PMU Data Analytics for Power Distribution

First Session

Hamed Mohsenian-Rad, University of California, Riverside
Nonintrusive Load Modeling Using Micro-PMUs

Asja Derviskadic, Swiss Federal Institute of Tech of Lausanne
Synchronized Sensing for Wide-Area Situational Awareness of Power Distribution Networks

Second Session

Wei Zhou, Huazhong University of Science and Technology
DPMU for Harmonic State Estimation

Moosa Moghimi Haji, University of Alberta
Estimating Distribution System Parameters using DPMU and Smart Meter Data
Nonintrusive Load Modeling Using Micro-PMUs

Smart Grid Comm 2019, Beijing, China

Hamed Mohsenian-Rad

Associate Professor, Electrical Engineering, University of California, Riverside
Associate Director, Winston Chung Global Energy Center
Director, UC-National Lab Center for Power Distribution Cyber Security

Background: Events in Micro-PMU Data Streams

Event Signature

- Current (I)
- Voltage (V)
- Active Power (P)
- Reactive Power (Q)

12 kV

Micro-PMU
(Riverside, CA)

120 Million Data Points Per Day

Sensor

120 fps
Background: Events in Micro-PMU Data Streams

Event Signature

- Current (I)
- Voltage (V)
- Active Power (P)
- Reactive Power (Q)

12 kV

Micro-PMU
(Riverside, CA)

120 Million Data Points Per Day
Background: Events in Micro-PMU Data Streams

Event Signature
- Current (I)
- Voltage (V)
- Active Power (P)
- Reactive Power (Q)

12 kV

Sensor
120 fps

Micro-PMU
(Riverside, CA)

120 Million Data Points Per Day
Background: Events in Micro-PMU Data Streams

Event Signature

- Current (I)
- Voltage (V)
- Active Power (P)
- Reactive Power (Q)

12 kV

Micro-PMU
(Riverside, CA)

120 fps
Background: Events in Micro-PMU Data Streams

Event Signature

- Current (I)
- Voltage (V)
- Active Power (P)
- Reactive Power (Q)

12 kV
Micro-PMU
(Riverside, CA)

Sensor
120 fps
Background: Events in Micro-PMU Data Streams

Event Signature
- Current (I)
- Voltage (V)
- Active Power (P)
- Reactive Power (Q)

12 kV
Sensor
120 fps
Micro-PMU
(Riverside, CA)
Background: Events in Micro-PMU Data Streams

On Average: 500 Events Per Day Per Feeder

12 kV

Sensor

120 fps

Micro-PMU
(Riverside, CA)
Background: Events in Micro-PMU Data Streams

On Average: 500 Events Per Day Per Feeder

Sensor

120 fps

Micro-PMU (Riverside, CA)
Previous Results

1. Event Detection and Event Classification (Machine Learning):

1. Event Detection and Event Classification (Machine Learning):

![Graphs showing current, voltage, active power, and reactive power over time for different phases and events.]

Upstream Event (Sub-transmission or Transmission)

Previous Results

1. Event Detection and Event Classification (Machine Learning):

Switching Event (Distribution)

Previous Results

1. Event Detection and Event Classification (Machine Learning):

Switching Event (Distribution)

2. Event Location Identification (Hybrid Model-Based):

\[|I|, \angle I \quad V, \angle V \]

Previous Results

2. Event Location Identification (Hybrid Model-Based):

\[|\Delta I^u| \angle \Delta I^u \quad |\Delta V^u| \angle \Delta V^u \]

\[|\Delta I^d| \angle \Delta I^d \quad |\Delta V^d| \angle \Delta V^d \]

Previous Results

2. Event Location Identification (Hybrid Model-Based):

\[|\Delta I^u_1| \angle \Delta I^u_1 \]

\[k: \text{Event Bus (Unknown)} \]

Previous Results

2. Event Location Identification (Hybrid Model-Based):

\[k = \arg \min_{i} \left| \Delta V_i^f - \Delta V_i^b \right| \]

2. Event Location Identification (Hybrid Model-Based):

\[k = \arg \min_i |\Delta V_i^f - \Delta V_i^b| \]

Observations

- We used only two micro-PMUs

- We can **remotely** and **automatically** monitor all **load switching events**

 ![Diagram](image)

 - Pointer of Metering at Feeder Head
 - 1: Open
 - 0: Closed

- Therefore, we can keep track of switching configurations.
Observations

- We used only two micro-PMUs
- We can **remotely** and **automatically** monitor all load switching events
- Therefore, we can keep track of switching configurations.
Observations

- We used only two micro-PMUs
- We can **remotely** and **automatically** monitor all load switching events
- Therefore, we can keep track of switching configurations.
Observations

- We used only two micro-PMUs

- We can **remotely** and **automatically** monitor all **load switching events**

- Therefore, we can keep track of switching configurations.
Observations

- We used only two micro-PMUs.
- We can **remotely** and **automatically** monitor all load switching events.
- Therefore, we can keep track of switching configurations.

![Diagram showing substation with micro-PMUs and load switch configurations.]

- 1: Open
- 0: Closed
Observations

- We used only two micro-PMUs
- We can **remotely** and **automatically** monitor all load switching events

Therefore, we can keep track of switching configurations.

Q: What can we do with this?
Observations

- We used only two micro-PMUs

- We can **remotely** and **automatically** monitor all **load switching events**

- Therefore, we can keep track of switching configurations.

Q: What can we do with this?

A: **Nonintrusive Load Modeling**
Noninvasive Load Modeling

- Feeder Aggregated Load Model:

\[P_{mk} = P_{mh} \left(\frac{V_{mk}}{V_{mh}} \right)^{np} \]

\[Q_{mk} = Q_{mh} \left(\frac{V_{mk}}{V_{mh}} \right)^{nq} \]

Switching Configuration Number

A Variation of the **ZIP Model**.

- Constant Impedance
- Constant Power
- Constant Current
• **Individual Load Models:**

\[P_{m_k} = P_{m_h} \left(\frac{V_{m_k}}{V_{m_h}} \right)^{n_p} \]

\[Q_{m_k} = Q_{m_h} \left(\frac{V_{m_k}}{V_{m_h}} \right)^{n_q} \]
Nonintrusive Load Modeling

- **Individual Load Models:**

\[
P_{m_k} = P_{m_h} \left(\frac{V_{m_k}}{V_{m_h}} \right)^{n_p}
\]

\[
Q_{m_k} = Q_{m_h} \left(\frac{V_{m_k}}{V_{m_h}} \right)^{n_q}
\]

Switching Event

Switching Configuration Number

\[
P_{m_k} = P_{m_h} \left(\frac{V_{m_k}}{V_{m_h}} \right)^{n_{p,i}} \quad i = 1, 2, ..., n
\]

\[
Q_{m_k} = Q_{m_h} \left(\frac{V_{m_k}}{V_{m_h}} \right)^{n_{q,i}}
\]
Step 1: Circuit Model Equations

- **Complex Power Conservation:**

 \[S_{m_k} = \sum_{i=1}^{n} \left(S_{i}^{l,m_k} \times SW_{i}^{m_k} \right) + \sum_{j=1}^{n} Z_j \left(\sum_{d=j}^{n} \left(S_{d}^{l,m_k} \right)^* \times SW_{d}^{m_k} \right) \]

 \[\text{Current in Line } j \]

 \[\text{Total Load} \]

 \[\text{Total Loss} \]

 \[\text{Switching Configuration} \]

 \[\text{Substation} \]

 \[V_{m_k}, P_{m_k}, Q_{m_k} \]

 \[Z_1, Z_2, \ldots, Z_n \]

 \[\text{SW}_1, \text{SW}_2, \ldots, \text{SW}_n \]

 \[S_{1}^{l,m_k}, S_{2}^{l,m_k}, \ldots, S_{n}^{l,m_k} \]

 Parameter \(SW_{i}^{m_k} \) is one if the individual load \(i \) is turned on during switching configuration \(m_k \); and zero otherwise.
Step 1: Circuit Model Equations

- **KVL:**

\[
V_i^{m_k} = V_{m_k} - \sum_{j=1}^{i} Z_j \left(\sum_{d=j}^{n} \frac{S_{d}^{l,m_k}}{V_{d}^{l,m_k}} \right) SW_d^{m_k}
\]

Voltage at Substation

Voltage Drop at Line \(j \)

of Equations = \(n \)
Step 1: Circuit Model Equations

- **Combined Equations:**
 \[
 S_{mk} = \sum_{i=1}^{n} \left(S_{i,mk}^l W_i^m \right) + \sum_{j=1}^{n} Z_j \left| \sum_{d=j}^{n} \left(\frac{S_{d,mk}^l}{V_{d,mk}^l} \right)^* \times SW_d^m \right|^2
 \]
 \[
 V_{l,mk}^l = V_{mk} - \sum_{j=1}^{i} Z_j \left(\sum_{d=j}^{n} \left(\frac{S_{d,mk}^l}{V_{d,mk}^l} \right)^* \times SW_d^m \right), i = 1, \ldots, n
 \]

 Unknowns: $S_{i,mk}^l$ and $V_{l,mk}^l$ for $i = 1, \ldots, n$

- **For any switching configuration m_k:**

<table>
<thead>
<tr>
<th>Number of Equations:</th>
<th>Number of Unknowns:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n + 1$</td>
<td>$n + \sum_{i=1}^{n} SW_i^m$</td>
</tr>
</tbody>
</table>
Step 2: Load Model Equations

- For any two distinct switching configurations m_k and m_h:

$$S^{l,m_k}_i = p^{l,m_h}_i \left(\frac{|V^{m_k}_i|}{|V^{m_h}_i|} \right)^{n_{p_i}} + j q^{l,m_h}_i \left(\frac{|V^{m_k}_i|}{|V^{m_h}_i|} \right)^{n_{q_i}}$$

Necessary Condition:
$$\sum_{k=1}^{c} SW_i^{m_k} \geq 2$$

Additional Unknowns:
$$n_{s_i} = n_{p_i} + j n_{q_i} \quad \text{for} \quad i = 1, \ldots, n$$
Step 3: Solving the System of Equations

• Given \(c \) distinct switching configurations:

\[
\begin{align*}
\text{# of Unknowns:} & \quad n \times c + \sum_{k=1}^{c} \sum_{i=1}^{n} SW_i^{mk} + n \\
\text{# of Equations:} & \quad c \times (n + 1) + \sum_{i=1}^{n} \sum_{k=1}^{c} SW_i^{mk} - n
\end{align*}
\]

Theorem: We need to observe at least \(c_{min} = 2n \) distinct switching configurations to solve the nonintrusive individual load modeling problem.
Illustrative Example

<table>
<thead>
<tr>
<th>Configuration</th>
<th>SW₁</th>
<th>SW₂</th>
<th>SW₃</th>
<th>SW₄</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₁</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[0 , t₁]</td>
</tr>
<tr>
<td>m₂</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>[t₁ , t₂]</td>
</tr>
<tr>
<td>m₃</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₂ , t₃]</td>
</tr>
<tr>
<td>m₄</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₃ , t₄]</td>
</tr>
<tr>
<td>m₅</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>[t₄ , t₅]</td>
</tr>
<tr>
<td>m₆</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₅ , t₆]</td>
</tr>
<tr>
<td>m₇</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₆ , t₇]</td>
</tr>
<tr>
<td>m₈</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[t₇ , t₈]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuit Model</th>
<th># of Equations</th>
<th># of Unknowns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>Load Model</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Combined</td>
<td>56</td>
<td>56</td>
</tr>
</tbody>
</table>

\[Z_{sub} = 1.6+j0.9 \]
\[S_1 = 0.8+j1.3 \]
\[S_2 = 0.2+j0.7 \]
\[S_3 = 1.4+j1.1 \]

(a) Voltage Magnitude (pu) vs. Time (sec)
(b) Voltage Angle (Degrees) vs. Time (sec)
(c) Real Power (W) vs. Time (sec)
(d) Reactive Power (kVAR) vs. Time (sec)

Hamed Mohsenian-Rad
Nonintrusive Load Modeling Using Micro-PMUs
UC Riverside
Extension 1: Distribution Feeder with Laterals

<table>
<thead>
<tr>
<th>Configuration</th>
<th>SW₁</th>
<th>SW₂</th>
<th>SW₃</th>
<th>SW₄</th>
<th>SW₅</th>
<th>SW₆</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₁</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>[0 , t₁]</td>
</tr>
<tr>
<td>m₂</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>[t₁ , t₂]</td>
</tr>
<tr>
<td>m₃</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>[t₂ , t₃]</td>
</tr>
<tr>
<td>m₄</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>[t₃ , t₄]</td>
</tr>
<tr>
<td>m₅</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₄ , t₅]</td>
</tr>
<tr>
<td>m₆</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₅ , t₆]</td>
</tr>
<tr>
<td>m₇</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₆ , t₇]</td>
</tr>
<tr>
<td>m₈</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₇ , t₈]</td>
</tr>
<tr>
<td>m₉</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[t₈ , t₉]</td>
</tr>
<tr>
<td>m₁₀</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₉ , t₁₀]</td>
</tr>
<tr>
<td>m₁₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₁₀ , t₁₁]</td>
</tr>
<tr>
<td>m₁₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[t₁₁ , t₁₂]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuit Model</th>
<th># of Equations</th>
<th># of Unknowns</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>84</td>
<td>120</td>
</tr>
<tr>
<td>Load Model</td>
<td>42</td>
<td>6</td>
</tr>
<tr>
<td>Combined</td>
<td>126</td>
<td>126</td>
</tr>
</tbody>
</table>

Voltage Angle (Degree)

Voltage Magnitude (pu)
Extension 2: Redundant Switching Configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>SW₁</th>
<th>SW₂</th>
<th>SW₃</th>
<th>SW₄</th>
<th>SW₅</th>
<th>SW₆</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₁</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>[t₁]</td>
</tr>
<tr>
<td>m₂</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>[t₂]</td>
</tr>
<tr>
<td>m₃</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>[t₃]</td>
</tr>
<tr>
<td>m₄</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₄]</td>
</tr>
<tr>
<td>m₅</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₅]</td>
</tr>
<tr>
<td>m₆</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₆]</td>
</tr>
<tr>
<td>m₇</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₇]</td>
</tr>
<tr>
<td>m₈</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[t₈]</td>
</tr>
<tr>
<td>m₉</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[t₉]</td>
</tr>
<tr>
<td>m₁₀</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₁₀]</td>
</tr>
<tr>
<td>m₁₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>[t₁₁]</td>
</tr>
<tr>
<td>m₁₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[t₁₂]</td>
</tr>
</tbody>
</table>

- We solve an “estimation” problem.

Error in Line Impedances

<table>
<thead>
<tr>
<th>Error in Line Impedance</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error in Estimating n_p</td>
<td>0.09</td>
<td>0.93</td>
<td>1.30</td>
<td>1.98</td>
<td>2.54</td>
<td>3.38</td>
</tr>
<tr>
<td>Error in Estimating n_q</td>
<td>0.78</td>
<td>1.95</td>
<td>3.23</td>
<td>5.34</td>
<td>9.16</td>
<td>11.87</td>
</tr>
</tbody>
</table>

In Presence of Error in Measurements

- # of Equations: 258
- # of unknowns: 246
Extension 3: Identifying Erroneous Switching Status

<table>
<thead>
<tr>
<th>Configuration</th>
<th>SW₁</th>
<th>SW₂</th>
<th>SW₃</th>
<th>SW₄</th>
<th>SW₅</th>
<th>SW₆</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>m₁</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>[t₁, t₁]</td>
</tr>
<tr>
<td>m₂</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₁, t₂]</td>
</tr>
<tr>
<td>m₃</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>[t₂, t₃]</td>
</tr>
<tr>
<td>m₄</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₃, t₄]</td>
</tr>
<tr>
<td>m₅</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₄, t₅]</td>
</tr>
<tr>
<td>m₆</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₅, t₆]</td>
</tr>
<tr>
<td>m₇</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₆, t₇]</td>
</tr>
<tr>
<td>m₈</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>[t₇, t₈]</td>
</tr>
<tr>
<td>m₉</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[t₈, t₉]</td>
</tr>
<tr>
<td>m₁₀</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>[t₉, t₁₀]</td>
</tr>
<tr>
<td>m₁₁</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>[t₁₀, t₁₁]</td>
</tr>
<tr>
<td>m₁₂</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>[t₁₁, t₁₂]</td>
</tr>
</tbody>
</table>

- Residual Test (In Presence of Two Erroneous Configurations):

![Circuit Diagram](image)

(a) Normalized Residual vs. Circuit Model Equation
(b) Normalized Residual vs. Circuit Model Equation
Conclusions

• Install a few micro-PMUs at feeder head and end buses.

• Remotely and automatically Identify:
 • ZIP Model for all individual loads across the distribution feeder.

• AMI / Smart Meters:
 • Not Available: Our Approach is a Replacement
 • Available: Our Approach is an Oversight
 • AMI Failure
 • Electricity Theft
 • Cybersecurity
 • ...

Non-Intrusive
Further Reading

IEEE T. on Power Systems 2018

IEEE T. on Smart Grid 2019
Application of Load Switching Events in Steady-State Load Modeling in Power Distribution Networks

Alireza Shokar and Mohammad Fakherzadeh
Department of Electrical Engineering, University of California, Riverside, CA, USA

Abstract—A novel event-based method is proposed to nonintrusively load modeling in power distribution systems. The method integrates steady-state load modeling with micro-PMUs to extract the desired information. The event-based method involves micro-PMUs to monitor the load profiles and extract the parameters of each load. The method then integrates these parameters with steady-state load modeling to create a more accurate model of the distribution network.

Keywords—Load modeling, micro-PMUs, event-based method, power distribution systems.

1. INTRODUCTION

A recent IEEE report [1] has found that the majority of the utilities are using meter-based methods to estimate the parameters of their load models. Measurement-based load modeling can be classified static and dynamic. One focus in this paper is on static load modeling, where the goal is to estimate the parameters of the so-called ZIP load models.

An important issue in measurement-based static load modeling is the estimation of the ZIP load parameters. These are typically estimated using a ZIP model in the static load modeling process. However, the challenge is implementing this idea in a way that is efficient and reliable. In this paper, we propose an event-based method for nonintrusively load modeling in power distribution systems.

In the event-based method, micro-PMUs are used to monitor the load profiles and extract the parameters of each load. The method then integrates these parameters with steady-state load modeling to create a more accurate model of the distribution network.

II. EXAMPLES

Consider a distribution feeder with N [2] loads as shown in Fig. 1(a). Depending on which individual loads are on and which individual loads are off, there can be a total of 2^N − 1 possible load configurations in this feeder. However, the challenge is implementing this idea in a way that is efficient and reliable. In this paper, we propose an event-based method for nonintrusively load modeling in power distribution systems.

IEEE T. on Power Systems 2019

Hamed Mohsenian-Rad
Nonintrusive Load Modeling Using Micro-PMUs

IEEE PES Magazine 2018