞, 𝑗 ∈ {1, ..., 10}∖{4},

where 𝑩𝑡𝑇𝑯3𝑩
𝑡 is a constant. The problem (PR1-t) is

nonconvex, however, the nonconvex terms only come from
the complementarity slackness conditions 𝒞 and binary vari-
ables 𝑧𝑡𝑖, 𝑧

𝑡
𝑖, which can be enforced by using linear equations,

e.g., either (𝑬𝑡 − 𝒔𝑡)𝑖 = 0 or 𝒗𝑡
1𝑖 = 0, (𝒔𝑡 −𝑬𝑡 − 𝒃𝑡1)𝑖 = 0 or

𝒗𝑡
2𝑖 = 0, (𝒃𝑡3−𝑬𝑡)𝑖 = 0 or 𝒗𝑡

5𝑖 = 0, (𝑬𝑡−𝒃𝑡4)𝑖 = 0 or 𝒗𝑡
6𝑖 = 0,

𝝎𝑡
𝑖 = 0 or 𝒗𝑡

7𝑖 = 0, (𝝎𝑡 − 𝒃𝑡5)𝑖 = 0 or 𝒗𝑡
8𝑖 = 0, 𝝎𝑡

𝑖 = 0 or
𝒗𝑡
9𝑖 = 0, (𝝎𝑡 − 𝒃𝑡6)𝑖 = 0 or 𝒗𝑡

10𝑖 = 0, 𝑧𝑡𝑖 = 0 or 𝑧𝑡𝑖 = 1, 𝑧𝑡𝑖 = 0
or 𝑧𝑡𝑖 = 1, where 𝑖 ∈ 𝒩 denotes the 𝑖th component.
By dropping the complementarity slackness conditions 𝒞

and binary constraints from (PR1-t), we obtain the relaxed
LP problem (RLP1-t).

min
1

2
𝒇 𝑡𝑇𝑬𝑡 − 1

2
𝒃𝑡𝑇1 𝒗𝑡

2 +
1

2
(−𝒃𝑡2 + 𝜎𝑡1− 𝝎𝑡 + 𝝎𝑡)𝑇𝒗𝑡

3

− 1

2
𝐸𝑡𝑣𝑡4 +

1

2
𝒃𝑡𝑇3 𝒗𝑡

5 − 1

2
𝒃𝑡𝑇4 𝒗𝑡

6 +𝑩𝑡𝑇𝑯3𝑩
𝑡 (𝑅𝐿𝑃1− 𝑡)

subject to (24)− (29), 𝒗𝑡
𝑗 , 𝑣𝑡4 ∈ 𝒢, 𝑗 ∈ {1, ..., 10}∖{4}.

We use branch and bound algorithm [22] to solve (PR1-t).
Starting from the relaxed LP problem (RLP1-t), we can add
the linear constraint, e.g., (𝑬𝑡−𝒔𝑡)𝑖 = 0 or 𝒗𝑡

1𝑖 = 0, then we
get two new LP problems (e.g., two first level children nodes
in the branch and bound tree). We can continue to expand
the tree by adding other linear constraints until 𝒞 is com-
pletely enforced. The LP problem in each node can be solved
by the interior-point method efficiently [21], and the optimal
objective value to the LP problem sets an lowerbound of
the optimal objective value of the original problem (PR1-t).
Any feasible solution provides an upperbound. The branch
and bound algorithm terminates at a globally optimal solu-
tion when the lowerbound meets the upperbound or all the
nodes in the branch and bound tree have been evaluated [23].
The worst-case complexity is 𝒪(210𝑁 ).

4. SIMULATION RESULTS
In this section, we evaluate our proposed algorithm based

on realistic system parameters, compare the electric load in-
dex between the integrated model and the two-stage model,
and compare the energy cost of data centers with LMP-
based pricing and dynamic pricing. In the integrated prob-
lem, smart grid operator directly controls the workload as-
signments of the data centers, and can achieve the best load
balancing performance. We run our simulations for four data
centers geographically located in four different regions: New
York, Maine, Rhode Island, and Boston. We took hourly lo-
cational marginal prices and demands of the four locations
on 4th March 2013 as the base prices and background power
load in our experiment [25, 26]. The dynamic computing
requests are simulated based on the Worldcup98 workload
trace [27]. For other simulation parameters, please refer to
our technical report [28].

We first evaluate the performance of load balancing in
smart grid. The evolution of electric load index of three sce-
narios over 24 hours is shown in Figure 3. The black curve
represents the ELI of the integrated solution, and the red
curve represents the ELI of the optimal dynamic solution of
the two-stage problem. The red curve is very close to the
black curve, which suggests the optimal two-stage dynamic
pricing achieves the performance very close to the best pos-
sible load balancing.3 The blue curve represents the LMP
benchmark, where the data centers are charged based on the
location-dependent and time-dependent LMP pricing. Fig-
ure 3 shows that our proposed scheme reduces the ELI by
around 12% comparing with the LMP benchmark.

The evolution of data centers’ total energy cost over 24
hours is depicted in Figure 4. The energy cost with dynamic
pricing is less than the LMP benchmark, as the dynamic
pricing only offers discounts from the LMP prices, which
implies that data centers reduce the total energy cost (across
24 hours) by 46% by taking advantage of the dynamic price
discounts and reallocating the workload. From Figure 3 and
Figure 4, we observe that the dynamic interactions between
smart grid and data centers bring benefits to both sides and
achieve a win-win situation.

We now examine the power load distribution within one
particular hour (e.g., hour 20), and plot the background
power load, power load of data centers, and the total load.
Figure 5 shows the electric load distribution in the two-stage
model. We can see the smart grid tries to drive the load
evenly distributed with the same usage ratio among all the
locations. Since location 1 has high background load, the

3The ELI performance of the two-stage problem is related
to the configuration of coefficient 𝜃 in (PS-1). In our sim-
ulations, we set 𝜃 quite close to 1, which explains why the
performance is close to optimal. In our future work, we
intend to further explore the impact of changing 𝜃.
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Figure 3: Electric load
index of smart grid
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Figure 4: Total energy
cost of data centers

data center in location 1 only consumes the minimum en-
ergy to avoid overload. Since the location 2 and location 3
have the same capacity 30MW, the total loads are the same
in location 2 and location 3. However, in Figure 6, the en-
ergy usage is not balanced, since in the LMP-based pricing
scenario, data centers assign workload to the location with
the lowest LMP price as much as possible to minimize the
energy cost. The consequence is that the power load is ex-
tremely high in the lowest price location 1, bringing a risk of
blackout. Therefore, our proposed scheme can effectively en-
hance the robustness of power grid through load balancing.
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Figure 5: Power load
(Two-stage optimal dy-
namic pricing)
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(LMP benchmark)

5. CONCLUSION
In this paper, we studied the dynamic interactions be-

tween smart grid and data centers as a two-stage prob-
lem. To solve the two-stage optimization problem, we re-
formulated it as a linear programming problem with com-
plementarity slackness conditions, and proposed a branch
and bound algorithm to attain the globally optimal solu-
tion. The simulation experiments showed the electric load
index is decreased by around 12%, and the total energy cost
of data centers is reduced by 46% on average.
In the future, we plan to investigate some approximation

and heuristic algorithms to further reduce the complexity
of solving the two-stage problem. We will also consider the
impact of renewable energy, energy storage, grid topology,
and other operating costs of data centers (such as the server
switching cost) in the study of smart grid and data center
interactions.
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