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Abstract—This paper proposes a semi-analytical method to
obtain the equilibrium bidding strategies for generation and
demand units in a combined oligopoly and oligopsony wholesale
electricity market. Such market structure is the outcome of
the increasing deployment of demand response programs that
facilitate active participation of demand-side players in the price-
setting process. In this analysis, the concept of supply function
equilibrium (SFE) is used to investigate the oligopolistic com-
petition among generation units. The SFE model is extended
and the demand function equilibrium (DFE) is obtained to
study the oligopsonistic competition among demand units. The
economic behavior of a market participant is formulated as a
bi-level programming (BLP) problem. The imperfect competition
among generation units, as well as among demand units, are
modeled as a non-cooperative game. Next, a direct method is
developed to calculate all candidate equilibriums of the market,
and the locational marginal prices (LMPs) in terms of the bidding
strategies of the market participants. The BLP problem is solved
by obtaining the coordinated Pareto-dominant Nash equilibrium
of the market participants’ non-cooperative games. Finally, the
proposed analysis is examined in case studies. Accordingly, we
report insightful observations with respect to the impact of the
changes in the new market structure, at firm-level and market-
level, such as in terms of mitigating market power of generation
units, the market clearing prices and quantities, surplus for
generation units and demand units, and potential impact on
market efficiency.

Index Terms—Bi-level programming, combined oligopoly and
oligopsony, market equilibrium, non-cooperative game theory,
equilibrium bidding strategy, wholesale electricity market.

NOMENCLATURE

b Index for bus, b=1,...,Nb.
i Index for demand, i=1,...,Nd.
j Index for generation unit, j=1,...,Ng .
l Index for transmission line, l=1,...,Nl.
m Index for strategic player, m=1,...,M .
aj , bj , cj Coefficients of generation cost function.
αi, βi Coefficients of benefit function.
kj Bidding strategy of generation unit j.
tm Type of market player m, tmϵt.
κi Bidding strategy of demand unit i.
pm Belief of player m about the opponents’ types.
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Cj Cost function of generation unit j ($/h).
Πj Bidding price of generation unit j ($/MWh).
Bi Benefit function of demand unit i ($/h).
MCj Marginal cost of generation unit j ($/MWh).
MRi Marginal benefit of demand unit i ($/MWh).
Θi Bidding price of demand unit i ($/MWh).
Pgj Generation level of generation unit j (MW).
Pdi Consumption level of demand unit i (MW).
Pgj,min Minimum generation of generation unit j.
Pgj,max Maximum generation of generation unit j.
Pdi,min Minimum consumption of demand unit i.
Pdi,max Maximum consumption of demand unit i.
flmax Power flow limit on line l (MW).
Aeq Nb-dimensional column vector of ones.
Pg Bus generation vector; Pgb is its element.
Pd Bus consumption vector; Pdb is its element.
Tm Types of player m; tm is its element.
T−m Types of player m’s opponents; t−mϵT−m.
T Space for all players’ type; T = T1× ...×TM .
Km Strategy space of player m.
k Strategy profile of generation units.
t An element of type space of market players.
t−m Type of market player m’s opponents, t−mϵt.
κ Strategy profile of demand units.

I. INTRODUCTION

LACK of demand-side participation in the wholesale elec-
tricity markets has traditionally given a dominant position

to the generation units in their relationship to the consumers
[1]. However, the circumstances are gradually changing in
recent years due to the advent of smart grid technologies
and the increasing penetration of demand response. Demand
response programs allow the more active participation of
demand-side players in the price-setting process [2]. Due
to transmission congestion, neither the supply side nor the
demand side of the emerging wholesale electricity market is
not perfectly competitive, but it has a combined oligopoly and
oligopsony structure [3]-[4]. The oligopolistic and oligopsonis-
tic nature of the emerging wholesale electricity market enables
both generation and demand units to profitably manipulate
the market outcome through exercising market power, or in
other words, through strategic bidding [5]. Accordingly, it
is important to understand the strategic bidding behavior of
market participants; where both oligopolists and oligopsonists
seek to choose their bidding strategy so as to maximize their
profits. Addressing this open problem is the focus of this paper.
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A. Literature Review

The problem of identifying the optimal bidding strategy has
been extensively studied in the electricity market literature.
Traditionally, the focus has been on the oligopolistic behavior
of generation units while consumers are considered as inelastic
demands. Since the oligopolistic competition of generation
units eventually leads to economic equilibrium, these studies
often used multifarious equilibrium-based methods to de-
termine the optimal bidding strategy [6]. The oligopolistic
competition of generation units can be modeled as a non-
cooperative game with complete information [7]-[10] or in-
complete information [11]-[14]. The optimal bidding strategy
of generation units is examined in the presence of transmission
constraints in [7]-[9], and with consideration of contingency
constraints in [10]. The optimal bidding strategy problem has
been scrutinized from viewpoint of risk-neutral generation
units in [11]-[13], and risk-averse generation units in [14].

Under the smart grid environment, the demand-side players
can actively participate in the wholesale electricity market.
In this context, the demand-side player can be modeled as
elastic demand, or strategic demand. The papers [15]-[19]
have studied the oligopolistic behavior of generation units in
the presence of elastic demands. The effects of consumers’
price elasticity on the equilibrium of electricity markets have
been investigated in [15]-[17]; while the beneficial impact
of demand shifting in mitigation of generation units’ market
power has been examined in [18]-[19].

However, the above studies inherently ignore the ability
of the demand-side players to act strategically or exercise
market power. While this has been acceptable in the past in the
traditional setting of the wholesale electricity markets, it is no
longer accurate due to the increasing deployment of demand
response programs and accordingly the increasing ability of
the demand entities to act strategically when they participate in
the wholesale electricity markets. A few papers have recently
studied the bidding strategy problem from a strategic demand’s
perspective [20]-[27]. The optimal bidding strategy of a large
consumer is calculated in [20]-[25]. The cooperative bidding
strategies of buyers who collectively act as a super-player are
determined in [26]. The studies in [20]-[26] are concerned with
market scenarios where there is one dominant demand, who is
a price-maker, and many small demands, who are price-takers.
This approach cannot describe the strategic behaviors of mar-
ket participants in an emerging environment where multiple
demand-side players may act as price-makers. To carry out a
more realistic analysis, in [27], a supply function equilibrium
(SFE) model is proposed that considers multiple strategic
players in both supply and demand sides. Note that, the SFE
model was originally developed to study bidding behaviors
of producers in the oligopoly wholesale electricity markets
[28]. Accordingly, the SFE model needs to be extended to deal
with the strategic bidding of market participants in a combined
oligopoly and oligopsony wholesale electricity market.

B. Summary of Contributions

The contributions in this paper are summarized as follows:

• This paper investigates the optimal bidding strategy
problem in the context of a combined oligopoly and
oligopsony wholesale electricity market, i.e., when we
simultaneously have an oligopoly on the supply side
and an oligopsony on the demand side. The problem is
formulated as a bi-level program (BLP). The profit of
the market participant is maximized in the upper level
(UL) while the market clearing problem is embedded in
the lower level (LL). To determine the optimal solution of
the BLP of a market participant at market equilibrium, the
strategic bidding of all market participants need to be op-
timized jointly. A SFE model is employed to analyze the
oligopolistic bidding behaviors of generation units. The
demand function equilibrium (DFE) model is developed
to cope with the oligopsonistic competition of demand
units. The strategic interactions among generation units,
as well as among demand units, are modeled as a non-
cooperative game. Then, these two games are coordinated
to reach a single equilibrium point that simultaneously
solves the BLPs of all market participants.

• A semi-analytical two-phase solution method is proposed
to solve the equilibrium problem. First, parametric local
solutions of the LL problem are determined in terms
of market participants’ bidding strategies. Then, by sub-
stituting parametric local solutions into the equilibrium
problem, it is transformed into a series of tractable equi-
librium sub-problems with strict inequality constraints
(EPSICs). The Pareto-dominant equilibrium represents a
global solution for the original equilibrium problem.

• We then assess the impact of the paradigm shift in the
electricity market structure from oligopoly-perfect com-
petitive to oligopoly-oligopsony on the bidding behavior
of market players and the market efficiency. Some of
the insightful observations include: First, the oligopoly-
oligopsony duality mitigates the market power of gener-
ation units and decreases the bid price of demand units.
Second, this paradigm shift leads to a decrease in both
equilibrium price and quantity. Third, the dual figure of
oligopolistic-oligopsonistic market tends to increase the
consumer surplus (CS) and decrease the producer surplus
(PS). Fourth, the imperfect competition in both sides of
the market has a detrimental impact on the market effi-
ciency. The above observations can help market players to
comprehend market behavior under a combined oligopoly
and oligopsony structure. Moreover, they may help ISOs
to better set forth their market policies in the future.

II. ELECTRICITY MARKET MODEL

In this section, the clearing process of an hour-ahead double-
sided wholesale electricity market is formulated.

A. Generation Units and Demand Units

Suppose that, the generation cost of generation unit j can
be represented by a quadratic function as follows:

Cj(Pgj) =
1

2
ajPgj

2 + bjPgj + cj . (1)
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The marginal cost of generation unit j is:

MCj(Pgj) = ajPgj + bj . (2)

The bid function of generation unit j is as follows:

Πj = kjMCj(Pgj), (3)

where kj is equal to 1 for price takers. Additionally, the SFE
model is extended and the DFE model is developed to cope
with the oligopsonistic bidding behaviors of demand units. The
benefit functions of demand units have to satisfy the following
three properties [29]:

Property 1: The marginal benefit is non-increasing,

∂2Bi

∂Pdi
2 ≤ 0. (4)

Property 2: The marginal benefit is non-negative. That is,

∂Bi

∂Pdi
≥ 0. (5)

Property 3: For zero consumption of power, the benefit
function is equal to zero.

Suppose that, the benefit function of demand unit i is:

Bi(Pdi) = −1

2
αiPdi

2 + βiPdi. (6)

The marginal benefit of demand unit i is:

MRi(Pdi) = −αiPdi + βi. (7)

In the DFE model, the bid function of i can be constructed
by parameterizing its marginal benefit. There are four possible
types of parameterization:

1) α − parameterization: the demand unit prepares its
demand function by adjusting the slope of its marginal
benefit while holding the intercept constant.

2) β−parameterization: the demand unit prepares its de-
mand function by adjusting the intercept of its marginal
benefit while holding the slope constant.

3) κ − parameterization: the demand unit prepares its
demand function by multiplying its marginal benefit by
a non-negative constant, say κi.

4) (α− β)−parameterization: the demand unit prepares
its demand function by adjusting both the slope and
intercept of its marginal benefit.

Here, κ − parameterization method is used to model the
strategic bidding behaviors of demand units. Accordingly, the
bid function of demand unit i is as follows:

Θi = κiMRi(Pdi), (8)

where κi is equal to 1 in a perfect competitive market. In
κ − parameterization method, demand unit i can exercise
market power either by a physical withholding strategy or
by a low bid-price strategy. These strategies are illustrated
in Fig. 1. As can be seen in Fig. 1(a), unit i manipulates the
market by reducing its demand from the competitive level.
In Fig. 1(a), πcomp-πimp and dcomp(πimp)-dimp represent the
value of price distortion and the value of withheld capacity
by unit i, respectively. On the other hand, as can be seen in
Fig. 1(b), unit i distorts the market price by bidding a lower
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Fig. 1. Illustration of market manipulation strategies.

price than the competitive level. In Fig 1(b), πcomp-πimp and
πcomp(dimp)-πimp represent the value of price distortion and
the value of economic withholding by unit i.

B. Market Clearing Mechanism

In the double-sided electricity market, generation and de-
mand units submit their bids to the ISO which in turn, the
ISO clears the market based on a merit order mechanism so
that the social welfare (SW) is maximized [30]. The market
clearing problem can be formulated as following bid-based
transmission constrained economic dispatch (TCED):

min
Pgj ,Pdi

Ng∑
j=1

ΠjPgj −
Nd∑

i=1

ΘiPdi (9a)

s.t.
Nd∑
i=1

Pdi −
Ng∑
j=1

Pgj = 0 (9b)

Pdi,min ≤ Pdi ≤ Pdi,max; ∀i (9c)
Pgj,min ≤ Pgj ≤ Pgj,max; ∀j (9d)
Nb∑
b=1

Tlb(Pgb − Pdb) ≥ −flmax; ∀l (9e)

Nb∑
b=1

Tlb(Pgb − Pdb) ≤ flmax; ∀l. (9f)

The objective function (9a) minimizes the negative of the
quasi-social welfare (QSW) of the market [31]. Equation
(9b) reflects the power balance constraint. Constraints (9c)-
(9f) represent generation capacity limits of generation units,
consumption limits of demand units, and flow constraints of
transmission lines, respectively. Moreover, Tlb as the shift
factor, represents the sensitivity of the flow on line l to a
change in the nodal injection at bus b and the withdrawal of
equal power at the reference bus [32]. It is worth mentioning
that the above model in (1)-(9) is more or less similar to the
existing ISO electricity markets, such as in California ISO
energy market [33].

III. PROBLEM STATEMENT

In a combined oligopoly and oligopsony market structure,
market participants seek to choose the optimal bidding strategy
to gain maximum profit. Here, the optimal bidding strategy
problem of a given market participant is investigated within the
paradigm of market economic equilibrium. In the following,
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game theory is employed to find equilibrium bidding strategy
in the presence of complete and incomplete information.

A. Equilibrium Bidding Strategy in the Presence of complete
Information

The profit of generation unit j can be defined by [34]:

uj(Pgj , LMPj) = PgjLMPj − Cj(Pgj). (10)

Also, the profit of demand unit i is:

ui(Pdi, LMPi) = Bi(Pdi)− PdiLMPi. (11)

Accordingly, the optimal bidding strategy problem of gen-
eration unit j can be modeled as the following BLP problem:

max
kj

uj(Pgj , LMPj)

s.t. bid-based TCED problem, i.e. (9).
(12)

The optimal bidding strategy problem of demand unit i is:

max
κi

ui(Pdi, LMPi)

s.t. bid-based TCED problem, i.e. (9).
(13)

Regarding (12)-(13), the LL of the BLP problem of market
participant m is parameterized by decisions of all market
participants. Note that, the opponents of m try to maximize
their profits. Since the conflicts of interest exist among market
participants, m needs to maximize its profit at market equilib-
rium, which results in an equilibrium problem. In this regard,
the oligopolistic competition of generation units, as well as
oligopsonistic competition of demand units, is considered
as a non-cooperative game with complete information. The
equilibrium of generation units’ oligopolistic competition and
demand units’ oligopsonistic competition can be determined
by calculating Nash equilibrium (NE) of these two non-
cooperative games. To achieve this purpose, the BLP problem
of generation and demand units should be maximized simul-
taneously which are linked through the LL problem. The LL
problem coordinates non-cooperative games of generation and
demand units to reach a single equilibrium point. However, the
coordinated NE bidding strategy of market participant m can
be determined by solving the following equilibrium problem:

max
k1

u1(Pg1, LMP1)

...
max
κM

uM (PdM , LMPM )

s.t. bid-based TCED problem, i.e. (9).

(14)

The global solution of (14) represents the NE bidding
strategy of market participant m.

B. Equilibrium Bidding Strategy in the Presence of Incomplete
Information

In the previous subsection, we assumed that each player
has the full knowledge of its rivals’ profit functions. In reality,
market players lack such information about their opponents.
Therefore, in this subsection, we expand our model and

consider the oligopolistic competition of generation units,
as well as the oligopsonistic competition of demand units,
also as a non-cooperative game with incomplete information.
An M -player Bayesian game can be denoted in the normal-
form representation by G={K1,...,KM ; T1,...,TM ; p1,...,pM ;
u1,...,uM}, where we need to address two subjects:

1) Constructing the Types of Market Players: The types of
generation unit j, Tj , are defined based on its cost function.
The cost function of unit j varies over time according to the
change in the fuel prices. For the sake of simplicity, let us
assume the fuel price is the only factor that change the cost
function of unit j. Thus, the types of unit j can be constructed
by estimating the cost coefficients of unit j over time. For
estimating the cost functions of generation units based on
observed bid data, readers are referred to [35]. Analogously,
the types of demand unit i, Ti, can be defined based on its
benefit function.

2) Constructing the Beliefs of Market Players: The belief
of player m, pm(t−m|tm), describes the uncertainty of player
m about the types of rival players, t−m, when player m has
type tm. Under Harsanyi’s model, the posterior belief of player
m about the types of other players can be extracted from a
common prior using Bayes’ rule as:

pm(t−m|tm) =
p(t−m, tm)∑

T−m

p(t−m, tm)
, (15)

where p(t−m, tm) represents the joint probability distribution
of tm and t−m. In other words, p(t−m, tm) signifies the prob-
ability that player m is type tm, and its opponents are types
t−m. Player m infers p(t−m, tm) from the publicly available
data as p(t−m, tm) = p(t1)...p(tm)...p(tM ), where p(tm)
indicates the prior probability distribution of tm. Bayesian
games assume that the beliefs of players about the types of
other players are mutually consistent, in the sense that they are
derived from a common prior. Under common prior assump-
tion (CPA), each player knows the beliefs of opponents about
its type. It is worth mentioning that the private information
of market players in a Bayesian game are included in the
description of the type. The analysis in this paper is restricted
to Bayesian games with a common prior. Abandoning the
CPA, Harsanyi’s model faces the issue of infinite hierarchy of
beliefs. For representing Bayesian games without a common
prior, readers are referred to [36-37].

The solution of an M -player Bayesian game is the Bayesian
Nash equilibrium (BNE). Under Harsanyi’s model, the BNE
simultaneously maximizes the expected profit of all market
participants, where the expected profit of generation unit m is
[38]:

eum =
∑
Tm

∑
T−m

um(Pgm(t), LMPm(t))pm(t−m|tm), (16)

and the expected profit of demand unit m is:

eum =
∑
Tm

∑
T−m

um(Pdm(t), LMPm(t))pm(t−m|tm), (17)

and Pgm(t), Pdm(t), and LMPm(t) represent generation level
of unit m, consumption level of unit m, and LMP at bus m
when the type is t.
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IV. SOLUTION TECHNIQUE

In this section, a semi-analytical two-phase solution method
is devised to solve the equilibrium problem. The idea is
based on the fact that the equilibrium problem can be trans-
formed into a series of EPSIC sub-problems, each sub-problem
corresponds to a possible solution of the TCED problem.
In the first phase, we determine all possible solutions of
the TCED problem. In this regard, the dimension of the
parametric TCED problem is reduced firstly by identifying
and eliminating the redundant transmission constraints. Then,
the candidate solutions of the reduced parametric TCED prob-
lem are determined in terms of bidding strategies of market
participants. In the second phase, by substituting parametric
local solutions in the LL, the equilibrium problem transformed
into a series of EPSICs, which are now formulated in terms
of the bidding strategies of market participants. Note that, the
optimal solution of each EPSIC represents a local NE for the
original equilibrium problem. These EPSICs are solved and
Pareto dominant NE is designated as a global solution for the
original problem. The detailed explanations about the proposed
solution method have been provided in the following.

A. Parametric Solutions of the Bid-based TCED
1) Identifying the Redundant Transmission Constraints:

Constraints of the bid-based TCED program are considered
as the following linear system S:{

Constraints (9b), (9c), (9d)

Aineq,T [Pg − Pd] ≤ Bineq,T ,
(18)

where Aineq,T is a 2Nl × N matrix. Moreover, Bineq,T is a
2Nl-dimensional column vector. The following transmission
constraint:

A{n}
ineq,T [Pg − Pd] ≤ B{n}

ineq,T , (19)

is defined as redundant to the system S if and only if there is
no vector P=

[
Pg

T Pd
T
]
T such that [39]:

Constraints (9b), (9c), (9d)

A−{n}
ineq,T [Pg − Pd] ≤ B−{n}

ineq,T

A{n}
ineq,T [Pg − Pd] ≥ B{n}

ineq,T ,

(20)

where A{n}
ineq,T and B{n}

ineq,T are the nth row of Aineq,T and
Bineq,T . Also, matrices A−{n}

ineq,T and B−{n}
ineq,T are obtained by

removing the nth row of Aineq,T and Bineq,T . Consider the
following linear programming (LP) problem:

max
P

zn = A{n}
ineq,T [Pg − Pd]

s.t. S−{n},
(21)

where S−{n} is obtained by removing the nth constraint from
the system S. From Theorem 2 in [39], the nth constraint in
(20) is redundant if and only if:

z∗n < B{n}
ineq,T , (22)

where z∗n is the optimal solution of the LP problem in
(21). Accordingly, the redundant transmission constraints of
the TCED can be identified by solving a series of LPs.
For alternative transmission constraints elimination methods,
readers are referred to [40-41].

2) Implementing the Active Set Strategy: If the bidding
strategy of market participants treated as parameters, the
reduced bid-based TCED can be formulated as the following
parametric quadratic programming (PQP) problem:

min
Pg,Pd

1

2
PT

g HgPg + bT
g Pg +

1

2
PT

d HdPd − bT
d Pd (23a)

s.t. AT
eq[Pd − Pg] = 0 : λ, (23b)

Ared[Pg − Pd] ≤ Bred : µred, (23c)

where
Hg = diag(2kbab); Hd = diag(2κbαb); ∀b,

where bg and bd are Nb-dimensional column vectors with
kbbb and κbβb as an element, respectively. The inequality
constraints of reduced bid-based TCED are generalized in
(23c). The active set strategy is employed to solve the PQP
problem. This method splits the PQP problem into PQP
sub-problems with equality constraints (PQPEC), each sub-
problem associated with a particular combination of active
constraints [42]. The optimal solution of a PQPEC represents
a local solution for the PQP problem. By repeating this
procedure for the remained combinations of active constraints,
all parameterized local solutions of the PQP problem can be
determined.

Consider the following PQPEC corresponding to a given
active set AS:

min
P

Γ =
1

2
PTϕ11P − PTϕ12 (24a)

s.t. ϕ21P = ϕ22 : µeq, (24b)

where
ϕ11 =

[
Hg 0
0 Hd

]
,ϕ12 =

[
−bg

bd

]
,ϕ21 =

[
−AT

eq AT
eq

AAS −AAS

]
,ϕ22 =

[
0

BAS

]
,

where AAS and BAS are obtained by eliminating the rows of
Ared and Bred which are associated with inactive constraints
AS, respectively. The KKT optimality conditions for the
PQPEC problem are:[

ϕ11 ϕT
21

ϕ21 0

] [
P∗

µ∗
eq

]
=

[
ϕ12

ϕ22

]
. (25)

Definition 1: The coefficient matrix and the matrix
ΨTϕ11Ψ are called the KKT matrix and the reduced Hessian.
Moreover, Ψ is a matrix that form a basis for the null space
of ϕ11.

Theorem 1: Assume that the KKT matrix has full row rank.
Then, the parametric system of the KKT conditions in (25) has
a unique solution.

Proof: The parametric system of KKT conditions has a
unique solution if the KKT matrix is non-singular. The KKT
matrix is non-singular if the reduced Hessian is positive
definite. The reduced Hessian is positive definite if and only if
the value of ΨTϕ11Ψ is positive for every non-zero column
vector of Ψ. For every real vector Ψ we have:

ΨTϕ11Ψ =
∑

j

2ajkjΨ
2
j +

∑
i

2αiκiΨ
2
i , (26)

which is always positive. Consequently, the parametric system
of the KKT conditions in (25) has a unique solution.

Therefore, according to Theorem 1, it can be concluded
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that P∗ is the unique global solution of the PQPEC in (24).
It should be noted that P∗ and µ∗

eq are the explicit functions
of the generation and demand units’ bidding strategies. The
candidate solution of the PQPEC is a feasible solution to the
original PQP problem in (23) if satisfies the following strict
inequality constraints: AIAS [P∗

g −P∗
d ]−BIAS < 0 and µ∗

AS >
0, where AIAS and BIAS are obtained by eliminating the rows
of Ared and Bred which are associated with active constraints
AS, respectively. Moreover, µAS is the vector of Lagrangian
multipliers for active inequality constraints AS. Additionally,
for a given active set AS, LMP at bus b can be determined in
terms of bidding strategy of market players, as follows [30]:

LMPb = λ∗ −
Nl∑
l=1

µ∗
l Tlb +

2Nl∑
l=Nl+1

µ∗
l Tlb. (27)

where µ∗
l is an element of µ∗

AS .

B. Solving the Equilibrium Problem in the Presence of Com-
plete Information

The equilibrium problem in (14) can be transformed into a
series of EPSICs, each EPSIC corresponds to a possible solu-
tion of the TCED problem. By substituting a given candidate
solution of the parametric TCED (P∗, µ∗

eq) in the equilibrium
problem, we have the following EPSIC:

max
k1

u1(Pg1, LMP1)

...
max
κM

uM (PdM , LMPdM )

(28)

s.t.
AIAS [P∗

g − P∗
d ]− BIAS < 0

µ∗
AS > 0.

In (28), the profit of market players and strict inequality
constraints are the explicit function of market participants’
bidding strategies. By differentiating the profit functions with
respect to the bidding strategies of market participants, we
get a system of nonlinear algebraic equations with strict
inequalities. The system of nonlinear algebraic equations can
be solved by the trust region Newton method. The detail of
the trust region Newton method is given in [43]. It should
be noted that the obtained solution is feasible if satisfies
strict inequality constraints. However, the optimal solution
of each EPSIC represents a coordinated local NE for the
original equilibrium problem. To find all coordinated local
NEs, the optimal solution of other EPSICs are determined.
The candidate NEs are compared and the Pareto optimal NE
is designated as a global solution for the original equilibrium
problem [44]. It should be noted that the game may have a
Pareto-optimal pure-strategy NE, several non-dominated pure-
strategy NEs, or none at all.

C. Solving the Equilibrium Problem in the Presence of Incom-
plete Information

The proposed semi-analytical method in the previous
subsections is employed to solve the equilibrium bidding
strategy problem in the presence of incomplete information. In

this regard, the coordinated BNE of incomplete-information
non-cooperative games of generation and demand units
are determined for all possible combinations of the active
constraints of LL problem. For a given active set AS, the
coordinated BNE solves the following problem:

max
k1

eu1(Pg1, LMP1)

...
max
κM

euM (PdM , LMPM )

(29)

s.t.
AIAS [P∗

g − P∗
d ]− BIAS < 0

µ∗
AS > 0.

where P∗
g , P∗

d, and µ∗
AS are the functions of k(t), and κ(t).

By differentiating the expected profit functions with respect
to the bidding strategies of market participants, we get a
system of nonlinear algebraic equations with strict inequalities
that can be solved by the trust region Newton method. After
determining the BNE corresponding to all combinations of
active constraints, they are compared and Pareto-dominant
BNE is designated as a global solution for the bidding
strategy problem of each market player. The game may have
a Pareto-optimal pure-strategy BNE, several non-dominated
pure-strategy BNEs, or none at all.

D. Discussion on Computational Complexity

The proposed semi-analytical solution method in this study
solves the equilibrium bidding strategy problem corresponding
to each possible combination of active constraints in the LL
sub-problem. Given the nature and the purpose of this study,
the analysis in this paper does not need to be done in real-time;
therefore, computational complexity is not a major concern.
Nevertheless, it is worth to briefly discuss the subject of
computational complexity in this section. The computational
time in this type of analysis grows exponentially when there
exists a large number of binding constraints in the reduced
bid-based TCED problem. However, there are some ways to
overcome the time complexity. In particular, the analysis in
this paper can be extended in two ways in order address
computational complexity.

First, one can consider the bounded rationality of the
strategic players. In reality, the rationality of market players
is limited by the tractability of the bidding strategy problem.
Hence, the optimal bidding strategy of a market participant can
be found by determining the local equilibrium corresponding
to some combinations of active constraints. Even though the
obtained equilibrium bidding strategy is less credible than its
global counterpart, this alternative less-complex solution still
has meaning as it can be adequate for the satisfaction of the
market player due to limitations on its rationality.

Second, one can also parallelize the solution process. De-
termining all possible solutions of the parametric bid-based
TCED problem is the most time-consuming process of the pro-
posed methodology. This process can be performed in parallel;
which can significantly help with reducing the computational
time.
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V. ANALYTICAL CASE: IEEE 9-BUS SYSTEM

The proposed semi-analytical approach is applied to the
IEEE 9-bus test system in Fig. 2. The cost coefficients of
generation units are provided in Table I. The inverse demand
function of a price-taker demand unit i is considered as
Θi = −0.04Pdi+20, for i ∈ {1, 2, 3}. Consumption limits of
each demand unit are 20 (MW) and 85 (MW).

A. Case 1: Elastic Demand Units

To provide intuition about the strategic bidding behavior of
generation units in the presence of elastic demand units, the
following two scenarios are taken into account in Case 1:

• Case 1.A: Transmission lines have large enough capacity.
• Case 1.B: The similar input data as Case 1.A, but the

transmission constraints are contemplated.
In Case 1.A, generation units compete against one another

to serve demand units. The market outcome is given in Table
II. The proposed semi-analytical approach allows us to shed
light on the origins and characteristics of generation units’
bidding behavior. To illustrate how market forces work, the
parameterized equilibrium of market is given in following:

P ∗
g1 = −10(3400k1k2+4900k1k3−251756k2k3+62475k1k2k3)

1496k1k2+2156k1k3+1666k2k3+27489k1k2k3

P ∗
g2 = −40(264k1k2−82295k1k3+294k2k3+4851k1k2k3)

1496k1k2+2156k1k3+1666k2k3+27489k1k2k3

P ∗
g3 = −40(220k1k3−57214k1k2+170k2k3+2805k1k2k3)

1496k1k2+2156k1k3+1666k2k3+27489k1k2k3

P ∗
di =

10(74800k1k2+107800k1k3+83300k2k3−31033k1k2k3)
1496k1k2+2156k1k3+1666k2k3+27489k1k2k3

λ∗ = 562190k1k2k3

1496k1k2+2156k1k3+1666k2k3+27489k1k2k3
.

(30)
According to λ∗, each generation unit can increase the

equilibrium price by increasing its bidding strategy. The
positive correlation of equilibrium price and bidding strategy
of generation units represents the force of self-interest. On
the other hand, regarding P ∗

g , the equilibrium quantity of
each generation unit and its bidding strategy is negatively
correlated. In other words, the competition force is reflected

TABLE I
COST COEFFICIENTS OF GENERATION UNITS

Unit # a b Pg,min Pg,max

1 0.22 5 20 100
2 0.17 1.2 20 120
3 0.245 1 30 90

2G

1G

1D
3D

2D

3 6 2

3G

=
3

l

7

8

5 9

4

1

Fig. 2. The IEEE 9-bus test system.

TABLE II
MARKET OUTCOME PERTAINING TO CASE 1.A

Unit k Pg LMP Profit

G1 1.038 52.9 17.27 340.8
G2 1.065 88.3 17.27 756.1
G3 1.045 63.4 17.27 539.6

Unit κ Pd LMP Profit

D1 1 68.2 17.27 93.2
D2 1 68.2 17.27 93.2
D3 1 68.2 17.27 93.2

in the equilibrium quantity of each generation unit. According
to the aforementioned descriptions, two opposing, but comple-
mentary forces of self-interest and competition act as Adam
Smith’s invisible hand and shape the bidding behavior of each
strategic player and consequently the market equilibrium.

To study the strategic interactions in an congested network,
Case 1.B is designed. After solving 18 LPs, constraint of line
3 is merely recognized as critical ones. Table III and Table
IV report market outcome and line flows associated with Case
1.B, respectively. To show beyond the shadow price of line
3’s constraint, µ∗

3 is decomposed in the following:

µ∗
3 =

γµak1k2+γµbk1k3−γµck2k3+γµdk1k2k3

105(γ1k1+γ2k2+γ3k3+γ4k1k2+γ5k1k3+γ6k2k3+γ7k1k2k3)
,

(31)
where γ1=6569.1648, γ2=29817, γ3=14826, γ4=35764,
γ5=195860, γ6=121630, γ7=1453000, γµa=351426816,
γµb=220741632, γµc=143744028, γµd=186250397. Regarding
Table III and (31), the value of µ3 at candidate NE is 2.76.
Note that (31) shows how generation units can create conges-
tion in line 3 through strategic bidding. Congestion occurs in
line 3 when the numerator of (31) is greater than zero.To show
how bidding strategies of generation units influence nodal
prices, LMP at bus 5 is decomposed as follows:

LMP5 = 100(γ5ak1k2+γ5bk1k3−γ5ck2k3+γ5dk1k2k3)
γ1k1+γ2k2+γ3k3+γ4k1k2+γ5k1k3+γ6k2k3+γ7k1k2k3

,
(32)

where γ5a=89754, γ5b=37305, γ5c=66122, γ5d=278940. The
proposed decomposition illustrates how generation units are
able to exercise market power through strategic bidding.
Moreover, it can be used by generation unit j to evaluate the
sensitivity of LMPj to its bidding strategy.

TABLE III
MARKET OUTCOME PERTAINING TO CASE 1.B

Unit k Pg LMP Profit

G1 1.058 54.2 17.91 376.3
G2 1.105 83 16.92 719.5
G3 1.206 50.8 16.22 457.3

Unit κ Pd LMP Profit

D1 1 42.8 18.29 36.8
D2 1 84.4 16.62 142.9
D3 1 60.8 17.57 73.2

TABLE IV
LINE FLOWS PERTAINING TO CASE 1.B

Line # 1 2 3 4 5 6 7 8 9

Limit (MW) 60 35 20 70 45 65 95 70 80

Flow (MW) -54.2 -22.8 20 -50.8 -30.8 53.6 83 -29.4 31.4
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B. Case 2: Strategic Demand Units

To study the effects of market structure on the strategic bid-
ding behavior of players and market efficiency, the following
three scenarios are defined in Case 2:

• Case 2.A: Transmission lines have large enough capacity.
• Case 2.B: The similar input data as Case 2.A, but the

transmission constraints are contemplated.
• Case 2.C: The similar input data as Case 2.A, but each

player has incomplete information about opponents.
In Case 2.A, 3 generation units compete against one another
to serve 3 strategic demand units. The market result for Case
2.A is summarized in Table V. Note that the oligopsonistic
competition of demand units in Case 2.A is a symmetric game.
The parameterized equilibrium of the market in Case 2.A is
given in (33). Eq. (33) describes the structure of conflict of
interests among market participants. First, generation units
(demand units) are willing to boost (depress) equilibrium
price through exercising market power. Regarding λ∗, strategic
demand units play an active role in the price setting. Second,
each generation unit (demand unit) is willing to increase
its generation level (consumption level) by bidding lower
(higher) price. Third, bidding low (high) price by a given
generation unit (demand unit) has a negative consequence on
the generation level (consumption level) of rival players. The
above-mentioned forces shape the bidding behavior of each
market participant. Accordingly, each generation unit (demand
unit) has to choose between selling (buying) more power and
increasing (decreasing) the equilibrium price considering the
bidding behavior of rival players.

Case 2.B scrutinizes the bidding behavior of transmission-
constrained market players under a combined oligopoly and
oligopsony structure. The market outcome pertaining to Case
2.B is summarized in Table VI. To investigate the optimal
bidding strategy problem from the viewpoints of transmission-
constrained market players, we provide a visual description
for the bidding behavior of demand unit 1. In this regard, the

TABLE V
MARKET OUTCOME PERTAINING TO CASE 2.A

Unit k Pg LMP Profit

G1 1.035 49.5 16.45 297.2
G2 1.062 84.1 16.45 682
G3 1.043 60.3 16.45 486.2

Unit κ Pd LMP Profit

D1 0.945 64.6 16.45 146.2
D2 0.945 64.6 16.45 146.2
D3 0.945 64.6 16.45 146.2

TABLE VI
MARKET OUTCOME PERTAINING TO CASE 2.B

Unit k Pg LMP Profit

G1 1.05 46.8 16.07 276.4
G2 1.085 70.9 14.38 507.2
G3 1.164 42.2 13.2 296.7

Unit κ Pd LMP Profit

D1 0.878 24.6 16.7 69.2
D2 0.776 52.6 13.89 266
D3 0.928 82.7 15.48 237.6

best response function of demand unit 1 to the NE bidding
strategies of its opponents is illustrated in Fig. 3. As can
be seen, for a given active set, the best response function of
demand unit 1 is convex. Accordingly, this unit can maximize
its profit by setting its bidding strategy at 0.878. It should be
noted that the bidding behavior of rival players forms the best
response function of market players. For example, consider
the profit function of demand unit 1. Fig. 4 exhibits the profit
function of this unit when bidding strategies of demand units
2, and 3 are varied between 0.8 and 1. This figure points out
that the profit of demand unit 1 increases as the bid price of
demand unit 3 (demand unit 2) falls (rises) and decreases as
the bid price of demand unit 3 (demand unit 2) rises (falls).

To analyze the impacts of uncertainty, the bidding behavior
of market players is investigated in the presence of incom-
plete information in Case 2.C. In this case, demand units
and generation unit 1 have type 1. The cost coefficients of
generation units in type 1 are summarized in Table I. For
type 2, the cost coefficients of each generation unit are 1.05
times those for type 1. The benefit coefficients of demand
units in type 1 are α=0.04, and β=20. Additionally, it is
supposed that all market players except generation unit 1
believe that rival players have type 1. Generation unit 1 is not
sure about the types of generation units 2 and 3. Generation
unit 1’s belief about the types of other generation units is
p1(t−1|t1)=0.25, where t−1ϵ{(1, 1), (1, 2), (2, 1), (2, 2)}. Ta-
ble VII reports market outcome pertaining to Case 2.C. In
the following, we take a closer look at bidding behavior of
generation unit 1 and demand unit 1 in cases 2.A and 2.C.
Compared to Case 2.A, generation unit 1 will choose to bid
a higher price in Case 2.C. To explain this, note that, in
Case 2.A the optimal bidding strategy of generation unit 1
is determined when the type of generation units is (1,1,1).
In Case 2.C, optimal bidding strategy of generation unit 1
is determined considering 4 different combinations of types
(1,1,1), (1,2,1), (1,1,2), and (1,2,2). In types (1,2,1), (1,1,2),
and (1,2,2), the opponents of generation unit 1 have a higher
cost functions in comparison with type (1,1,1). Accordingly,
generation unit 1 would increase its bid price and expect higher
profit compared to Case 2.A. Moreover, Table VII shows that
the bidding strategy of demand unit 1 is the same as that in
Table V, so that the expected profit of demand unit 1 is the
same as that in Case 2.A. The reason is that demand unit 1
solves the bidding strategy problem in the belief that the type
of other players is the same as that in Case 2.A.

To analyze the impact of the paradigm shift in the market
structure at firm-level, bidding behaviors of market players
in cases 1.B and 2.B (cases with a congested network) are
compared. Regarding Table III and Table VI, generation units
1, 2, and 3 slightly reduced their bidding strategies in Case
2.B in comparison with Case 1.B. On the contrary, demand
units 1, 2, and 3 choose to exercise market power through

TABLE VII
MARKET OUTCOME PERTAINING TO CASE 2.C

Unit G1 G2 G3 Di

Bidding strategy 1.063 1.055 1.038 0.945
Expected profit 317.3 653.4 467.1 146.2
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P ∗
g1 = −5(20825k1k2k3(κ1κ2+κ1κ3+κ2κ3)+κ1κ2κ3(3400k1k2+4900k1k3−251756k2k3))

9163k1k2k3κ1κ3+1496k1k2κ1κ2κ3+2156k1k3κ1κ2κ3+1666k2k3κ1κ2κ3

P ∗
g2 = −20(21617k1k2k3(κ1κ2+κ1κ3+κ2κ3)+κ1κ2κ3(264k1k2−82295k1k3+294k2k3))

9163k1k2k3κ1κ3+1496k1k2κ1κ2κ3+2156k1k3κ1κ2κ3+1666k2k3κ1κ2κ3

P ∗
g3 = −20(935k1k2k3(κ1κ2+κ1κ3+κ2κ3)+κ1κ2κ3(−57214k1k2+220k1k3+170k2k3))

9163k1k2k3κ1κ3+1496k1k2κ1κ2κ3+2156k1k3κ1κ2κ3+1666k2k3κ1κ2κ3

P ∗
di =

5(k1k2k3(458150κi
∑

i̸=iκi−947333
∏

i̸=iκi)−κ1κ2κ3(74800k1k2+107800k1k3+83300k2k3))

9163k1k2k3κ1κ3+1496k1k2κ1κ2κ3+2156k1k3κ1κ2κ3+1666k2k3κ1κ2κ3

λ∗ = 562193.2k1k2k3κ1κ2κ3

9163k1k2k3κ1κ3+1496k1k2κ1κ2κ3+2156k1k3κ1κ2κ3+1666k2k3κ1κ2κ3
.

(33)
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Fig. 3. Best response function of demand unit 1.
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Fig. 4. The impact of bidding strategies of demand units 2 and 3 on the profit
of demand unit 1.

bidding lower prices in Case 2.B. For example, compared to
Case 1.B, demand unit 1 reduces its bidding factor by 12% in
Case 2.B. The consequence is that the awarded consumption
of D1 and the LMP at bus 5 are significantly decreased from
42.8 (MW) and 17.27 ($/MWh) in Case 1.B to 24.6 (MW)
and 16.45 ($/MWh) in Case 2.B. Accordingly, the profit of
demand unit 1 is increased from 36.7 ($/h) in Case 1.B to
69.2 ($/h) in Case 2.B. Comparison among bidding behavior of
demand unit 3 in cases 1.B and 2.B results in some interesting
observations. Even though demand unit 3 bid lower price in
Case 2.B in comparison with Case 1.B (by reducing its bidding
factor from 1 to 0.928), surprisingly the awarded consumption
of demand unit 3 is increased. To explain this, note that,
the awarded consumption of demand unit 3 depends on the
bidding behavior of rival players, i.e. demand units 1 and 2.
The impact of bidding strategies of demand units 1 and 2 on
the consumption level of demand unit 3 is illustrated in Fig. 5,
where Plane 1 and Plane 2 represent the awarded consumption
of D3 in cases 2.B and 1.B, respectively. Regarding Fig. 5,
the two planes intersect on a line that can be characterized

by the equation κ2 + 1.667κ1 − 2.44 = 0. If (κ1,κ2) satisfies
κ2 + 1.667κ1 − 2.44 < 0, then the awarded consumption of
D3 in Case 2.B is bigger than that in Case 1.B.

C. Insightful Observations

Comparison among the above case studies can result in
some interesting and insightful observations. In particular, by
comparing Table II and Table V, we can report Observations 1
and 2, as listed in the last bullet item in Section I.B. To explain
this, note that, the oligopoly-oligopsony duality mitigates the
market power of generation units and decreases the bid price
of demand units. Hence, the equilibrium occurs at a lower
demand. Besides, the energy price is reduced from 17.27
($/MWh) in Case 1.A to 16.45 ($/MWh) in Case 2.A; which
leads to transfer welfare from generation units to demand units.
Next, consider the level of CS, PS, QSW, and total demand
(TD) in cases 1.A and 2.A that are shown in Fig. 6. Based
on the results in this figure, we can report Observations 3
and 4, as we listed in the last bullet item in Section I.B. In
particular, notice that the strategic bidding by demand units
increases CS, whereas it reduces both PS and SW. To explain
why the strategic bidding behavior of demand units has such
impacts on the market, the integrated inverse supply function
(IISF) of generation units and the integrated inverse demand
function (IIDF) of demand units pertaining to cases 1.A and
2.A are illustrated in Fig. 7. The slope and intercept of IISF
are 0.0724 and 2.453 in Case 1.A and 0.0722 and 2.446 in
Case 2.A. It is worth mentioning that the slope and intercept
of IISF are nearly the same in cases 1.A and 2.A, whereas
the slope and intercept of IIDF are changed from -0.0133 and
20 in Case 1.A to -0.0126 and 18.9 in Case 2.A, respectively.
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Fig. 5. The impact of bidding strategies of demand units 1 and 2 on the
awarded consumption of demand unit 3.
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Case 1.A Case 2.A

CS ($/h) 279.1 438.5

PS ($/h) 1637 1464
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Fig. 6. The impact of consumers’ strategic bidding on the market outcome
pertaining to uncongested cases 1.A and 2.A.
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Regarding Fig. 7, a decrease in the intercept of IIDF results
in shifting the equilibrium quantity and price from (r,s) in
Case 1.A to (r′,s′) in Case 2.A. Consequently, as can be
seen in Fig. 7, the strategic bidding behavior of demand units
has detrimental effects on CS, PS, and SW. CS, PS, and SW
associated with Case 1.A (Case 2.A) are equal to areas rsq
(r′s′q′), rst (r′s′t′), and rqt (r′q′t′), respectively. According
to Table III and Table VI, strategic bidding behaviors of
demand units have the same effect on market outcome in
the presence of congestion. As presented in Fig. 8, strategic
bidding by demand units in Case 2.B decreases the LMPs
at all buses in comparison with Case 1.B. Referring to Fig.
8, demand units benefit from lower LMPs. The level of CS,
PS, QSW, and TD in cases 1.B and 2.B are calculated and
displayed in Fig. 9. According to Fig. 9, strategic bidding
by consumers reduces TD and worsens both PS and QSW
whereas enhances CS.

VI. NUMERICAL CASE STUDY: IEEE 30-BUS SYSTEM

To show the credibility of the proposed solution method,
several analyzes are carried out on the IEEE 30-bus test system
in Fig. 10. The information on cost coefficients of generation
units is reported in [10]. The inverse demand function of a
price-taker consumer is considered as Θi = −0.04Pdi + 20.
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Fig. 9. The impact of consumers’ strategic bidding on the market outcome
pertaining to congested cases 1.B and 2.B.

A. Market Analysis

To study the market interactions, three scenarios are taken
into account:

• Case 3.A: Generation units 1 to 4 are strategic players,
and all other market participants are non-strategic players.
Also, transmission lines have large enough capacity.

• Case 3.B: Similar input data as Case 3.A is utilized, but
demand units are strategic players.

• Case 3.C: Similar input data as Case 3.B is utilized, but
the transmission constraints are considered.

The market outcome that correspond to cases 3.A and 3.B
are summarized in Table VIII and Table IX, respectively. Also,
the consumption of each demand unit is equal to 102.3 (MW)
and 95.2 (MW) in cases 3.A and 3.B, respectively. After
solving 82 LPs, transmission constraints of lines 2 and 33
are recognized critical in Case 3.C. The upper flow limits of
lines 2 and 33 are 90 MW and 100 MW, respectively. The NE
which is related to the combination with two active constraints
is merely feasible. The simulation results pertaining to supply
and demand sides of Case 3.C are reported in Table X and
Table XI.

B. Insightful Observations

Similar to the analysis in Section V.C, we can verify the
same insightful observations based on the numerical case
studies in this section. In particular, the comparison of Table
IX and Table X confirms Observations 1 and 2. Regarding
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Fig. 10. The IEEE 30-bus test system.

Table IX and Table X, the oligopoly-oligopsony duality miti-
gates the market power of generation units and decreases the
equilibrium price and quantity. To investigate the effects of
transmission line constraints on the market power of different
players in an oligopoly-oligopsony structure, LMPs in cases
3.B and 3.C are compared in Fig. 11. Besides, Fig. 12 depicts
the impacts of transmission constraints on the profit of market
players. Moreover, Fig. 13 reports CS, PS, QSW, and TD
pertaining to cases 3.A, 3.B, and 3.C. Making a comparison
between CS, PS, and QSW in cases 3.A and 3.B we can
similarly confirm Observations 3 and 4.

C. Discussion on the Time Complexity

The computational challenges over the elements of the
game (number of strategic players and the types) and the
system scale (number of buses and transmission lines) are
investigated in this section. First, we analyze the impact of
the number of strategic players and the system scale on the
computational requirements of the proposed algorithm. The
process of determining the NE bidding strategies involves three
important steps:

TABLE VIII
MARKET OUTCOME PERTAINING TO CASE 3.A

Unit k Pg LMP Profit

G1 1.034 344.5 15.91 2414.7
G2 1.04 386.9 15.91 2858.5
G3 1.012 117.8 15.91 889
G4 1.078 689.9 15.91 4763.9
G5 1 258.2 15.91 1664.4
G6 1 258.2 15.91 1664.4

TABLE IX
MARKET OUTCOME PERTAINING TO CASE 3.B

Unit k Pg LMP Profit

G1 1.031 314.18 15.06 2129.5
G2 1.038 364.5 15.06 2526.5
G3 1.01 111.29 15.06 790.6
G4 1.075 645.9 15.06 4147.8
G5 1 241.2 15.06 1454.4
G6 1 241.2 15.06 1454.4

TABLE X
MARKET OUTCOME PERTAINING TO SUPPLY-SIDE OF CASE 3.C

Unit k Pg LMP Profit

G1 1.11 283.5 14.81 2024.3
G2 1.14 323.9 14.92 2429.8
G3 1.21 86.8 14.33 686.1
G4 1.35 561.5 17.03 5108.5
G5 1 242.1 14.18 1250.9
G6 1 256 14.61 1348.6

TABLE XI
MARKET OUTCOME PERTAINING TO DEMAND-SIDE OF CASE 3.C

Unit κ Pd LMP Profit

D2 0.88 76.1 14.92 270.9
D5 0.87 92.4 14.18 366.6
D7 0.92 91.5 15.03 287.2
D8 0.95 102.8 15.09 292.9
D10 0.91 101.7 14.5 352.8
D12 0.86 75.2 14.61 292
D14 0.86 77.5 14.53 303.6
D15 0.84 69.3 14.47 287.1
D16 0.89 90.9 14.56 328.9
D17 0.89 92.2 14.52 335.5
D18 0.92 106.4 14.48 361
D19 0.92 106.4 14.48 360.2
D20 0.92 106.4 14.48 359.8
D21 0.93 113.8 14.37 381.9
D22 0.94 98.1 15.11 287
D24 0.85 94.2 13.8 406.8
D26 0.97 37.2 17.95 48.4
D27 0.85 57.7 15.04 219.6
D29 0.97 61.1 17.03 106.7
D30 0.97 61.1 17.03 106.7

• Step a) Calculating the solutions of the KKT optimality
conditions in (25).

• Step b) Constructing the EPSIC problem in (28).
• Step c) Solving the EPSIC problem in (28).

Hence, the impact of the number of strategic players and the
system scale on the computational time of the process can
be examined in terms of the execution times of the above-
mentioned steps. In this regard, the proposed method in this
paper was tested on IEEE 9-bus, IEEE 30-bus, IEEE 57-
bus, and IEEE 118-bus test systems. All tests are executed
on a MATLAB platform, with a PC consisting of a 2-GHz
processor and 8 GB of RAM. The execution times of different
steps are reported in Table XII. Regarding Table XII, the
computation time of Step a increases rapidly with the number
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Fig. 11. The impact of congestion on the nodal prices.
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Fig. 12. The impact of congestion on the profit of market players.

of strategic players and the system scale, while the increase in
the computation time of Step b and Step c is almost negligible.
Due to the computational complexity of Step a, implementing
the proposed solution method on a large-scale system with a
substantial number of strategic players requires a significant
amount of time.

In a Bayesian game, the computational requirements for
constructing the BNE problem in (29) will scale linearly
with the number of types. Accordingly, the proposed solution
method would be intractable for large-scale systems with a
substantial number of types.
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CS ($/h) 4186.1 5796.7 5755.6

PS ($/h) 14258.9 12503.3 12848.2

QSW ($/h) 18445 18300 17593.2

TD (MW) 2046 1918.4 1711.9
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Fig. 13. Market outcomes for cases 3.A, 3.B, and 3.C.

TABLE XII
THE EXECUTION TIMES OF THE IMPORTANT STEPS

Execution time of (sec)
Test case M Step a Step b Step c

IEEE 9-bus 3 0.63 0.042 0.0
IEEE 9-bus 6 0.84 0.054 0.4

IEEE 30-bus 4 0.76 0.047 0.1
IEEE 30-bus 24 8.82 3.447 19.8
IEEE 57-bus 7 80.66 0.099 0.7
IEEE 57-bus 15 153.33 1.035 6.4
IEEE 57-bus 30 436.47 5.844 32.8
IEEE 118-bus 10 658.11 0.32 2.2
IEEE 118-bus 20 1327.8 2.2 12.9
IEEE 118-bus 40 3442.7 11.246 61.9

VII. CONCLUSIONS

This paper provides a semi-analytical approach to study
the emerging wholesale electricity markets under a smart
grid environment where demand units play an active role
in the wholesale electricity market. Because of transmission
congestion, neither the supply side nor the demand side of
such wholesale electricity market is perfectly competitive.
Therefore, the bidding strategy problem has to be studied in
the context of a combined oligopoly and oligopsony electricity
market. In this regard, we separately modeled the imperfect
competition among generation units, as well as among demand
units. The analysis was done as an equilibrium problem,
and a two-phase semi-analytical approach we proposed to
find the coordinated market equilibrium. In the first phase,
parametric local solutions of the bid-based TCED problem
were determined. In the second phase, the equilibrium problem
was transformed into a series of equilibrium sub-problems
with strict inequality constraints, each sub-problem associ-
ated with a parametric local solution of the TCED. The
candidate NEs were accordingly determined by solving these
sub-problems. The optimal bidding strategy of each market
participant was obtained by ascertaining the Pareto-dominant
NE. The proposed model has been tested on the IEEE 9-bus
test system and the IEEE 30-bus test system. The analytical
case studies and the test results showed that paradigm shift
in the market structure from oligopoly-perfect competitive to
oligopoly-oligopsony has a major impact on optimal bidding
strategies of market participants and market equilibrium. At
the firm-level, the oligopoly-oligopsony duality mitigated the
potential to exercise market power by generation units; it
also decreased the bid price of demand units. At the market-
level, it declined energy price and PS while improved CS.
Moreover, it had a detrimental effect on market efficiency
and led to lower QSW in comparison with the oligopoly-
perfect competitive structure. Additionally, it was observed
that transmission line congestion does not have similar impact
on the optimal bidding strategy and bidding profit of all market
participants in a perfectly imperfect competitive environment;
but it does reduce the QSW of the market as a whole. The
results in this paper can help both generation and demand units
to comprehend market behavior under a combined oligopoly
and oligopsony structure. Moreover, they are insightful to
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ISOs to better set forth their market policies in the future.
The proposed framework in this paper can be extended in

two directions. First, the model can be extended to consider
the strategic bidding of market participants in a multi-period
market clearing structure. Second, the solution method can be
extended in two ways to reduce the computational complexity.
First extension would be to consider the bounded rationality
of strategic players. Second extension would be to parallelize
the solution process.
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